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[from the EDITORS]

I
t will be March when you receive this 
issue of IEEE Signal Processing 
Magazine (SPM), and it has been 
almost four years since the IEEE 
Signal Processing Society (SPS)’s 

Inside Signal Processing eNewsletter
(eNews) was first launched in April 2007, 
as the latest addition to SPM. When spring 
begins, flowers blossom and a new start 
brings new hopes. As the old Chinese say-
ing goes, “A year’s plan starts with spring.” 
This is precisely what we are doing for the 
bimonthly SPM and the monthly eNews 
that complements the magazine. 

While planning, we are guided by the 
motto of “democratizing signal process-
ing.” In a recent presentation in Shanghai 

that President Mos Kaveh gave on the his-
tory of signal processing and SPS, he used 
Matlab as an example of democratization 
of signal processing during the 1980s. 
Today, this trend is ever more prevalent 
than any time in the history. Signal pro-
cessing techniques are no longer confined 
within the province of the privileged 
group of elite professionals. Rather, scien-
tists, engineers, mathematicians, and 
even financial analysts have been using 
signal processing as a fundamental tool in 
problem solving, as evidenced by a series 
of recent and upcoming special issues in 
SPM. Riding on the tidal wave of the 
ubiquity of signal processing, our eNews 
has special roles to play, and we aim 
to fulfill these roles and maximize the 
 societal impact of signal processing as 
well as the benefits of our SPM readers.

The IEEE has developed a global 
strategy to encourage active participation 
among all electrical engineers worldwide. 
Embracing this strategy, our SPS vision 
statement reads as follows: “The Signal 
Processing Society is a dynamic organi-
zation that is the preeminent source of 
signal processing information and 
resources for a global community. We do 
this by: being a  one-stop source of signal 
processing resources; providing a variety 
of high quality resources to a variety of 
users in formats customized to their 
interests; adapting to a rapidly changing 
technical community; and being inti-
mately involved in the education of 
 signal processing professionals at all lev-
els.” Recently, a long-range strategic 
retreat was held by the SPS during IEEE 
ICIP 2010 in Hong Kong, where better 

Democratizing Signal Processing

Z. Jane Wang
Area Editor for eNews

zjanew@ece.ubc.ca
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[from the EDITORS] continued

serving our 
SPS members 
was the central 
theme of the 
retreat discus-
s ion.  Us ing 
the eNews as 
t h e l i g h t -
speed  vehicle 

to inform our worldwide SPS members 
of how signal processing is democratized 
in all walks of life, SPM is equipped with 
a special tool to support IEEE’s global 
strategy and to effectively serve 
our members. 

The contents of the eNews are available 
at the Web site: http://enews.ieee-spm.org, 
and highlights of each issue are e-mailed 
monthly to SPS members. There were 
many reasons for the launch of eNews, 
with a critical one being its role of global 
reach. In her November 2007 SPM article 
“Signal Processing Magazine E-Newsletter: 
Inside Out,” then Area Editor Min Wu stat-
ed that “As suggested by its name, Inside 
Signal Processing, the overall goal is to 
make the e-newsletter a gateway for differ-
ent units of the SPS organizations to reach 
out, a cyber stop where students and pro-
fessionals who are interested in signal pro-
cessing can find out the latest happenings 
in this vibrant field.” Since then, a number 
of new features have been introduced, and 
redesign efforts have been undertaken. 
Since its inception, it has been the eNews 
team’s belief that eNews must include con-
tent that is timely, member-centric, rele-
vant, targeted, and compelling. In the 
initial design of eNews, there were nine 
sections of news and updates: “Society 
News,” “Conference News,” “Publication 
News,” “TC News,” “Chapter/DL News,” 
“Initiatives and Trends,” “Ph.D. Theses,” 
“New Books,” and “Research Oppor -
tunities.” Last year, as part of the vision and 
efforts of SPS Publications Board to fully 

leverage elec-
tronic medium 
in SPS, our 
eNews team 
redesigned and 
upgraded the 
newsletter by 
introducing a 
modern layout 

with enhanced features and improved navi-
gations, the design you are seeing today. 

The cultural and geographical diversity 
of SPS members is widespread. As the first 
step to enhance the team functionality and 
to strengthen the geographic and technical 
coverage of eNews content, two associate 
editors (AE) at-large were added in late 
2009 to the eNews team to  complement 
the original section AEs, each of whom is 
responsible for editing particular sections. 
Marcelo Bruno is AE at-large representing 
the Latin America region, and Gwenael 
Doerr is AE at-large representing the 
Europe region. Also, to strengthen its con-
tent coverage and improve its ability as the 
SPS gateway, many new content links have 
been integrated into eNews from different 
SPS sections. For instance, “Recent 
Patents in Signal Processing Areas” was 
introduced to the “Initiatives & Trends” 
section in February 2010; links to individu-
al TC newsletters (e.g., the SLTC newslet-
ter) was added to “TC News”; the 
“Conference Organizer Newsletter” link 
was added to “Conference News”; the “Top 
Ten Viewed Articles” was added to 
“Publication News”; and the newsletter 
“IEEE Chapter Briefs” and featured SPM 
articles became valuable new resources for 
the eNews contents. 

The December 2010 eNews featured the 
article “Think Long-Range for Signal 
Processing Society” by President-Elect Ray 
Liu. The 2010 SPS long-range strategic 
retreat identified several action items as 
key new initiatives that SPS can consider 
taking on to offer greater benefit and value 
to SPS members, including bringing the 
visibility of signal processing to the general 
public, meeting the needs of continuing SP 
education and SP industry, attracting more 
student members, and so on. Recently 
there have been discussions between the 
SPS leadership team and the eNews team 
on how to incorporate the ideas from the 
2010 Long-Range Planning Meeting into 
eNews to better serve the needs of SPS 
members, especially our student members 
and industry members. This will be a new 
focus of eNews. For instance, the eNews 
team, with the help from other SPM teams 
and SPS technical committees, will focus 
on enhancing or expending “Industry 
News” and “Job Opportunity News.” We 

invite you, our readers, to share your 
insights with the eNews team and write to 
us. We need your feedbacks on how better 
design eNews and use this tool to serve 
your information needs. We seek your help 
to further democratize signal processing 
and to increase its societal impact in the 
most effective manner.

Aiming to democratize signal process-
ing on the global scale, our SPM recently 
pioneered the innovation of translating 
our articles to Chinese, receiving highly 
positive feedback. More related details 
can be found in the article “Introducing a 
Translated Reprint Edition of IEEE 
Signal Processing Magazine” in the 
October 2010 issue of eNews. Fol  lowing 
the success of the Chinese trans  lation 
experiment, more recently our SPS 
Publication Board and ExCom unani-
mously approved the extension of our 
translation efforts to Portuguese as well 
as the continuation of Chinese transla-
tion. Another innovation we are planning 
to experiment with is to use the tag tech-
nology (via the two-dimensional bar 
codes) to enable SPM readers to conve-
niently connect from the printed materi-
al to the most relevant online content. 
Tags allow readers to quickly scan them 
with the cell phone camera, immediately 
launching a Web site with supplementary 
video/audio or text information such as 
video lectures, slide presentations, 
detailed technical reports, or animation 
of figures. Two examples of the tags (for 
the QR reader in Figure 1 and the MS 
reader in Figure 2) that link to an IEEE-
TV video and a data file are provided here, 
ready for your scan after free download-
ing the respective readers to your smart-
phones (e.g., iPhones).

We hope you enjoy reading SPM and in 
particular the eNews as SPM’s key section. 
We are eager to receive your valuable feed-
back on any topic discussed above and sin-
cerely invite you to contribute news and 
articles to SPM and the eNews.

[SP]

[FIG1] 

[FIG2] 
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[president’s MESSAGE]
Mostafa (Mos) Kaveh

2010–2011 SPS President
mos@umn.edu

Signal Processing Everywhere

D
uring the past few months, 
I have had a chance to 
examine and reflect on the 
history of our field and the 
growth and diversification 

of the Society’s technical and profession-
al activities. I have also had several 
opportunities to give presentations on  
these topics to colleagues and students 
in meetings. The core phrase for the 
title of such a presentation is obvious 
and compelling: “Signal Processing 
Everywhere.” Indeed, in the process of 
developing the IEEE Signal Processing 
Society’s (SPS’s) field of interest, the SPS 
Board of Governors boldly declared that 
“Signal processing is essential to inte-
grating the contributions of other engi-
neering and scientific disciplines in the 
design of complex systems that interact 
with humans and the environment, both 
as a fundamental tool, due to the signals 
involved, and as a driver of new design 
methodologies. As such, signal process-
ing is a core technology for addressing 
critical societal challenges that include: 
healthcare, energy systems, sustainabili-
ty, transportation, entertainment, educa-
tion, communication, collaboration, 
defense, and security,” (see http://www. 
signalprocessingsociety.org/about-sps/
scope-mission/).

One need not look back very far to 
appreciate how far the field has come, 
and how its fundamental advances and 
transformative contributions to the way 
we live, work, and play are taken for 
granted. A major step in the broaden-
ing of the field happened in March 

1966 with the renaming of IEEE 
Transactions on Audio as the quarterly 
IEEE Transactions on Audio and Elec -
troacoustics. A bit over a year later, in 
June 1967, a special issue of the trans-
actions was published focusing on the 
fast Fourier transform (FFT) and its 
applications to digital filtering and 
spectral analysis. The guest editorial 
for that issue by Bruce Bogert ended 
with these prophetic observations: 
“The audio engineer who naturally 

thinks only in terms of analog process-
ing might well become familiar with 
what the digital approach is now able 
to offer. He may be surprised. What 
lies over the horizon in digital process-
ing is anyone’s guess, but I think it 
will surprise us all.” The first article of 
that same issue was titled “What Is the 
Fast Fourier Transform?,” written by a 
group of pioneers representing the 
IEEE Group on Audio and Elec-
troacoustics Subcommittee on Mea-
surement Concepts. 

Fast forward to January 2011 with 
IEEE Signal Processing Magazine
devoting its special section on immer-
sive communication, including several 
fascinating articles on a range of tech-
nique possibilities for immersive audio. 
SPS owes its genesis to audio, and it is 
appropriate to recognize the continuing 
signal processing challenges and oppor-

tunities this area provides. What is pre-
sented in the magazine is certainly not 
the audio many of us grew up with, or 
dreamt of! 

A more recent formalized area of 
activity within the Society is focused on 
biology and medicine. Following the 
launch of its first major cross-organiza-
tional unit initiative on the smart grid, 
the IEEE has introduced a new one on 
life sciences. A meeting last November 
on this initiative was attended by repre-
sentatives from many IEEE Societies 
and  organizational units. The plan is, 
again, to provide a portal on the subject 
that integrates the activities across 
many organizational units and helps 
develop a “coherent IEEE life sciences 
strategy” for assisting volunteers and 
staff in expanding contributions and 
product development in this sphere. Not 
surprisingly, signal and image process-
ing occupy central roles in the initiative, 
as indicated in a diagram on the inter-
section of life sciences and the IEEE’s 
more traditional boundaries, presented 
in June 2010 to the IEEE Board of 
Directors. The chair of the SPS Bio 
Imaging and Signal  Processing 
Technical Committee, Jean-Christophe 
Olivo-Marin, is serving as the Society’s 
representative for this initiative.

ICASSP 2011 in beautiful Prague is 
just around the corner, and advance reg-
istration for the conference is almost 
upon us, along with the arrival of spring 
in the northern hemisphere. My best 
wishes to all of you for another season of 
renewal.

[SP]

A MORE RECENT 
FORMALIZED AREA OF 
ACTIVITY WITHIN THE 

SOCIETY IS FOCUSED ON 
BIOLOGY AND MEDICINE.
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Take a moment to review this content, so that you can customize your educational experience.

Applications

Embedded Software

Hardware for Embedded Systems

Tools and Best Practices

Topics in Embedded-System Design

Keynote Speaker

Steve Wozniak
Co-Founder, Apple Computer, Inc.
and electronics industry visionary delivers the
opening keynote speech on Tuesday, May 3rd 
at ESC Silicon Valley!
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I
n this column, IEEE Signal 
Processing Society (SPS) award 
recipients are announced, 2011 
SPS Fellows are introduced, and 
nominations are sought for Board 

of Governors members-at-large.

SPS MEMBERS RECEIVE 
IEEE AWARDS
The IEEE Medal for Innovations in 
Healthcare and Technology is being pre-
sented to Harrison H. Barrett, from the 
University of Arizona, for outstanding con-
tributions and/or innovations in engineer-
ing within the fields of  medicine, biology, 
and healthcare  technology.

The IEEE/Royal Society of Edinburgh 
Wolfson James Clark Maxwell Award will 
be presented to Marcian Edward Hoff, of 
Teklicon, Inc. This award was established 
to acknowledge groundbreaking contribu-
tions that have had an exceptional impact 
on the development of electronics and 
electrical engineering or related fields.

The IEEE Donald G. Fink Prize 
Paper will be given to Andreas F. 
Mourlisch from the University of 
Southern California, Larry J. Greenstein 
of Rutgers University, and Mansoor 
Shafi of Telecom New Zealand. The 
award is presented to the most out-
standing survey, review, or tutorial 
paper published in IEEE transactions, 
journals, magazines, or the Proceedings
of the IEEE between 1 January and 31 
December of the preceding year.

Ingrid Daubechies of Princeton 
University has been honored with the 
IEEE Jack S. Kilby Sign Processing 
Medal. Established in 1995, the medal is 
given for outstanding achievements in 
signal processing.

49 SPS MEMBERS 
ELEVATED TO FELLOW
Each year, the IEEE Board of Directors 
confers the grade of Fellow on up to one-
tenth percent of the members. To qualify 
for consideration, an individual must 
have been a Member, normally for five 
years or more, and a Senior Member at 
the time for nomination to Fellow. The 
grade of Fellow recognizes unusual dis-
tinction in the IEEE’s  designated fields.

The SPS congratulates the following 49 
SPS members who were recognized with 
the grade of Fellow as of 1 January 2011.

Mohamed Abdel-Mottaleb, Coral 
Gables, Florida: For contributions to bio-
metrics, content-based image and video 
retrieval, and digital mammography.

Mark Bell, West Lafayette, Indiana: 
For contributions to signal design and 
processing in radar and communication 
systems.

Shuvra Bhattacharyya, College Park, 
Maryland: For contributions to design 
optimization for signal  processing.

Holger Boche, Berlin, Germany: For 
contributions to signal processing and 
multiuser wireless communications.

Wayne Burleson, Amherst, Mas-
sachusettes: For contributions to inte-
grated circuit design and signal 
 processing.

Jonathon Chambers ,  Lough-
borough,  Leicestershire,  United 
Kingdom: For contributions to adaptive 
signal processing and its applications.

Marco Chiani, Bologna, Italy: For 
contributions to wireless communica-
tion systems.

Pak Chung Ching, Shatin, Hong 
Kong, China: For leadership in engi-
neering education and accreditation.

Ajay Divakaran, Princeton, New 
Jersey: For contributions to multimedia 
content analysis.

Emad Ebbini, Minneapolis, Min-
nesota: For contributions to ultrasound 
temperature imaging and  dual-mode 
ultrasound.

Elza Erkip, Brooklyn, New York: For 
contributions to multiuser and coopera-
tive communications.

Moncef Gabbouj, Tampere, Finland: 
For contributions to nonlinear signal 
processing and video communication.

Mark Gales, Cambridge, United 
Kingdom: For contributions to acoustic 
modeling for speech recognition.

David Gesbert, Sophia-Antipolis, 
France: For contributions to multi-
antenna and multiuser communication 
theory and their applications.

Maria Greco, Pisa, Italy: For contribu-
tions to non-Gaussian radar clutter mod-
eling and signal processing algorithms.

Arun Hampapur, Yorktown Heights, 
New York: For contributions to video 
indexing, video search, and surveillance 
systems.

Robert Heath, Austin, Texas: For 
contributions to multiple antenna wire-
less communications.

Visa Koivunen, Aalto, Finland: For 
contributions to statistical signal pro-
cessing for multichannel signals and 
sensor arrays.

Ying-Chang Liang, Singapore: For 
contributions to cognitive radio-
communications.

Johan Paul Linnartz, Eindhoven, 
The Netherlands: For leadership in 
security with noisy data.

Te-Won Lee, San Diego, California: 
For contributions to independent 
 component algorithm analysis.

Shipeng Li, Beijing, China: For con-
tributions to the advancement of image 
and video coding.

Patrick Loughlin ,  Pittsburgh, 
Pennsylvania: For contributions to 
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time-frequency analysis and nonstation-
ary signal processing.

Wei-Ying Ma, Beijing, China: For 
contributions to multimedia informa-
tion retrieval.

Rainer Martin, Bochum, Germany: 
For contributions to speech enhance-
ment for mobile communications and 
hearing aids.

Stephen McLaughlin, Edinburgh, 
Lothian, Scotland, United Kingdom: 
For contributions to statistical and non-
linear signal processing techniques in 
communication systems.

Nasir Memon, Brooklyn, New York: 
For contributions to media security and 
compression.

Asoke Nandi, Liverpool, United 
Kingdom: For contributions to signal 
processing and its applications.

Hermann Ney, Aachen, Germany: 
For contributions to statistical lan-
guage modeling, statistical machine 
translation, and large vocabulary 
speech recognition.

Christof Paar, Bochum, Germany: 
For contributions to cryptographic 
engineering.

Eric Pottier, Rennes, Bretagne, 
France: For contributions to polarimet-
ric specific absorption rate.

Susanto Rahardja, Singapore: For 
leadership in digital audio and signal 
processing.

Philippe Salembier, Barcelona, 
Spain: For contributions to region-based 
image analysis and mathematical mor-
phology for compression and indexing.

Anna Scaglione, Davis, California: 
For contributions to filterbank precod-
ing for wireless transmission  and sig-
nal processing for cooperative sensor 
networks.

Laurence Simar, Richmond, Texas: 
For leadership in digital signal proces-
sor architecture development.

Andreas Stolcke ,  Menlo Park, 
California: For contributions to 
 statistical language modeling, automatic 
speech recognition and understanding, 
and automatic speaker recognition.

Akihiko Sugiyama ,  Kawasaki, 
Kanazawa, Japan: For contributions to 
speech and audio signal processing.

Qibin Sun, Singapore: For contribu-
tions to multimedia security.

Myung Sunwoo, Suwon, Gyeong-
gi-Do, Korea: For contributions to mul-
timedia and communications.

Isabel Trancoso, Lisbon, Portugal: 
For sustained contributions to speech 
technology, especially in the provision 
of research in and resources for the 
Portuguese language.

Mitchell Trott, Palo Alto, California: For 
contributions to wireless communication.

Vinay Vaishampayan, Florham Park, 
New Jersey: For contributions to error-
resilient compression systems.

Anthony Vetro, Cambridge, Massa-
chusetts: For contributions to video 
coding, three-dimensional  television, 
and multimedia adaptation.

Narayanan Vijaykrishnan, Uni-
versity Park, Pennsylvania: For contri-
butions to power-aware systems and 
estimation tools.

Emanuele Viterbo, Rende, Italy: For 
contributions to coding and decoding 
for wireless digital communications.

Li-Chun Wang, Hsinchu, Taiwan: 
For contributions to cellular architec-
tures and radio resource management 
in wireless networks.

Min Wu, College Park, Maryland: For 
contributions to multimedia security 
and forensics.

Xiaolin Wu, Hamilton, Ontario, 
Canada: For contributions to image cod-
ing, communication, and processing.

Fan-Gang Zeng, Irvine, California: 
For contributions to metrology tech-
niques for electromagnetic compatibility.

CALL FOR NOMINATIONS: 
BOARD OF GOVERNORS
MEMBERS-AT-LARGE
In accordance with the SPS Bylaws, the 
membership will elect, by direct ballot, 
three members-at-large to the Board of 
Governors (BoG) for three-year terms 
commencing 1 January 2012 and 
 ending 21 December 2014.

BoG members-at-large are directly 
elected by the Society’s membership to 
represent the member viewpoint in 
Board decision making. Candidates 
must demonstrate that they are active 

in one or more signal processing disci-
plines and must have been a member of 
the Society for five years or more.

José M.F. Moura, SPS past president 
and chair of the Nominations and 
Appointments (N&A) Committee, has 
provided the following formal proce-
dures for the SPS’s 2011 BoG members-
at-large elections.

 ■ Publication of a call for nomina-
tions for positions of BoG members-
at-large. Nominees must hold SPS 
member grade to hold elective office 
(March).

 ■ From the responses received, a 
list of candidates will be assembled 
by the past president for presenta-
tion to the N&A Committee (April).

 ■ The N&A ballots to create a short 
list of at least six candidates (by 
bylaw, at least two candidates must 
be submitted for each BoG member-
at-large position becoming vacant) 
(April–May).

 ■ After the N&A ranking ballot, the 
top candidates who are willing and 
able to serve for members-at-large 
are advanced for ballot to the SPS’s 
voting members (July).

 ■ Collection and tabulation of 
returned ballots will again be han-
dled by the IEEE Technical Activities 
Society Services Department on 
behalf of the SPS (July–September). 

 ■ The three candidates receiving 
the highest number of votes who 
confirm their ability to serve will be 
declared elected members-at-large 
to the Board of Governors with 
three-year terms commencing 1 
January 2012 (September).
Please provide nominations for 

members-at-large to Past President José 
M.F. Moura via e-mail to t.argiropou-
los@ieee.org or via fax to +1 732 235 
1627. Please provide the name, address, 
phone, fax, e-mail, or other contact 
information of the nominee, along with 
a brief background on the individual 
(no more than 100 words, please) and 
any information about the individual’s 
current activities in the SPS, IEEE, or 
other professional societies. 

[SP]
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[special REPORTS]

“A unique single-pixel camera in-
spires a new generation of faster, 
cheaper imaging technologies.”

—John Edwards

B
ack in 2004, Rice University 
researchers Richard Baraniuk 
and Kevin F. Kelly shook the 
imaging field, and more than a 
few accepted notions, by devel-

oping the first single-pixel camera. The 
prototype device demonstrated that a new 
technique, compressive sensing, provided 
a practical and relatively inexpensive way 
of creating high-resolution images in less 
time and with fewer sensors.

In the years since the single-pixel cam-
era’s introduction, researchers in several 
technology areas, including consumer 
and commercial photography, magnetic 
resonance imaging (MRI), and radar, have 
begun using compressive sensing to speed 
imaging, create high-quality images using 
only a limited number of sensors, or a 
combination of both attributes. Today, 
compressive sensing (also sometimes 
called compressed sensing) is increasingly 
seen as a way of helping developers 
enhance a wide range of existing imaging 
technologies without driving up costs.

The technique is, in essence, a short-
cut. “Compressive sensing is really a 
mathematical basis for estimating [a] 
signal when you haven’t made enough 
measurements,” says David J. Brady, a 
Duke University electrical and com-
puter engineering professor and com-
pressive sensing researcher. “Basically, 
you’re trying to estimate more signal 
values than you measured and it 
applies, very broadly, to many different 
measurement systems” (Figure 1).

Brady observes that compressive 
sensing makes sense out of incomplete 
data. “In the 1990s, as people applied 
more and more computation to imag-
ing, they began to realize that they 
could use algorithms to take data that 
was measured badly and fix it,” he says. 
“Well, if I can take bad measurements 
and fix them with algorithms, maybe I 
could get some advantages by making 
deliberately bad measurements with 
reduced physical structures and still get 
good measurements.”

A NEW APPROACH
Baraniuk, Rice’s Victor E. Cameron 
Professor of Electrical and Computer 
Engineering, says that the single-pixel 
camera was the result of a series of 
extraordinary advances over the previous 

several years in computational science, 
particularly signal processing. “[It was] 
such that we could envision building 
entirely new kinds of sensors and, in par-
ticular, things like cameras that per-
formed far beyond what you would 
expect using standard theory.”

Baraniuk notes that until the early 
21st century, sensor research was largely 
driven by mathematics developed in the 
1940s, primarily by the Shannon-
Nyquist sampling theorem. “That theory 
told us that if you wanted a certain reso-
lution, say in a camera or in an MRI 
scanner or an analog to digital converter, 
you had to sample at least twice as fast as 
the highest frequency in the signal.” The 
results, he says, were highly predictable 
and fundamentally inflexible. “If we want 
a resolution in, say a digital camera of 10 
megapixels, the theorem basically tells 
us that we need 10 million little sen-
sors,” Baraniuk says.

By 2004, however, new theoretical 
research had arrived to allow developers 
to push beyond the compression limits 
dictated by Shannon-Nyquist. “[It] made 
people realize that if we know just a little 
bit more about the signals, namely that 
they’re compressible by an algorithm 
like JPEG, then you can actually sample 
the signals at a much, much lower rate,” 
Baraniuk says. “Our realization was that 
we could build a camera that had 10 mil-
lion effective pixels, but had a far fewer 
number of sensors.”

Baraniuk and Kelly decided to push 
the new technique to its logical limit. 
“We took it to the extreme end of things, 
which was one single pixel, one single 
sensor,” Baraniuk says. According to 
Kelly, a Rice associate professor of elec-
trical and computer engineering, a sin-
gle-pixel camera prototype seemed like 
an ideal way to both develop the concept 
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[FIG1] David J. Brady, electrical and 
computer engineering professor at Duke 
University, sees compressive sensing as 
a practical way of making sense out of 
incomplete data. (Photo used with 
permission from David J. Brady.)

John Edwards
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[special REPORTS] continued

and to demonstrate compressive sens-
ing’s potential. “Rich and I realized that 
the best way to realize the mathematics 
was its direct implementation in hard-
ware platforms,” he says.

Baraniuk notes that while the camera 
represented a practical use of compres-
sive sensing, the device itself wasn’t the 
most important thing. “The real discov-
ery was this new signal processing math-
ematics, which tells us that we can build 
sensors that take far fewer measure-
ments than the classical theory would 
tell us,” he says. 

The realization led Baraniuk and 
Kelly to a new understanding of data 
compression. “It’s commonly thought 
that if we want a 10-megapixel image, 
that we need to tap a whole bunch of lit-
tle sensors on our camera chip, and 
that’s actually not true,” Baraniuk says. 
“Likewise, if we think we want a certain 
resolution with an MRI scan of our brain, 
that we need to sit in the scanner for 20 
minutes. Well, that’s not true, either.” 

COMPRESSED MEDICAL IMAGING
Michael Lustig, an assistant professor of 
electrical engineering and computer 
sciences at the University of California, 
Berkeley, feels that compressive sensing 
has the potential to revolutionize MRI 
technology, opening the door to faster 
medical imaging and, potentially, even 
video-style. Lustig is currently engaged 
in research that aims to make MRI 
scans better, faster, and more comfort-
able for patients.

“One of the shortcomings of MRI is 
that the scan time is relatively long,” 
Lustig explains. He notes that until com-
pressive sensing came along, MRI 
researchers were facing a brick wall when 
it came to reducing the amount of time 
required to conduct an MRI without seri-
ously impairing resolution quality. “We 
were really at the limit of being able to 
collect data as fast as possible, just 
because of the physical and physiological 
constraints of the system,” Lustig says.

Lustig feels that compressive sensing 
provides an almost ideal way of speeding 
up uncomfortable and claustrophobia-
inducing MRI scans, which currently 
take up to 30 minutes or more. “One of 

the only ways to accelerate the scan time 
is to reduce the amount of data that’s 
needed to reconstruct the image, so 
when the idea of compressed sensing 
came about it immediately occurred to 
us that MRI would be a great application 
to apply it to,” he says.

Compressive sensing provides an 
entirely new approach to MRI image 
reconstruction. “Compressed sensing 
uses the fact that images are compress-
ible, or that they can be represented 
expressly after applying some mathemat-
ical transformation,” he says. “Up until 
now, none of the reconstruction tech-
niques took advantage of that fact.” 
Lustig adds that compressive sensing 
can also ensure a higher degree of image 
integrity than other data compression 
techniques. “If you consider the fact that 
the image you’re expecting to recon-
struct is compressible, you can reduce 
the amount of data but still be able to 
reconstruct the original image almost 
exactly,” Lustig observes.

Lustig notes that image loss is a much 
larger concern in medicine than in con-
ventional photography. In medical imag-
ing, patients’ lives often hinge on the 
inclusion—or omission—of just a few pix-
els. “That is one of the main issues with 
compressed sensing: to actually show in 
the clinical setting that you can robustly 
collect less data but still be able to get 
what you’re interested in,” Lustig says.

Compressive sensing can be a relatively 
low-cost way of improving MRI technol-
ogy. “You really don’t need to change the 
hardware,” Lustig says. “It turns out that 
just by changing the software, and the 
way we acquire data in an MRI, we can do 
the kind of random sampling that is 
needed for compressed sensing.” 

Lustig says that most of the cost of 
using compressive sensing in MRI sys-
tems lies in creating the software. 
“Because, if you have an MRI system, 
you’ll be able to do compressive sensing 
just by changing the pulse sequences . . . 
basically just by changing the software.”

Most of the major MRI vendors are 
now working to add compressive sensing 
software to their systems. “I know GE 
has a team working on it, so do Siemens 
and Philips,” Lustig says. 

Lustig’s University of California, 
Berkeley, team is also striving to bring 
compressive sensing MRI machines into 
the real world. “We have a project at 
Lucile Packard Children’s Hospital [in 
Palo Alto, California],” he says. “We’re 
trying to use this technique to accelerate 
the [scanning] of pediatric patients.”

Infants are among the most problem-
atic MRI patients. “This is a very vulnera-
ble population, and they’re very hard to 
image with MRI,” Lustig says. “Because 
of the long scan times, they have to be 
put under general anesthesia.” In an 
effort to reduce or even eliminate the 
need for anesthesia, the researchers are 
working with the hospital’s pediatric 
radiologists to cut scanning times to the 
absolute minimum. “So if something 
would have taken two or ten minutes, 
then it might be reduced to maybe 20 
seconds or just a minute instead of the 
full exam time, Lustig says.

After the data is acquired, it’s sent to 
a “reconstruction machine,” a computer 
equipped with high-speed general-pur-
pose graphics processors. “Basically, it’s 
a lot of very powerful processors to pro-
cess the data very quickly,” Lustig says. 
“Within less than a minute, you get 
images showing on your screen.”

Stretching compressing sensing’s 
limits requires a great deal of caution, 
however. “You have to be careful not to 
push the technology too much, because 
then you’ll start degrading the image 
quality,” Lustig says. Fortunately, errors 
are relatively easy to detect. “A trained 
radiologist, when he looks at images, he 
kind of knows if he’s seeing something 
that looks like an artifact [or] if it’s too 
low resolution,” Lustig says.

Despite ongoing improvements, 
image reconstruction time continues to 
be an important issue. “It used to take 
several hours to reconstruct a simple 
three-dimensional (3-D) volume; we’ve 
been trying to address that by using par-
allel computing and fast algorithms,” 
Lustig says. “We’re now able to go just 
below a minute for reconstruction, but 
that’s just for static images.”

Lustig now wants to use faster MRI 
scanning rates to create 3-D MRI movies. 
“There are a lot of exams where you 
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inject a contrast solution into the body 
and you want to follow that contrast and 
to see it work dynamically,” he says. “You 
mostly think of [MRI] as a still camera, 
but what we’d like to do is make it more 
like a video camera.”

Creating full-motion MRIs will be a 
challenge however. “The problems are 
just huge . . . incredible,” Lustig says. 
“We’re talking about billions of variables 
to solve in order to get the images and 
huge amounts of memory.”

A typical single, static MRI exam cur-
rently generates about five or six giga-
bytes of data, Lustig says. But an entire 
sequence of MRI images would boost 
storage requirements by several magni-
tudes. “We’re talking about dynamics 
that can go up to hundreds of gigabytes,” 
Lustig says. While that’s not very much 
data in a world where 1 TB hard drives 
sell for under $100, reliably processing 
all of that information within a reason-
able amount of time, even with the help 
of the most sophisticated compressive 
sensing techniques running on the most 
powerful processors, could result in very 
long processing times for both MRI sys-
tems and patients.

While MRI video remains on the 
drawing board, Lustig expects that basic, 
static compressive sensing MRI technol-
ogy will become widely available over the 
next several years. “I think you’ll see this 
kind of technology appearing in clinical 
practice in some form,” he says. “It may 
not be the exact, true compressed sens-
ing that was described in the theoretical 
papers, but a lot of these ideas will defi-
nitely penetrate [and] we’ll be able to get 
much faster scans that produce much 
higher quality just by using these ideas.”

ON THE RADAR SCREEN 
Radar is another technology that could 
potentially benefit from compressed sens-
ing. “One of the more high profile com-
pressed sensing projects going on right 
now is building . . . a new radar receiver 
that can operate at very high frequencies,” 
says Justin Romberg, an assistant profes-
sor of electrical and computer engineering 
at Georgia Tech. Romberg is investigating 
how the technique can be used to improve 
radar performance while cutting system 

costs. Teams at Cal Tech and Rice are also 
participating in the research, which is 
being funded by DARPA.

“The main thing all the different 
compressive sensing projects have in 
common is that you encode or scramble 
the data before you sample it,” Romberg 
explains. “Rich [Baraniuk] does that 
with the single-pixel camera through 
using a mirror array; we do that for our 
radar receivers using high-frequency 
modulators,” Romberg says. “They’re 
just very different physical instantia-
tions of the same principle.”

The new receiver is being designed to 
bring high-frequency radar technology 
into the digital age. “It’s impossible to 
build traditional hardware that acquires 
[radar pulses] digitally,” Romberg says. 
“You have to basically build expensive 
analog circuits to see what’s out there,” 
he states.

Scrambling data with compressive 
sensing paves the way for cutting costs. 
“If you put this kind of scrambling on 
the front end, you can use more tradi-
tional acquisitions and still work your 
way into these high frequencies,” 
Romberg says. “So the idea is to build 
cheaper hardware that lets you access 
more of the spectrum.”

As the receiver researchers experi-
ment with and refine various compres-
sive sensing approaches, they’re looking 
to achieve a technology balance. “It 
requires . . . effort to tease the informa-
tion that you want out of the data that 
you’ve taken, so you might have to have 
a little more advanced processing algo-
rithms on the back end,” Romberg says. 
“It’s like we’re sort of trading off front-
end sensor complexity versus back-end 
computing.”

Romberg says he’s excited by com-
pressive sensing’s potential to provide 
low cost, high speed analog to digital 
conversion. “It can allow you to reach 
parts of the spectrum, high frequencies, 
that you just can’t get with any kind of 
traditional hardware,” he says. “I mean, 
they’re just totally inaccessible right 
now, except with some very expensive 
[hardware].”

A possible application Romberg and 
other researchers are looking at is 

ground penetrating radar. “When you’re 
sweeping an area for land mines, for 
example, it takes a while to create a scan 
of the entire area,” he says. “What this 
[compressive sensing technology] will do 
is reduce the amount of time that the 
scanning will take.”

Besides radar, compressive sensing 
has a wide range of other potential 
communication applications, Romberg 
says. “There are people who are very 
interested in using these same types of 
ideas for very low power communica-
tions,” he says. “You can have sensor 
networks that operate over a very long 
time period without having to have 
their batteries recharged.” Romberg 
says there’s also a chance that the tech-
nology might be integrated into next-
generation analog-to-digital converters. 
“It could actually appear in, say, your 
cell phone,” he says.

DOWN THE ROAD 
Widespread commercialization of com-
pressive sensing technologies is only a 
matter of time, predicts Baraniuk, who 
serves as a director of InView Tech-
nology, a company that he cofounded 
with Kelly to develop and market com-
pressive sensing camera products. The 
Austin, Texas-based firm is currently de-
veloping a series of infrared cameras that 
it promises will be anywhere from five to 
ten times cheaper than currently avail-
able counterparts. 

Brady is also bullish on compressive 
sensing’s commercial prospects. “I think 
it’s certainly going to come very soon,” 
he predicts. Brady sees compressive sens-
ing technology popping up in multiple 
areas. “The main markets are security 
markets, consumer imaging markets, 
and machine vision things,” he says.

Baraniuk, meanwhile, thinks that 
space could be compressive sensing’s 
next frontier. He sees cameras based on 
the technology being used on space 
probes to analyze alien environments. 
“That’s something that’s available today 
through hyperspectral cameras—but 
they cost hundreds of thousands of dol-
lars,” Baraniuk says. “We hope, and plan, 
to be able to build one of these [cameras] 
for thousands of dollars.” [SP]
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[from the GUEST EDITORS]

Dimensionality Reduction via 
Subspace and Submanifold Learning

T
he problem of finding and 
exploiting low-dimensional 
structures in high-dimen-
sional data is taking on 
increasing importance in 

image, video, or audio processing; Web 
data analysis/search; and bioinformatics, 
where data sets now routinely lie in 
observational spaces of thousands, mil-
lions, or even billions of dimensions. The 
curse of dimensionality is in full play 
here: We often need to conduct mean-
ingful inference with a limited number 
of samples in a very high-dimensional 
space. Conventional statistical and com-
putational tools have become severely 
inadequate for processing and analyzing 
such high-dimensional data. 

Although the data might be present-
ed in a very high-dimensional space, 
their intrinsic complexity and dimen-
sions are typically much lower. One of 
the earliest and most popular models as-
sumes that the data lie on a low-dimen-
sional linear subspace. The subspace can 
be effectively computed via principal 
component analysis (PCA), whose origin 
can be traced back many decades ago 
[1]. In recent years, many new mathe-
matical models have been proposed to 
capture more complex low-dimensional 
structures than a single subspace. For 
instance, the  low-dimensional structure 
can be assumed to be nonlinear and the 
data hence lie on a low-dimensional sub-
manifold [2], [3]. Or the structure can be 
assumed to be hybrid, i.e., different piec-
es might have different dimensions, and 
the data lie on an arrangement of multi-
ple linear subspaces [4]–[6]. Similarly, 
one may assume that the data have a 
sufficiently sparse representation with 

respect to some basis or dictionary [7], 
[8], in which case one is dealing with a 
very special class of subspace arrange-
ments, known as perfect arrangements. 
Most generally, one can even assume 
that the data lie on an arrangement of 
submanifolds, each with a possibly dif-
ferent dimension. Such a structure is 
also known as a stratification [9]. 

In the past few years, numerous new 
methods have been developed for learn-
ing the above low-dimensional struc-
tures from the data. These methods have 
emerged from many different but related 
research areas such as signal/image pro-
cessing, machine learning, computer 
vision, and pattern recognition. Al -
though they tackle the same kind of 
problems, these methods have employed 
drastically different mathematical tools, 
ranging from statistical, geometrical, 
algebraic, to graphical tools, and from 
parametric to nonparametric tech-
niques. These complementary perspec-
tives have significantly improved our 
understanding of many new statistical 
and geometric phenomena in high-
dimensional data, which we normally do 
not see in low-dimensional spaces, such 
as concentration of measure. As a result, 
people have developed a variety of effec-
tive and efficient algorithms that can 
learn intricate low-dimensional struc-
tures for high-dimensional data, even 
with very limited amount of samples, 
and even when the samples are incom-
plete or corrupted. These new methods 
have seen great success in many impor-
tant practical applications in image, 
video, and audio processing, often signif-
icantly advancing state of the art. 

A timely special section can help 
consolidate results and efforts from all 
the related research areas and foster 
closer collaboration among them. Our 

goal with this special section is to bring 
together leading experts in the areas of 
subspace analysis and manifold learning 
to jointly explore the impact of these 
new dimensionality-reduction methods 
on signal processing, image processing, 
and many other applications. This spe-
cial section provides a comprehensive 
overview of recent developments in 
these areas, features some new exciting 
results, and lays out new research prob-
lems and directions. We hope that this 
special issue will help the readers quick-
ly grasp the essence and scope of these 
research areas, learn state-of-the-art 
dimensionality-reduction tools, and also 
apply them to problems in their own 
research domain. 

AN OVERVIEW OF 
THIS SPECIAL SECTION
More than 60 teams have answered the 
original call for papers with white 
papers. Fifteen were invited to submit 
their full manuscripts, all of which were 
carefully scrutinized by reviewers, and 
eventually seven were selected for final 
publication. The articles range from 
technical articles that have significant 
original contributions to survey papers 
that give timely and comprehensive 
reviews of certain emerging new topics. 

The featured articles cover very rep-
resentative models and techniques that 
people have developed in recent years for 
modeling and extracting low-dimension-
al structures of high-dimensional data. 
They include: 

 ■ low-dimensional linear subspaces 
(see “Linear Subspace Learning-Based 
Dimensionality Reduction” by 
Xudong Jiang)

 ■ sparse representations and sparsi-
ty-promoting dictionary learning, 
which is mathematically equivalent 

 Digital Object Identifier 10.1109/MSP.2010.940005
 Date of publication: 17 February 2011

Yi Ma, Partha Niyogi, 
Guillermo Sapiro, and René Vidal
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to an arrangement of subspaces with 
equal dimension (see “Dictionary 
Learning” by Ivana Tošić and Pascal 
Frossard, and “Learning Low-
Dimensional Signal Models” by 
Lawrence Carin et al.) 

 ■ unions of general linear subspaces 
(see “Subspace Clustering” by René 
Vidal) 

 ■ nonlinear manifolds and mappings 
(see “Geometric Manifold Learning” by 
Arta A. Jamshidi, Michael Kirby, and 
Dave S. Broomhead and “Preimage 
Problem in Kernel-Based Machine 
Learning” by Paul Honeine et al.)

 ■ probabilistic distributions (see 
“Information-Geometric Dimen-
sionality Reduction” by Kevin M. 
Carter et al.).
We believe that this special section 

can serve as a good introduction to vari-
ous topics in this quickly evolving new 
research area. Therefore, although many 
of the articles contain original technical 
contributions, the authors have prepared 
them in such a way that their pedagogi-
cal value is maximized. Indeed, each arti-
cle has provided a solid review of its 
topic and ample references to related 
results so that any interested research-
ers, especially beginners, can find the 
articles more useful in terms of getting 
them familiar with the topic. 

For very much the same purpose, the 
guest editors have compiled a list of relat-
ed online resources, including tutorials, 
codes, demos, and data sets of popular 
methods and algorithms for dimensional-
ity reduction. The list is not meant to be 
complete but will give the readers, espe-
cially beginners, a very good starting 
point to play with many of the techniques 
introduced in this special issue. 

SOFTWARE AND WEB RESOURCES

DIMENSIONALITY REDUCTION

CODE
Code for various methods (mostly imple-
mented in MATLAB, some in C) 

 ■ Matlab Toolbox for Dimensionality 
Reduction: http://homepage.tudelft.
n l /19j49 / Mat lab_Toolbox _ for_
Dimensionality_Reduction.html 

 ■ ISOMAP: http://isomap.stanford.
edu/ 

 ■ MDS: http://www.newmdsx.com/ 
permap/permap.html 

 ■ Robust PCA: http://perception.csl.
uiuc.edu/matrix-rank/home.html 

TUTORIALS AND DEMOS
 ■ A tutorial that uses the MATLAB 

Toolbox to compare 14 different 
methods: http://homepage.tudelft.
n l /19j49 / Mat lab_Toolbox _ for_
Dimensionality_Reduction_files/TR_
Dimensiereductie.pdf 

 ■ Slides and a MATLAB demo com-
paring eight different methods: http://
www.math.ucla.edu/~wittman/mani/
index.html#downloads 

 ■ Java applet demos for PCA: http://
www.cs.mcgill.ca/~sqrt/dimr/dimre-
duction.html 

 ■ Tutorial and references on low-
rank matrix recovery and completion: 
http : / /percept ion.csl.uiuc.edu /
matrix-rank/references.html 

COMMON DATA SETS
 ■ Data sets used in the Isomap paper: 

swiss roll, faces, twos, and hands 
http://isomap.stanford.edu/datasets.
html 

 ■ A collection of data sets for digits 
(USPS, MNIST) and multiview object 
recognition COIL20: http://www.
zjucadcg.cn/dengcai/Data/MLData.
html 

 ■ Official Web site of the COIL20 
data set: http://www.cs.columbia.
edu/CAVE/software/softlib/coil-20.
php 

 ■ Official Web site of the MNIST data 
set: http: //yann.lecun.com/exdb/
mnist/ 

ONLINE ARTICLES
 ■ Wikipedia: http://en.wikipedia.org/

wiki/Dimension_reduction 
 ■ http : / /en.wikipedia .org /wiki /

Nonlinear_dimensionality_reduction 

SUBSPACE CLUSTERING

CODE
Code for various methods (mostly imple-
mented in Matlab, some in C) 

 ■ GPCA, LSA, RANSAC, and SSC: 
http://www.vision.jhu.edu/code/ 

 ■ GPCA and extensions of GPCA: 
http://perception.csl.uiuc.edu/gpca/
home.htm 

 ■ ALC: http://perception.csl.uiuc.
edu/coding/home.htm 

 ■ SCC, k-flats, MPPCA: http://www.
math.duke.edu/~glchen/scc.html 

 ■ MSL and Improved MSL (motion 
segmentation): http://www.iim.cs.tut.
ac.jp/~sugaya/public-e.html 

 ■ Median k-flats: http://math.umn.
edu/~zhang620/docs/ 

 ■ k-means projective clustering: 
http://www.mathworks.com/matlab-
central/fileexchange/13443-k-means-
projective-clustering 

COMMON DATA SETS
 ■ Motion segmentation: Hopkins 155 

data set and other sequences: http://
www.vision.jhu.edu/data/ 

 ■ Face clustering data sets: http://cvc.
yale.edu/projects/yalefacesB/yalefac-
esB.html http://vision.ucsd.edu/~leekc/
ExtYaleDatabase/ExtYaleB.html http://
www.multipie.org/ 

 ■ Applications of ALC to image seg-
mentation and motion segmentation: 
http : / /percept ion.csl.uiuc.edu / 
coding/home.htm 

SPARSE REPRESENTATION

CODE
 ■ Sparsity Toolbox: This toolbox con-

tains functions related to sparsity opti-
mization in signal processing, 
including general purpose sparse solv-
ers (such as MP, OMP, BP, IT, KSVD, 
and MOD): http://www.mathworks.
com/matlabcentral/fileexchange/16204 

 ■ SPARSELAB: SparseLab is a 
Matlab software package designed to 
find sparse solutions to systems of 
linear equations, particularly under-
determined systems. http://sparselab.
stanford.edu/ 

 ■ SPAMS (SPArse Modeling Soft-
ware): This is an optimization toolbox 
that is composed of a set of binaries 
implementing algorithms to address 

(continued on page 126)
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T
he ultimate goal of pattern recognition is 
to discriminate the class membership of 
the observed novel objects with the mini-
mum misclassification rate. An observed 
object is often represented by a high-

dimensional real-valued vector after some preprocessing 
while its class membership can be represented by a much 

lower dimensional binary vector. Thus, in the discriminating 
process, a pattern recognition system intrinsically reduces the 

dimensionality of the input data into the number of classes. In fact, 
dimensionality reduction often occurs implicitly in all modules of a rec-

ognition system: preprocessing, feature extraction, and classification. In some 
applications such as visual object detection and recognition, bioinformatics, and data 

mining, high data dimensionality imposes great burdens on the robust and accurate recognition due to insuf-
ficient knowledge about the data population and limited number of training samples. Dimensionality reduc-
tion thus becomes a separate and maybe the most critical module of such recognition systems. Linear 
subspace analysis is a powerful tool for dimensionality reduction. It also provides a solid foundation for vari-
ous nonlinear approaches. This is evidenced by numerous techniques published in the past two decades. 
While some of them, such as sparse representation [1], [2] and subspace arrangements [3], directly solve the 
classification and clustering problems, most approaches such as the principal component analysis (PCA) [4], 
linear discriminant analysis (LDA) [4], null-space LDA (NLDA) [5], locality preserving projections (LPP) [6], 
[7], marginal Fisher analysis (MFA) [8], and their numerous variants serve as a means of feature extraction. 

Dimensionality reduction functioning as a feature extraction has two objectives. One objective is to 
reduce the computational complexity of the subsequent classification with the minimum loss of 

[ Xudong Jiang] 

 Date of publication: 17 February 2011

1053-5888/11/$26.00©2011IEEE

[A feature extraction module 

in the pattern recognition system]
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 information needed for classifi-
cation. The second objective is to 
circumvent the generalization 
problem of the subsequent clas-
sification and hence enhance its 
accuracy and robustness. To 
achieve the first objective, it is 
straightforward that we should 
maximize the information car-
ried by the data in the extracted 
low-dimensional subspace. Although 
PCA does maximize the data structure information in the prin-
cipal space and hence is optimal for data reconstruction, it is 
the discriminative information that plays roles in pattern recog-
nition. Thus, most researchers prefer discriminant analysis to 
the principal component analysis, as evidenced by the fact that 
the vast majority of the published approaches are based on some 
kind of the “most discriminative” criteria. There is no doubt 
that various discriminant analyses can effectively achieve the 
first objective. The  second objective of the dimensionality 
reduction is, however, far from straightforward. The most dis-
criminative subspace may not be an effective criterion for it 
because any dimensionality reduction causes a loss of informa-
tion, including the discriminative information. Any subspace 
cannot contain more discriminative information than any larg-
er one that includes the former. Why can the dimensionality 
reduction boost the classification accuracy if the discriminative 
information is the most critical for classification? Although 
some general phenomena, such as the curse of dimensionality, 
small sample size problem, noise removal effect of dimensional-
ity reduction, and better generalization in a lower dimensional 
space, are well known in the pattern recognition community, 
they have not indicated what dimensions should be extracted or 
what else should be removed for a more robust classification. 
We cannot develop an effective dimensionality reduction tech-
nique to maximize the classification accuracy just based on 
these general phenomena. 

It is thus necessary to study the underlying principles and 
insights of why and how the dimensionality reduction can 
enhance the generalization accuracy and robustness of the 
subsequent classification. This is critical because the second 
objective of the dimensionality reduction is more important 
than the first one in most applications with the rapid growth 
of computation power. The study will 
also help us find the commonalities and 
differences of various dimensionality 
reduction  techniques and their pros and 
cons. Without a thorough analysis and 
gaining an in-depth understanding of 
the underlying principles, it is difficult 
to bring the research in this area to a 
significantly higher level. This article 
studies the linear subspace learning-
based dimensionality reduction as a fea-
ture extraction module in the pattern 

recognition system. Hopefully, 
some doubts, misunderstand-
ings, ambiguities, and paradoxes 
in this area can be resolved by 
this study. For an in-depth anal-
ysis, we need to start from some 
fundamental yet critical issues 
in pattern recognition and then 
explore some problems of the 
statistical classification. 

FUNCTIONALITIES OF PATTERN RECOGNITION MODULES
To study how the dimensionality reduction enhances the recogni-
tion accuracy, we need to explore the roles of different modules of 
the recognition system. A statistical pattern recognition system 
can be partitioned into three modules as shown in Figure 1. The 
preprocessing/normalization module segments the object of inter-
est from the background, removes noise, and normalizes its repre-
sentation. This module is usually designed based on some human 
knowledge to reduce the intraclass variation of patterns with mini-
mum loss of their interclass distinction, i.e., to extract the most 
discriminative information from the pattern. Although its input x|

and output x may lie in the same domain, e.g., both are images, 
dimensionality reduction implicitly occurs at this early stage. 
Among various pattern representations after the first module, we 
consider the most widely applied vector format x [ Rn in an 
n-dimensional Euclidian space, called data space. The feature 
extraction/dimensionality-reduction module transfers the pattern 
from the data space x [ Rn to a feature space f [ Rd. Some 
approaches are based on the human knowledge about the pattern, 
e.g., extracting image local structures such as corner, blob, and 
local orientation [9], [10], and global structures such as Fourier 
transform and various moments [11]. For many difficult recogni-
tion tasks, human beings lack sufficient knowledge about the dis-
criminative features hidden in the data, and hence machine 
learning from training samples becomes more prevalent. 
Obviously, the objective of this module is the same as the first one: 
extracting the most discriminative information. Dimensionality 
reduction (d , n) often explicitly occurs at this intermediate 
stage. The last module, classification, establishes decision 
 boundaries in the feature space that separate patterns of different 
classes. As the extracted features are often abstract with little phys-
ical  interpretation, this module is mainly designed based on the 

Preprocessing/
Normalization

Feature Extraction/
Dimensionality

Reduction

Classification

Human
Knowledge

Training
Samples

X
~

X ∈ Rn f ∈ Rd y ∈ {0, 1}c

[FIG1] A general model of the statistical pattern recognition system.

ALTHOUGH THE ULTIMATE GOAL 
OF ALL MODULES OF A PATTERN 

RECOGNITION SYSTEM IS TO 
EXTRACT THE MOST DISCRIMINATIVE 

INFORMATION, IT IS THE MOST 
DISCRIMINATIVE INFORMATION 

ABOUT THE WHOLE DATA POPULATION, 
NOT ON A SPECIFIC TRAINING SET.
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machine learning with limited human interference such as some 
assumptions of the data  distribution model, class prior probability, 
and loss function. The class label can be represented by a c-dimen-
sional binary vector for a c-class problem. Thus, classification 
transforms the feature vector, f [ Rd, into the class label vector, 
y [ 50, 16c, which again extracts 
the  mos t   d i sc r imina t i ve 
 information and, in most applica-
tions, implicitly reduces the 
dimensionality (c , d). 

We see from above that all 
three modules in fact have a com-
mon objective but are realized in 
different ways based on  different 
rules because one way or one rule 
cannot fully achieve the challenging objective. This common 
objective in all modules is to extract the most discriminative pat-
tern representations or equivalently, to discard the redundant rep-
resentations. This is some kind of dimensionality reduction based 
on some rules generated by human knowledge or machine 
 learning (or both). To understand how the dimensionality reduction 
in the first two modules helps the final classification, let’s explore a 
simple classification example graphically illustrated in Figure 2. 

Suppose the circles and squares in Figure 2 represent the 
whole data population of two classes, respectively. A classifier can 
be easily trained by them to form a decision boundary shown by 
the red solid line, which perfectly classifies all data. Obviously, 
the dimension spanned by its normal vector f (the green arrow) 
contains the most discriminative information and the one 
orthogonal to f has hardly discriminative information. 
Nevertheless, this redundant dimension causes no harm to the 
classification because it is ignored by the classifier trained to 
extract the most discriminative information. Why do we need the 
first two modules to reduce the dimensionality or to extract the 
most discriminative pattern representations? It is well known 
that the probability of misclassification decreases or at least does 

not increase as the data dimensionality increases, as long as the 
decision is based on the knowledge about the whole data popula-
tion. This was theoretically proven in [4], [12], and [13]. 
However, it is also well known that high dimensionality often 
degrades the classification performance in practice (curse of 

dimensionality) [4], [13]. This 
paradox can be resolved by distin-
guishing the discriminative infor-
mation about the data population 
from that on the training set. The 
trained classifier can only capture 
the most discriminative informa-
tion on the training data. If some 
statistics estimated on the train-
ing data deviate from those of the 

data population, the misclassification rate on the novel data 
increases. This is always the case in the practice. The question is 
only how severe it is. For example, if the available training data 
are only the blue solid points as shown in Figure 1, the decision 
boundary of the trained classifier will be the blue dashed line. 
The misclassification rate on the data population or on the novel 
data can approach the maximum 50%. The increasing probability 
of misclassification along with the increase of the data dimen-
sionality for a fixed number of training samples was theoretically 
proven in [12] with a simple example. 

If the first two modules can extract only the dimension f 
based on some human knowledge about the whole data popula-
tion, the classifier can easily perform a perfect classification in 
this one-dimensional subspace even if the solid points are the 
only available training data. This dimensionality reduction is 
quite possible if proper human knowledge such as some physical 
characteristics of the pattern is applied in the segmentation and 
feature extraction. However, if the dimensionality reduction is 
based on the machine learning from the training samples (the 
solid points), it cannot extract the right dimension f based on 
any kind of the “most discriminative” criterion because it in 
principle just duplicates the classification process. Therefore, 
some criterion other than the most discriminative should be 
developed for the dimensionality reduction via machine learn-
ing. As the classifier is trained to capture some statistics on the 
training samples, a problem occurs if they are unreliable in 
some dimensions (largely deviating from those on the data pop-
ulation). To boost the subsequent classification accuracy or 
robustness, the dimensionality reduction should be targeted at 
circumventing this problem. Although the ultimate objective of 
all modules of a pattern recognition system is to extract the 
most discriminative information, it is the most discriminative 
information about the whole data population, not on a specific 
training set. A classifier is trained to capture the most discrimi-
native information on the training samples. Therefore, to boost 
the classification accuracy, the dimensionality reduction should 
be targeted at removing the dimensions unreliable for the classi-
fication. Hence, to develop effective techniques of dimensionali-
ty reduction via machine learning, we need to study where the 
possible problem of a statistical classification lies. 

φ
x2

x1

[FIG2] A simple example showing the problem of classification 
with unrepresentative training samples. The decision boundary 
(the red solid line) trained by the circles and squares largely deviates 
from that (the blue dashed line) trained by the solid points.

TO BOOST THE CLASSIFICATION 
ACCURACY, THE DIMENSIONALITY 
REDUCTION SHOULD BE TARGETED 

AT REMOVING THE DIMENSIONS 
UNRELIABLE FOR THE 

CLASSIFICATION.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [19]   MARCH 2011

PROBLEMS OF CLASSIFICATION, REGULARIZATION, 
AND SEMIDIMENSIONALITY REDUCTION
Classification is to assign a given novel pattern, here represented 
by a column vector x [ Rn if no feature extraction is imposed, to 
one of the c categories, v i. The minimum probability of 
 misclassification is achieved by 
assigning the pattern to the class 
that has the maximum probabili-
ty after the pattern x has been 
observed, called a posteriori prob-
ability P 1vi|x 2 . This maximum a 
posterior (MAP) rule is a Bayes 
decision rule with the 0/1 loss 
function. It leads to the  optimal 
classification called Bayes classifi-
cation. As P 1v i|x 2 5 P 1vi 2p 1x|v i 2p21 1x 2  and p 1x 2  is not a func-
tion of v i, the Bayes classification is to evaluate the discriminant 
 functions that can be defined as 

gi 1x 2 5 ln p 1x|vi 2 1 ln P 1vi 2   (1)

and find the class v i that has the maximum value of the dis-
criminant function for a given pattern x. Here, a natural loga-
rithm ln is applied as it is a monotonically increasing function 
that does not affect the decision result but will simplify its eval-
uation if p 1x|v i 2  is an exponential function. 

Further quantitative analysis needs an analytical form of the 
class-conditional probability function p 1x|vi 2 . We take the mul-
tivariate Gaussian distribution as an example due to several rea-
sons. First, it is the most natural distribution and the sum of a 
large number of independent random distributions obeys 
Gaussian distribution. It has the maximum uncertainty of all 
distributions having a given mean and variance. Moreover, it is 
an appropriate model for many situations, from handwritten 
characters to some speech sounds, where the data can be viewed 
as some prototype corrupted by a large number of random pro-
cesses [4]. Multiprototype distribution can be well approximated 
by Gaussian mixture, the weighted sum of a number of 
Gaussian distributions. Last, dimensionality reduction tech-
niques such as PCA and LDA and many classifiers are only spec-
ified by the second-order statistics, and so is the Gaussian 
distribution. Although LDA, Mahalanobis distance, and many 
classifiers are proven optimal only under Gaussian assumption, 
they are successfully employed in many applications. Under the 
Gaussian assumption 

p 1x|v i 2 5
112p 2n/2|Si|

1/2 exp c2 1
2
1x 2 xi 2TSi

21 1x 2 xi 2 d ,  (2)

the discriminant function (1) becomes 

gi 1x 2 5 2
1
2
1x 2 x i 2TSi

21 1x 2 x i 2 1 bi . (3)

In practice, bi is often not strictly determined by (1) and (2) but 
used as a threshold for users to control the error rate of class v i at 
a price of the other classes, e.g., to compromise between the false 

acceptance and false rejection rates in a biometric verification or 
object detection application. 

The problem is that human knowledge cannot provide the 
class mean x i and covariance matrix Si of the data population, 
which can only be estimated or learned by machine from the 

available training samples. If 
some estimates largely deviate 
from those of the data popula-
tion, we will face a large misclas-
sification rate. From (3) we see 
that the discriminant function is 
very sensitive to the covariance 
matrix Si because the data vector 
is multiplied by its inverse. 
However, it is very difficult to 

study the problems of Si directly as it carries two different kinds 
of information by n2 estimates: data variations and correlations. 
Eigen-decomposition  provides an effective tool to simplify the 
problem. As the covariance matrix is symmetric, its eigenvec-
tors provide an orthogonal basis for n-space. After applying 
 eigen-decomposition, Fi

TSiFi 5Li 5 diag5l1, l2, c, l n6,
the discriminant function (3) is simplified as 

gi 1x 2 5 2
1
2
1x 2 xi 2TFiL i

21Fi
T 1x 2 xi 2 1 bi

5 2
1
2a

n

k51

1zk 2 zk 2 2
lk

1 bi ,  (4)

where zk and zk are respectively the projections of x and xi on 
the orthonormal eigenvector Fk corresponding to the eigenval-
ue lk of Si . For symbolic simplicity, the class index i is omitted 
where the index k is necessary. As an eigenvalue lk is the vari-
ance of the training samples of a class projected on the eigenvec-
tor Fk , it is an estimate of the class population variance based on 
the available training data. If it deviates from the population 
variance, the decision rule (3) or (4) overfits the training samples 
and hence leads to a poor generalization or prediction on the 
novel testing data. This problem will become very severe if some 
eigenvalues largely deviate from the population variances. 

The black curve of Figure 3(a) shows an eigen-spectrum (lk

sorted in descending order) obtained from 400 face images of size 
20 3 20 and the green curve shows the variances vk of other 
8,500 face images (representing the face population) projected on 
the eigenvectors Fk . They are plotted in logarithm scale for com-
parison because we see from (4) that it is not the amount of the 
difference but the amount of the ratio between lk and vk that 
affects the accuracy of the discriminant function (4). All images 
are taken from a face detection database used in [14]. Other sets 
of training images produce results very similar to Figure 3. It 
shows deviations between the eigenvalues and the population 
variances. One way to quantify this disparity over the range space 
is to compute e 1l 2 5 m5 1 ln vk 2 lnlk 2 2 61#k#r , where m5 #61#k#r

is a mean operator over 1 # k # r and r is the rank of Si .
Figure 3 shows significantly larger deviations of the smallest 

eigenvalues. This phenomenon was elucidated in [14], [15], and 
[16], where more examples on several other real data sets can be 

THE LARGE DEVIATIONS OF THE SMALL 
EIGENVALUES FROM THE POPULATION 

VARIANCES RESULT IN A SEVERE 
OVER-FITTING PROBLEM OF THE 

CLASSIFIER THAT GREATLY AFFECTS THE 
CLASSIFICATION ACCURACY ADVERSELY.
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found. It seems to be a general problem verified in [14] by 
 synthetic data with known true population variances. Although, 
in general, the largest sample-based eigenvalues are biased 
upwards and the smallest ones are biased downwards, the bias is 
more pronounced when the population variances tend toward 
equality, and it is correspondingly less severe when their values 
are highly disparate [15]. In most applications, population vari-
ances often first decay very rapidly and then stabilize so that the 
smallest eigenvalues are biased much more severely than the 
largest ones [14], [16]. This is evidenced by Figure 3. The large 
deviations of the small eigenvalues from the population varianc-
es result in a severe overfitting problem of the classifier that 
greatly affects the classification accuracy adversely. 

One solution is to regularize the covariance matrix Si . A 
common practice in classification and data regression is to add 
a constant to its diagonal elements, Si

a 5Si 1 aI. We can let 
a 5 g trace 1Si 2 /r so as to select g invariably to the data scale. 
The normalized disparity of the regularized eigen-spectrum 

eg
a 5 e 1la 2 /e 1l 2  against g is shown by the red curve of Figure 

3(b). Its minimum is e0.08
a 5 0.06. The regularized eigen-spec-

trum lk
a with g 5 0.08 is shown by the red curve of 

Figure 3(a). Although this method was originally proposed to 
circumvent the singularity of Si and the numerical instability 
of its inverse, we see from Figure 3 that the regularized eigen-
spectrum can be very close to the population variances. It is 
thus not a surprise that numerous algorithms for classifica-
tion, data regression, dimensionality reduction, and manifold 
learning adopt this classical technique [15], [17]–[19]. The 
underlying principle of Si

a 5Si 1 aI can been seen by its 
equivalence to adding the  constant to all eigenvalues 
lk

a 5 lk 1 a. From 1lk 1 a 2 /vk 5 11 1 a/lk 2lk/vk, we see that 
the factor 11 1 a/lk 2  is larger for smaller lk and smaller for 
larger lk. Therefore, the regularized eigen-spectrum can be 
very close to the population variances as shown in Figure 3. 
Problems of this method are the increased disparity of large 
eigenvalues and no dimensionality reduction effect. Either the 
n 3 n covariance matrix or the n 3 n eigenvector matrix is 
needed to compute the discriminant function (3) or (4). 

Another solution, called probabilistic subspace learning [20], 
[21], decomposes the discriminant function (4) into two parts and 
replaces the small eigenvalues by a constant as 

 gi 1x 2 5 2
1
2
cam

k51

1zk 2 zk 2 2
lk

1 a
n

k5m11

1zk 2 zk 2 2
r

d 1 bi . (5)

The constant is computed by rav 5 m5lk6m,k#r in [20] and 
[21] as it is the optimal approximation to lk for m , k # r. 
This method leads to one of the best performers, called the  
Bayesian algorithm [22], in the face recognition community 
and is adopted in many other approaches of visual object rec-
ognition [23]–[25]. In fact, this method regularizes the eigen-
spectrum by setting lk

rav 5 rav for m , k # n. The normalized 
disparity em

av 5 e 1lrav 2 /e 1l 2  against m is shown by the magenta 
dotted curve of Figure 3(b). Its minimum is e70

av 5 0.26. The 
regularized eigen-spectrum lk

rav for 70 , k # n is shown by 
the magenta dotted line in Figure 3(a). We see a much greater 
disparity than lk

a. The problem is the computation of the con-
stant r. The purpose of the regularization is not best approxi-
mating to the eigenspectrum but to the population variances. 
Eigenvalues in the subspace m , k # n are replaced by a con-
stant r because they are unreliable, and so is their arithmetic 
average rav. As they are biased downwards, it is proposed in [26] 
to use their upper bound as the constant rup 5 max5lk6k.m, 
which is also adopted in [27]. The normalized disparity 
em

up 5 e 1lrup 2 /e 1l 2  against m is shown by the blue dashed curve 
of Figure 3(b). Its minimum is e175

up 5 0.12. The regularized 
eigen-spectrum lk

rup for 175 , k # n is shown by the blue 
dashed line in Figure 3(a). We see a much smaller disparity than 
lk

av, which is greater than ea in this example but smaller than it 
in another (Figure 4). The upper bound rup leads to significantly 
higher face recognition accuracy than the average rav [26]. 

In fact, this regularization has some role of dimensionality 
reduction as it is not necessary to project the data to the 
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[FIG3] Problems of eigenvalues and their regularization. 
Part (a) shows the eigen-spectrum lk and its regularized versions 
computed from 400 face images, and variances vk of other 8,500 
face images projected on the eigenvectors Fk. Part (b) shows the 
normalized disparity between the regularized eigen-spectrum 
and the variances vk.
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 eigenvectors Fk for k . m. As we choose orthonormal eigenvec-
tors, Euclidian distance between two vectors in the eigen-space 
is identical to that in the data space and hence, 

 a
n

k5m11

1zk 2 zk 2 2
r

5
1
r
c 1x 2 xi 2T 1x 2 xi 2 2 a

m

k51

1zk 2 zk 2 2 d . (6)

Thus, we only need n 3 m eigenvector matrix to compute (5) 
for classification. However, the n-dimensional class mean vectors 
xi are still required. We call it semidimensionality reduction. 

Besides adding a constant to all eigenvalues or replacing the 
unreliable eigenvalues by a constant as discussed above, another 
regularization technique [16] replaces the unreliable eigenvalues 
lk, m , k # r by a model a 1k 1 b 221, where a and b are two 
constants determined by the reliable eigenvalues. The rationale 
behind it is that the population variance is not constant in the 
unreliable subspace but decays much slower than the eigenvalue 
does. This decaying nature can be modeled by a 1k 1 b 221, 
which will be certainly closer to the population variances than 
the constant rav or rup if proper values of a and b are chosen. 

DIMENSIONALITY REDUCTION 
FOR REMOVING UNRELIABLE DIMENSIONS
Various regularization techniques that greatly improve the clas-
sification accuracy are evidenced by a large amount of publica-
tions. As analyzed in the last section, the underlying principle 
behind the regularization is that it reduces the disparity 
between the eigenvalues and the population variances and 
hence attenuates the overfitting problem. Obviously, we can 
also remove the unreliable dimensions to reduce the disparity 
in the remaining subspace. The normalized disparity of the 
eigen-spectrum in the subspace (1 # k # m) against m, 
em

dr 5 e 1ldr 2 /e 1l 2 , is shown by the black dot-dashed curve in 
Figure 3(b). The minimum is e105

dr 5 0.05. The extracted and 
removed subspaces resulting in the minimum edr are separated 
by a vertical black dot-dashed line in Figure 3(a). It shows that 
the dimensionality reduction effectively reduces the disparity 
because large disparity occurs at small eigenvalues. Therefore, 
similar to various regularization techniques that modify the 
smallest eigenvalues, removing the subspace spanned by the 
eigenvectors corresponding to the smallest eigenvalues 
improves the inference of the classifier, i.e., reduces the mis-
classification rate on the novel testing data. 

However, this dimensionality reduction may also reduce the 
interclass distinction and the discriminant functions (3) or (4) of 
different classes in general should be evaluated in a common fea-
ture subspace for comparison. To extract a common subspace reli-
able for all classes and to prevent possible significant loss of the 
interclass distinction, we combine all class-conditional covariance 
matrices plus the covariance matrix of class mean to create a cova-
riance mixture as 

 Sa 5 a
c

i51
aiSi 1 hSm,  (7)

where ai and h are weights and 

 Sm 5 a
c

i51

qi

q
1x i 2 x 2 2. (8)

The covariance matrix of class mean Sm is also called interclass 
scatter matrix, where qi is the sample size of class v i, and x and q 
are respectively the mean and the sample size of the whole train-
ing set. Eigen-decomposition is then applied to the constructed 
covariance mixture 

 FT SaF5L5 diag5l1, l2, c, ln6. (9)

If we remove a subspace spanned by eigenvectors corresponding 
to the smallest eigenvalues of Sa, it tends to remove unreliable 
dimensions of all class-conditional covariance matrices Si and 
retain large interclass distinction residing in a subspace that has 
large eigenvalues of Sm. Therefore, classification on the m-dimen-
sional feature vector 

 f 5Fm
T x (10)

50 100 150 200 250 300 350

104

103

102

101

100

k

λk

λk

vk
a

ρav
ρup

50 100 150 200

0.12

0.14

0.18

0.16

0.2

0.22

m /(γ )

(a)

(b)

ε av
m

ε up
m

ε dr
m

ε a
γ

[FIG4] Parts (a) and (b)  show results of the same program 
as of Figure 3 but using 400 nonface training images and 8,500 
nonface test images.
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is most likely to perform better than on the n-dimensional data 
vector x, where Fm consists of m eigenvectors corresponding to 
the m largest eigenvalues of the covariance mixture Sa. If we 
regard (7), (9), and (10) as a separate module called dimensionality 
reduction, the subsequent classification (3) is simplified in the 
m-dimensional subspace 

 gi 1f 2 5 2
1
2
1f 2 fi 2TSfi

21 1f 2 fi 2 1 bi . (11)

It is not necessary to project training samples into the subspace as 
fi 5Fm

T
 xi and Sfi 5Fm

TSiFm. The objective of the dimensionality 
reduction by (7), (9), and (10) is to facilitate an effective removal of 
the unreliable dimensions and hence boost the classification accu-
racy (11). Thus, larger values of ai should be assigned to less reli-
able covariance matrices so that more dimensions characterized 
by the smallest eigenvalues of less reliable classes can be removed 
by the eigen-decomposition of Sa. 

The weights ai are critical in some applications because differ-
ent classes may have different characteristics and hence the 

 reliability of the estimated covariance matrices can be significantly 
different. Figure 4 is generated by the same program as Figure 3 
but uses 400 and 8,500 nonface training and testing images, 
respectively, from a face detection database used in [14]. Other 
partitions of the training and testing sets produce very similar 
results to Figure 4. It shows much larger disparity between the 
eigenvalue and the population variance than that of Figure 3. 
More examples can be found in [14]. This is a general problem 
caused by the different characteristics of different classes. In the 
applications of biometric verification and object detection, for 
example, the positive and negative classes are highly asymmetric 
because the former represents only one particular person or object 
while the latter represents the whole “rest of the world” that con-
tains all other people or objects. Thus, it is much more difficult to 
collect a representative training set for the negative class than for 
the positive one. This often results in a larger eigenvalue bias of 
the negative class. Furthermore, as pointed out in [15] and further 
evidenced by Figures 3 and 4, the bias is more pronounced when 
population variances tend toward equality, and less severe when 
their values are highly disparate. This is also verified in [14] by 
synthetic data with known true population variances. As the nega-
tive class occupies a much larger subspace and hence has flatter 
eigen-spectrum, in general, we need to assign a larger weight to 
the negative class than to the positive one. 

It is very interesting to see that if we set h 5 1 and ai 5 qi/q, 
the constructed covariance mixture Sa will be identical to the 
covariance matrix St of all training data without considering their 
class labels. It is also called a total scatter matrix. This shows that 
the well-known PCA is a specific case of the aforementioned 
dimensionality reduction method. Therefore, this study also 
reveals the underlying principle of why PCA, though an unsuper-
vised method that minimizes the data reconstruction error rather 
than maximizes the class discrimination, can improve the classifi-
cation accuracy. Although many approaches apply PCA only 
aimed at circumventing the singularity problem of the intraclass 
scatter matrix for the subsequent discriminant analysis, as ana-
lyzed above, the role of PCA for classification is in fact far beyond 
that. Figure 5 (refer to the experimental section) demonstrates 
the significant gains in classification accuracy by using PCA to 
reduce the dimensionality much lower than the rank of the intra-
class scatter matrix. More evidence can be found in the experi-
mental results of [8], [14], [19], [25], and [28].

Nevertheless, PCA is not optimized for classification. The 
weights h 5 1 and ai 5 P 1v i 2  or ai 5 qi/q are required for PCA to 
achieve the least-mean-square data reconstruction error, which is 
irrelevant to classification. Our objective for classification is to 
remove the unreliable dimensions in which the sample-based class-
conditional variances are largely deviate from the population vari-
ances. The reliability of a covariance matrix does not depend on the 
class prior probability. More training samples of a class may result 
in a more reliable covariance matrix if they are properly  collected. 
However, it is the less reliable covariance matrix that should be 
heavier weighted in the covariance mixture so that more dimen-
sions characterized by the small variances of this class can be 
removed. From the analysis, we see that PCA helps improve the 
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[FIG5] Misclassification rate against the reduced dimensionality 
by PCA/SPCA and PCA/SPCA+LDA/ADA of (a) face identification 
and (b) face detection problems. The left-most point of each 
dashed curve indicates the dimensionality m of the PCA/SPCA 
subspace in which LDA/ADA further reduces it to d indicated by 
the other points on the same dashed curve.
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classification accuracy, not because it minimizes the data recon-
struction error, but because it has some roles in  removing the 
unreliable dimensions. As its objective is not from the classification 
point of view, PCA may not effectively remove the unreliable 
dimensions. In sharp contrast to PCA that weights Si proportional-
ly to qi, it is suggested in [14] to pool Si with weights inversely pro-
portional to qi if there is no prior knowledge about the class 
characteristics and the data collection procedure. Even h 5 1 in 
PCA may not be optimal for classification. Although a larger value 
of h ensures less loss of the interclass distinction, it leads to less 
effective removal of the unreliable dimensions. Hence, more 
dimensions have to be removed, which in turn results in more loss 
of the interclass distinction. The aforementioned limitations of PCA 
are verified by the experimental results shown in Figure 5. 

PCA is an unsupervised technique, as no class label is needed. 
For a two-class problem, dimensionality reduction (7), (9), (10) is 
called asymmetric principal component analysis (APCA) [14] due 
to the asymmetric treatment of the two covariance matrices. For a 
multiple-class problem, more generally, we call it supervised prin-
cipal component analysis (SPCA), as it utilizes the class label and 
other class-specific information by imposing different weights on 
the covariance matrices. The optimal values of weights are appli-
cation dependent. The objective of the SPCA (7), (9), (10) is to 
effectively remove the unreliable dimensions and hence boost the 
classification accuracy (11). Thus, it may not greatly reduce the 
dimensionality for a fast classification in some applications. In 
addition, APCA or SPCA may not work well for a classifier that nei-
ther explicitly nor implicitly weights the feature by the inverse of 
its variance, such as the classical nearest-neighbor classifier (NNC) 
with Euclidian distance and the sparse representation-based classi-
fier (SRC) where the ,1-minimization is applied [1], [2]. 

DIMENSIONALITY REDUCTION BY 
RETAINING DISCRIMINATIVE DIMENSIONS
As discussed in the last two sections, if the dimensionality reduc-
tion is aimed at enhancing the inference accuracy of the subse-
quent classification, it should be targeted at removing the 
unreliable dimensions. In some applications, we need to reduce a 
very high dimensional data vector to a very low dimensional fea-
ture vector to facilitate a simple and fast classification. This can be 
effectively achieved by extracting the most discriminative dimen-
sions, which ensures the minimum loss of the discriminative 
information in the extracted subspace among all other subspaces 
of the same dimensionality. Linear discriminant analysis and its 
various variants are the most widely studied approaches. 

In the identification applications, we often have a large 
number of classes with only a few samples per class for train-
ing so that each individual Si is extremely unreliable. One 
solution to  regularize them is to pool them together to form 
a common covariance matrix, Sw 5 g c

i51 qiSi/q, which is 
also called intraclass scatter matrix. The discriminant func-
tion (3) is thus simplified as

gi 1x 2 5 2
1
2
1x 2 xi 2TSw

21 1x 2 x i 2 1 bi 5 xTSw
21xi 1 ti ,  (12)

where ti absorbs all terms that is either constant to x or constant 
to i. We see that it is a linear function of x and hence the decision 
boundary gi 1x 2 5 gj 1x 2  between any two classes v i and v j is a 
hyperplane specified by its normal vector cij 5Sw

21 1x i 2 xj 2  and 
the threshold ti 2 tj. This means that for the optimal classification 
between two classes v i and v j, only one dimension spanned by cij

is necessary. Thus, under the constraint of the linear classification, 
this dimension contains the most (in fact, all) discriminative infor-
mation to differentiate class v i and v j. It is easy to see that the 
training data in this dimension have the maximum ratio k

between the interclass and intraclass variances. Therefore, we can 
define this ratio k as a discriminant value to assess the discrimi-
nating power of a dimension. Although we need 1c 2 1 2 ! hyper-
planes to classify c  classes, their normal vectors 
cij 5Sw

21 1x i 2 x j 2  only span a 1c 2 1 2-dimensional subspace as 
only c 2 1 of them are linear independent. Therefore, we can 
reduce the n-dimensional data space to this 1c 2 1 2-dimensional 
subspace without losing any discriminative information as the lin-
ear classification (12) produces exactly the same results in the two 
spaces. However, if the dimensionality is reduced to d, d , c 2 1, 
some discriminative information will be lost. The subspace 
spanned by the eigenvectors corresponding to the d largest eigen-
values of the matrix Sw

21Sm contains the most discriminative 
information among all possible d-dimensional subspaces for the 
linear classification (12) because an eigenvalue of Sw

21Sm is the 
ratio k between the interclass and intraclass variances in the 
dimension spanned by the corresponding eigenvector. This is the 
well-known LDA that performs the eigen-decomposition 

CTSw
21SmC5L5 diag5l1, l2, c, ln6. (13)

We see from the above analysis that the objective of LDA is to 
find the one among all possible d-dimensional subspaces in which 
the linear classification (12) achieves the closest result to that in 
the original n-space. It is undoubtedly an effective method to 
largely reduce the data dimensionality with the minimum loss of 
the classification capability in a linear sense. 

For a two-category classification problem, LDA can only 
extract one dimension. It is insufficient for a reasonable classifica-
tion for some problems such as various tasks of verification and 
object detection because the two class-conditional covariance 
matrices are significantly different and hence the optimal classifi-
cation is obviously not linear. To apply the discriminant analysis in 
such problems, an asymmetric discriminant analysis (ADA) is pro-
posed in [14] to extract a rich number of features. It solves the fol-
lowing eigen-decomposition problem: 

CT1S11bS22211S11gSm2C5L5 diag5l1, l2, c, ln6 (14)

in the APCA subspace. The underlying principle is that the dis-
criminative information is not only carried by the distinction of 
the two class means but also by the distinction of the two class 
variances. The constant g weights the discriminative information 
about the class mean against that about the variance. The asym-
metry of the two classes is balanced by the constant b. It is proven 
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in [14] that the ADA with g 5 b 5 1 maximizes the 
Bhattacharyya distance [29] between two classes in the subspace 
spanned by the eigenvectors corresponding to the largest 
max 1lk, 1 2 lk 2 . Note that, different from those in the last two 
sections, eigenvectors of LDA or ADA are not orthogonal. The 
Euclidian distance in a space using LDA/ADA eigenvectors as a 
base will be different from that using an orthogonal base. 
However, it is easy to show that the Mahalanobis distance is not 
affected by the orthogonality of the base. 

As the rank of Sw is at most min 1n, q 2 c 2 , Sw is often singu-
lar in some applications so that the discriminant value of LDA (13) 
and ADA (14) cannot be evaluated. Numerous variants or general-
izations of LDA have been proposed to circumvent this problem, 
which are summarized under a common framework graphically 
[8] and algebraically [19]. A popular approach called Fisherface or 
Fisher LDA (FLDA) [30] applies PCA so as to make Sw nonsingular 
before LDA. Another approach called direct LDA (DLDA) [17]
removes null space of Sm and extracts the eigenvectors corre-
sponding to the smallest eigenvalues of Sw. This is under the 
assumption that the most discriminative information resides in 
the range space of Sm. NLDA [5] extracts features from the null 
space of Sw. Interestingly, this appears to contradict the popular 
FLDA that only uses the range space and discards the null space of 
Sw. A common aspect of all these methods is that they all remove 
some dimensions, either in the principal or the null space, before 
the LDA process. It is difficult to compare the effectiveness of the 
aforementioned LDA variants because we see from (13) that both 
Sw and Sm contribute to the discriminant value k in a dimension. 
NLDA and DLDA appear to retain more discriminative informa-
tion as any dimension in the intersection of the null space of Sw

and the range space of Sm has infinite discriminant value k

according to (13). DLDA ensures the class mean distinction Sm

untouched in the first stage. However, small and zero eigenvalues 
ofSw are unreliable that may cause severe problem as we analyzed 
in the last two sections. Just a small decrease or increase in the 
number of training samples may greatly change them. 
Furthermore, the most discriminative dimensions are not restrict-
ed within the range space of Sm or the null space of Sw. Therefore, 
the above LDA variants are criticized in the literature [27], [31], 
[32] as a significant amount of discriminative information could 
be lost before the LDA process. 

To avoid losing discriminative information before the LDA pro-
cess, the dual-space LDA approach (DSL) [31], [32] performs LDA 
on the principal space of Sw and its complementary space sepa-
rately and combines the two sets of the extracted LDA features. 
Obviously, it is suboptimal to extract features separately from the 
two subspaces. Furthermore, how to fuse the two feature sets 
properly is an open problem as they do not share the same metric 
measurement. Features from the principal space, k # m, are 
weighted by the inverse of their intraclass variance and those from 
the complementary space, k . m, are equally weighted by some 
constant. From the last two sections, we see that this feature 
weighting is problematic in the principal space for a large value of 
m and is problematic in the complementary subspace for a small 
value of m. One solution to these problems is first to partition the 

data space into three subspaces: reliable, unreliable, and null space 
of Sw, then to regularize the eigenvalues differently in these three 
subspaces and finally to apply LDA in the whole space [16]. 
Consistent gains in face recognition accuracy of this approach 
were reported in [16]. Another way [33] to avoid losing informa-
tion of Sw and Sm before the discriminant evaluation is to modify 
the LDA (13) to 

CTSt
21SmC5L5 diag5l1, l2, c, ln6. (15)

As St 5Sw 1Sm and hence the null space of St is the intersec-
tion of the null spaces of Sm and Sw, no discriminative informa-
tion is lost by evaluating (15) in the range space of St. However, 
(15) deviates from the LDA (13) and hence the extracted subspace 
may not be the most discriminative in a sense of LDA or of the 
classification (12). Moreover, it puts an undue emphasis on the 
null space of Sw as the discriminant value from St

21Sm in the 
range space of Sw (k , 1) is always smaller than that in its null 
space (k 5 1). In addition, there is also a problem of how to prop-
erly scale the features from the principal and null spaces of Sw,
which may not be of full rank even in the reduced subspace. 

Most aforementioned approaches focus on the singularity 
problem of Sw. In fact, as analyzed in the last two sections, the 
unreliability, bias, and instability of the small eigenvalues of Sw

cause great problems wherever its inverse is applied in the dis-
criminant evaluation (13), (14) or the classification (3), (12). Any 
regularization or dimensionality reduction technique discussed in 
the last two sections can be applied to attenuate this problem 
before applying discriminant analysis to further reduce the dimen-
sionality for a fast classification. Significant gains in classification 
accuracy were reported by applying various regularization tech-
niques in the LDA approaches [15], [16], [19], [27], [34]. Also, 
great gains in classification accuracy were reported by applying 
PCA, APCA, or SPCA to reduce the data dimensionality much 
smaller than the rank of the Sw before applying LDA or other dis-
criminative methods [8], [14], [19], [25], [28]. 

EXPERIMENTAL STUDIES
The different roles of dimensionality reduction by PCA, SPCA, 
and LDA/ADA for pattern recognition are further explored in 
two experiments. One is a face identification problem on a 
data set [16] extracted from the facial recognition technology 
(FERET) database with many classes (1,194 people) and only 
two samples per class, and the other is a face detection prob-
lem in the database used in [14] with only two classes (face 
and nonface) and many (9,000) samples per class. Images are 
cropped into the size of 33 3 38 for the identification prob-
lems and 20 3 20 for the detection problem. In the identifica-
tion experiment, 497 people are randomly selected for 
training, the remaining 697 people are used for testing, and 
the linear classifier (12) is applied in the feature space. In the 
detection experiment, four experiments, each with a distinct 
25% images as testing set and the remaining images as train-
ing set, are conducted and the average misclassification rate 
over the four distinct testing sets is computed. The detection 
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applies the quadratic classifier (11) for PCA-related approaches 
and its asymmetric version with b 5 0.75 [14] for SPCA-
related approaches, where bi is set so that the two classes have 
the same misclassification rate. For the identification prob-
lem, as there is no ground for significantly different distribu-
tions of different persons, the same parameter ai 5 1/497 is 
chosen for Sa. We choose h 5 1/4 to differentiate the covari-
ance mixture Sa significantly from the total scatter matrix St

where h 5 1. For the detection problem, we choose h 5 1
(same as in PCA) but a1 5 1/5 (for face class) and a2 5 4/5 (for 
nonface class) to remove significantly more unreliable dimen-
sions of the nonface class in the SPCA stage as discussed in the 
last section. For ADA, g 5 10 and b 5 0.75 is chosen [14]. 
Figure 5 shows the misclassification rates against the dimen-
sionality m reduced by PCA and SPCA and d  reduced by 
PCA+LDA/ADA and SPCA+LDA/ADA. The most left point of 
each dashed curve indicates the dimensionality m of the PCA/
SPCA subspace, in which the LDA/ADA further reduces it to d
indicated by the other points on the same dashed curve. 

The experimental results shown in Figure 5 further verify 
the analysis of this article. It is the regularization technique or 
the dimensionality reduction by the supervised principal com-
ponent analysis (including PCA) that plays the most vital role 
in boosting the classification accuracy while the discriminative 
method can greatly reduce the dimensionality with the mini-
mum loss of the discriminative information. The question may 
arise as to why NLDA can work well in some applications if the 
smallest and zero eigenvalues are the most unreliable. The rea-
son behind it is that the classification of the NLDA features 
does not use the variance due to zero eigenvalues in all dimen-
sions of the null space. Thus, it implicitly circumvents the 
problem of the unreliable small eigenvalues to a certain extent 
by evenly  weighting all  features. Another question is why some 
approaches using LDA alone can also work well on some data 
sets. The underlying causes include the avoidance of feature 
scaling in the classification and the linearity of LDA but the 
nonlinearity of the classifier. These approaches, though apply-
ing LDA (13 ) for feature extraction, do not apply its origin (12) 
as classifier. Most of them apply the NNC with Euclidian dis-
tance. While the simple Euclidian  distance ignores the data 
variance and hence circumvents the problem of the unreliable 
small eigenvalues to a certain extent, the complex data distri-
bution is captured by the NNC that computes al l distances 
from a novel pattern to all training samples. The NNC, though 
very simple, is highly nonlinear, can form arbitrary complex, 
nonlinear decision  boundary and classifies all training samples 
without error. LDA restricts  such highly nonlinear classifier to 
a subspace, which is, though the most discriminative, only in a 
linear sense. This restriction has similar role to the regulariza-
tion . Therefore, the improvement of the classification accuracy 
by LDA is most likely contributed by its linearity constraint 
rather than its most discriminative natu re. However, LDA that 
represents the class distinction by using the difference of class 
mean only may impose too strict constraint on some complex 
data struct ure. Therefore, some approaches that utilize the 

locality and neighborhood of the training samples such as LPP 
[6], [7] and MFA [8] extract more discriminative features than 
LDA. Nevertheless, experiments in [ 7] and [8] still show that a 
PCA stage either is necessary to “remove the noise” [7] or sig-
nificantly improves the performance [8] of these discrimina-
tive approache s. 

CONCLUSIONS
To recognize unknown data, a pattern recognition system is 
designed based on the human knowledge about the data popu-
latio n and the machine learning from the known training 
samples. The difficult recognition task is performed in several 
stages. Classification as the last stage is mainly trained by the 
av ailable training samples. Thus, it extracts the most discrimi-
native information on the training data, which in general devi-
ates  from that about the whole data population as only a finite 
set of training samples is applicable. This deviation increases 
the misclassification rate  on the novel data. The problem 
becomes very severe if the data lie in a high-dimensional 
space. Moreover, high dimensionality also makes it difficult to 
apply sophisti cated classifiers. Linear subspace learning-based 
dimensionality reduction provides a powerful tool to circum-
vent these proble ms. It also serves as a solid foundation for 
various nonlinear approaches. Dimensionality reduction as an 
intermediate stage of a pattern recognition process has two 
objec tives. One is to reduce the computational complexity of 
the subsequent classification with the minimum loss of the 
discriminative information, and the other is to circumvent the 
over-fitting problems of the classification and he nce enhance 
its inference accuracy and robustness. 

To achieve the first objective, we need to maximize the discrimi-
native information in the reduced low-dimensional space. 
Discriminative approac hes such as LDA, NLDA, DLDA, ADA, LPP, 
MFA, and their various variants can undoubtedly reduce the data 
dimensionality in large scale with the minimum loss of the discrim-
inative in formation. Since these approaches in general have similar 
objective to that of classification, i.e., extracting the most discrimi-
native information on the tra ining samples, problems of misclassifi-
cation on novel data or poor generalization/inference capability 
caused by the high dimensionality of the data may not  be effectively 
circumvented. However, some constraints on these discriminative 
approaches such as the linearity and the limitation  to the zero intra-
class variation, which are not imposed on the subsequent classifica-
tion, play some roles in improving the classification accuracy. 

 The second objective cannot be effectively achieved only based 
on the consideration of some general phenomena, such as the 
curse of dim ensionality, small sample size problem, noise remov-
al effect of the dimensionality reduction and better generalization 
in a lower dimensional spa ce. For an effective dimensionality 
reduction, we have to find out which dimensions are more prob-
lematic or harmful than others for a robust cla ssification and 
hence should be removed. It is shown that the smallest eigenval-
ues of the class-conditional covariance matrix have the largest 
deviation from the population variances and hence caus e the 
most severe problem in classification and LDA/ADA evaluation. 
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Therefore, regularization of these un reliable statistics or removal 
of the corresponding dimensio ns by SPCA greatly enhances the 
classification accuracy. They also help the discriminant evalua-
tion of LDA, ADA, LPP, and MFA to find a portable set of reliable 
and most discriminative dimensions. However , they may not be 
effective for a classifier that neither explicitly nor implicitly 
weights the feature by the inverse of its variance, such as the clas-
sical NNC with Euclidian distance and the sparse representation-
based classifie r SRC. 

As regularization does not reduce or fully reduce the data 
dimensionality and the removal of the unreliable dimensions by 
SPCA may not lead to a portable feat ure vector, discriminative 
approaches such as LDA, ADA, LPP, MFA, and their variants can 
be followed to greatly reduce the dimensionality for a simple and 
fast classification. Although various regulariza tion techniques 
are also applied in many classifiers, they should be applied before 
the dimensionality reduction because the regularization in the 
classification stage cannot recover the improperly removed 
dimensions in the dimensionality reduction stage. With the in-
depth understanding of the roles of dimensionality reduction for 
pattern recognition and the underlying principles revealed in 
this article, it is not a surprise that most top performers of the 
state-of-the-art techniques either apply various regularized dis-
criminative analyses or apply two-stage approaches, such as 
PCA+LDA, PCA+LPP, SPCA+ADA, and PCA+MFA to accomplish 
the both objectives of the dimensionality reduction. 
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H
uge amounts of high-dimensional 
information are captured every second 
by diverse natural sensors such as the 
eyes or ears, as well as artificial sensors 
like cameras or microphones. This 

information is largely redundant in two main aspects: it 
often contains multiple correlated versions of the same 

physical world and each version is usually densely sampled 
by generic sensors. The relevant information about the 

underlying processes that cause our observations is generally of 
much reduced dimensionality compared to such recorded data sets. 

The extraction of this relevant information by identifying the generat-
ing causes within classes of signals is the central topic of this article. We 

present methods for determining the proper representation of data sets by means of 
reduced dimensionality subspaces, which are adaptive to both the characteristics of the signals and the 
processing task at hand. These representations are based on the principle that our observations can be 
described by a sparse subset of atoms taken from a redundant dictionary, which represents the causes of 
our observations of the world. We describe methods for learning dictionaries that are appropriate for the 
representation of given classes of signals and multisensor data. We further show that dimensionality 
reduction based on dictionary representation can be extended to address specific tasks such as data analy-
sis or classification when the learning includes a class separability criteria in the objective function. The 
benefits of dictionary learning clearly show that a proper understanding of causes underlying the sensed 
world is key to task-specific representation of relevant information in high-dimensional data sets.

WHAT IS THE GOAL OF DIMENSIONALITY REDUCTION?
Natural and artificial sensors are the only tools we have for sensing the world and gathering information 
about physical processes and their causes. These sensors are usually not aware of the physical process 
underlying the phenomena they “see,” hence they often sample the information with a higher rate than 
the effective dimension of the process. However, to store, transmit or analyze the processes we observe, 
we do not need such abundant data: we only need the information that is relevant to understand the 
causes, to reproduce the physical processes, or to make decisions. In other words, we can reduce the 
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dimension of the sampled data to the effective dimension of the 
underlying process without sensible  penalty in the subsequent 
data analysis procedure. 

An intuitive way to approach this dimensionality reduction 
problem is first to look at what generates the dimensionality 
gap between the physical processes and the observations. The 
most common reason for this gap is the difference between the 
 representation of data defined by the sensor and the representa-
tion in the physical space. In some cases, this discrepancy is, for 
example, a simple linear transform of the representation space, 
which can be determined by the well-known principal compo-
nent analysis (PCA) [1] method. It may however happen that the 
sensors observe simultaneously two or more processes with 
causes lying within different subspaces. Other methods such as 
independent component analysis (ICA) [2] are required to 
understand the different processes behind the observed data. 
ICA is able to separate the different causes or sources by analyz-
ing the statistical characteristics of the data set and minimizing 
the mutual information between the observed samples. 
However, ICA techniques respect some orthogonality conditions 
such that the maximal number of causes is often limited to the 
signal dimension. In Figure 1(a), we show some examples of 
noisy images whose underlying causes are linear combinations 
of two English letters chosen from a dictionary in Figure 1(b). 
These images are 4 3 4 pixels, hence their dimensionality in 
the pixel space is 16, while the number of causes is 20 (total 
number of letters). When applied to 5,000 randomly chosen 
noisy samples of these letters, PCA finds a linear transform of 
the pixels space into another 16-dimensional space represented 
by vectors in Figure 1(c). This is done by finding the directions 
in the original space with the largest variance. However, this 
representation does not identify the processes that generate the 
data, i.e., it does not find our 20 letters. ICA [2] differs from PCA 
because it is able to separate sources not only with respect to 
the second order correlations in a data set, but also with respect 
to higher order statistics. However, since the maximal number 
of causes is equivalent to the signal dimension in the standard 
ICA, the subspace vectors found by ICA in the example of Figure 
1(d) do not explain the underlying letters. 

The obvious question is: Why should we constrain our sen-
sors to observe only a limited number of processes? Why do we 
need to respect orthogonality constraints in the data represen-
tation subspace? There is no reason to believe that the number 
of all observable processes in nature is smaller than the maxi-
mal dimension in existing sensors. If we look for an example in 
a 128 3 128 dimensional space of face images for all the people 
in the world, we can imagine that all the images of a single per-
son belong to the same subspace within our 16,384-dimensional 
space, but we cannot reasonably accept that the total number of 
people in the world is smaller than our space dimension. We 
conclude that the representation of data could be overcomplete, 
i.e., that the number of causes or the number of subspaces used 
for data description can be greater than the signal dimension. 

Where does the dimensionality reduction occur in this 
case? The answer to this question lies in one of the most 
important principles in sensory coding—efficiency, as first 
outlined by Barlow [3]. Although the number of possible pro-
cesses in the world is huge, the number of causes that our sen-
sors observe at a single moment is much smaller: the observed 
processes are sparse in the set of all possible causes. In other 
words, although the number of representation subspaces is 
large, only few ones will contain data samples from sensor 
measurements. By identifying these few subspaces, we find the 
representation in the reduced space. 

An important question arises here: given the observed data, 
how to determine the subspaces where the data lie? The choice 
of these subspaces is crucial for efficient dimensionality reduc-
tion, but it is not trivial. This question has triggered the emer-
gence of a new and promising research field called dictionary 
learning. It focuses on the development of novel algorithms for 
building dictionaries of atoms or subspaces that provide efficient 
representations of classes of signals. Sparsity constraints are keys 
to most of the algorithms that solve the dictionary learning 
problems; they enforce the identification of the most important 
causes of the observed data and favor the accurate representation 
of the relevant information. Figure 1(e) shows that one of the 
first dictionary learning methods called sparse coding [4] suc-
ceeds in learning all 20 letters that generate 5,000  observations 

(a) (b) (c) (d) (e) (f)

[FIG1] Learning underlying causes from a set of noisy observations of English letters. A subset of 20 noisy 4 3 4 images is shown in 
(a). These samples have been generated as linear combinations of two letters randomly chosen from the alphabet in (b), and they have 
been corrupted by additive Gaussian noise. When run of 5,000 such samples, PCA and ICA find the same number of components as the 
dimension of the signal. Therefore, they cannot find the underlying 20 letters. Sparse coding [4] learns an overcomplete dictionary of 
20 components, thus it can separate these causes and find all 20 letters from the original alphabet. K-SVD [5] performs similarly, i.e., it 
finds almost all of the letters. However, since the implementation of K-SVD [5] uses MP for the sparse approximation step, it converges 
to a local minimum resulting in some repeated letters in the learned dictionary. (a) Noisy samples; (b) original causes; (c) PCA; (d) ICA; 
(e) sparse coding; and (f) KSVD.
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in our simple example. In the course of the last decade, diction-
ary optimization has led to significant performance improve-
ments in high-dimensional signal processing tasks such as 
audio, image, multiview, and multimodal data analysis. 

This article presents the main challenges in the field of dic-
tionary learning for dimensionality reduction. We first present a 
brief description of sparse approximations. Next, we give a tuto-
rial overview of the main algorithms that permit the construc-
tion of dictionaries for the sparse representation of given classes 
of signals, possibly with properties such as large incoherence or 
model-based structures. In the section “Applications of 
Dictionary Learning,” we present a few signal processing appli-
cations where the objectives of the learning algorithms is adapt-
ed to specific problems such as the joint analysis of correlated 
signals like audio-visual signals and stereo images. We later 
show in the section “Learning for Classification” that the con-
struction of dictionaries can also be constrained in order to sat-
isfy discriminative objectives; the dimensionality reduction 
steps not only lead to good approximation but also efficient clas-
sifications of signals. 

SPARSE APPROXIMATIONS
The goal of sparse representation is to express a given signal y of 
dimension n as a linear combination of a small number of sig-
nals taken from a “resource” database, which is called the dic-
tionary. Elements of the dictionary are typically unit norm 
functions called atoms. Let us denote the dictionary as D and 
the atoms as fk, k 5 1, c, N, where N is the size of the dic-
tionary. The dictionary is overcomplete 1N . n 2  when it spans 
the signal space and its atoms are linearly dependent. In that 
case, every signal can be represented as a linear combination of 
atoms in the dictionary 

y 5Fa 5 a
N

k51
akfk. (1)

Because the dictionary is overcomplete, a is not unique. This is 
where the sparsity constraint comes into play. To achieve efficient 
and sparse representations, we generally relax the requirement for 
finding the exact representation. We look for a sparse linear expan-
sion with an approximation error h of bounded energy P. The 
objective is now to find a sparse vector a that contains a small 
number of significant coefficients, while the rest of the coefficients 
are close or equal to zero. In other words, we want to minimize 
the resources (atoms) that we use to accomplish the task of signal 
representation. This optimization problem can be formulated as 
follows: 

 min
a

 ||a||0  subject to y 5Fa 1 h  and  ||h||2
2 , P, (2)

where || # ||p denotes the lp norm. Unfortunately, this problem 
is NP-hard. However, there exist polynomial time approximation 
algorithms that find a suboptimal solution for the sparse vector a.
These algorithms can be classified in two main groups. The first 
group includes greedy algorithms such as the matching pursuit 
(MP) [6] and the orthogonal MP (OMP) [7], which iteratively select 

locally optimal basis vectors. In the second group, we find algo-
rithms based on convex relaxation methods such as the basis pur-
suit denoising [8] or least absolute shrinkage and selection 
operator (LASSO) [9], which solve the following problem: 

 min
a
1 ||y 2Fa||2

2 1 l||a||1 2 . (3)

The convex relaxation permits to replace the nonconvex l0 norm 
in the original problem by the convex l1 norm. The l0 norm of a 
vector is equal to the number of nonzero elements in that vector. 
It is called a “norm” because it is the limit of p-norms as p 
approaches zero. However, note that it is not a true norm, unlike 
the l1 norm that has all properties of a norm. Besides pursuit algo-
rithms, there exist other sparse approximation algorithms such as 
the focal underdetermined system solver (FOCUSS) [10] and 
sparse Bayesian learning [11], for example. A recent review of the 
sparse recovery algorithms can be found in [12]. The performance 
of these algorithms in terms of the approximation quality and the 
sparsity of the coefficient vector a depends not only on the signal 
itself, but also on the overcomplete dictionary D. Once the algo-
rithms are used on a specific class of signals y, we easily under-
stand that not all dictionaries provide the same approximation 
performance. There exist dictionaries that are more likely to lead 
to sparse solutions than others. These are the dictionaries that 
include atoms explaining best the causes of the target data set. It is 
exactly the goal of dictionary learning methods to find such opti-
mized dictionaries. 

DICTIONARY LEARNING METHODS
The research in dictionary learning has followed three main direc-
tions that correspond to three categories of algorithms: i) the 
probabilistic learning methods; ii) the learning methods based on 
clustering or vector quantization; and iii) the methods for learning 
dictionaries with a particular construction. This construction is 
typically driven by priors on the structure of the data or to the tar-
get usage of the learned dictionary. This section presents the main 
principles of representative algorithms in each of these three dic-
tionary learning categories. 

PROBABILISTIC METHODS
Representation and coding of images have always been a great 
challenge for researchers because of the high dimensionality and 
complex statistics of such signals. Thus, it is not surprising that 
one of the earliest works addressing the problem of learning over-
complete dictionaries appeared exactly for image representation. 
In 1997, Olshausen and Field [4] developed a maximum likelihood 
(ML) dictionary learning method for natural images under the 
sparse approximation assumption. Their method is called sparse 
coding. The goal of the work was to give evidence that the coding 
in the primary visual area V1 in the human cortex probably fol-
lows a sparse coding model. In other words, their hypothesis was 
that the visual cortex reduces the high-dimensional representa-
tion of each retinal image into a reduced space defined by the 
receptive fields of a small number of active neurons. Given the lin-
ear generative image model in (1), the objective of the ML 
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 learning method is to maximize the likelihood that natural images 
have efficient, sparse representations in a redundant dictionary 
given by the matrix F. Formally, the goal of learning is to find the 
overcomplete dictionary F* such that 

F* 5 arg max
F

3log P 1y|F 2 4
5 arg max

F
c log3

a
P 1y|a,F 2P 1a 2da d . (4)

For high-dimensional vectors a, the computation of the integral 
in (4) is extremely difficult. To simplify the problem and solve 
the ML optimization, Olshausen and Field introduced two main 
assumptions. First, the distribution P 1a 2  is assumed to be a 
product of Laplacian distributions for each coefficient, or equiv-
alently that the coefficients ai are independent. The Laplacian 
distribution is peaked at zero and presents a heavy tail, which 
nicely fits the probability distributions of coefficients ai when 
the signal decomposition is sparse. Choosing the prior distribu-
tion on a to be tightly peaked at zero permits to approximate 
the integral in (4) only by its value at the maximum of 
P 1y|a,F 2P 1a 2 . The second assumption is that the approxima-
tion noise h can be modeled as a Gaussian zero-mean noise. 
Under these two assumptions, the optimization problem in (4) 
can be reduced to an energy minimization problem 

F* 5 arg min
F,a

E 1y,a|F 2
5 arg min

F, a
3 ||y 2Fa||2

2 1 l||a||1 4, (5)

where the energy function is defined as E 1y,a|F 2 5

2log 3P 1y|a,F 2P 1a 2 4. To take into account statistics of differ-
ent images, the dictionary is usually learned by minimizing an 
average energy 8E 1yi,ai |F 2 9 over a set of randomly  chosen 
images 5yi6. The casted optimization problem can be solved by 
iterating between two steps. In the first step, F is kept con-
stant and the energy function is minimized with respect to a 
set of coefficient vectors 5ai6. This inference step is essentially 
the sparse approximation problem defined by (3). It can be 
solved by convex optimization for each yi. The second step is 
called the learning step. It keeps the coefficients 5ai6 constant, 
while performing the gradient descent on F to minimize the 
average energy. Since the first step is computationally expen-
sive, the probabilistic dictionary learning methods usually 
work with small image patches, i.e., the size of yi is typically 
below 32 3 32 pixels. The algorithm iterates between the 
sparse approximation and the dictionary learning steps until 
convergence. This alternating optimization process does not 
necessarily find the global optimum solution of the considered 
problem. However, it has been shown to converge to a diction-
ary with atoms that resemble the receptive fields of simple 
neurons in V1. A ten times overcomplete dictionary learned on 
16 3 16 image patches [13] is illustrated in Figure 2. The big-
gest part of the learned dictionary consists of atoms that are 
localized, oriented and bandpass. Interestingly, these types of 
features represent well the oriented edges in images. 

Moreover, the dictionary contains atoms that are center-sur-
round and gratings, which better approximate textures in 
images. Dictionary learning here clearly meets our objectives: 
it identifies the most important building blocks in natural 
images, which permit to approximate the signals by a sparse 
series of causes or components. It also permits to build an 
interesting bridge between sparse image representation meth-
ods and the properties of the human visual cortex, which is 
undoubtedly a very efficient encoder for natural images. 

The probabilistic inference approach in overcomplete dic-
tionary learning has subsequently been adopted by other 
researchers. The two-step optimization structure has been 
preserved in most of these works, and the modifications usu-
ally appeared in either the sparse approximation step, or the 
dictionary update step, or in both. For example, the method 
of optimal directions (MOD) algorithm [14] optimizes itera-
tively the same objective ML function as in sparse coding. 
However, it uses the OMP algorithm to find a sparse vector a
and introduces a closed-form solution for the dictionary 
update step. The two modifications render the MOD approach 
faster compared to the method of Olshausen and Field, but 
still does not guarantee to find the globally optimal solution. 
Moreover, it is not guaranteed to converge, neither to 
decrease the objective function at each iteration. The maxi-
mum a posteriori (MAP) dictionary learning method [15] 
belongs also to the family of two-step iterative algorithms 
based on probabilistic inference. Instead of maximizing the 
likelihood P 1y|F 2 , the MAP method maximizes the posterior 
probability P 1F, a|y 2 . This essentially reduces to the same 
two-step algorithm, where dictionary update includes an addi-
tional constraint on the dictionary that can be for example 
the unit Frobenius norm of F or the unit l2 norm of all atoms 
in the dictionary. The sparse approximation step is here per-
formed with FOCUSS [10]. Finally, the majorization method 
can also be used to minimize the objective function in both 
sparse approximation and dictionary update steps [16]. The 
sparse approximation step then reduces to the use of an itera-
tive thresholding algorithm. 

Naturally, the two assumptions introduced in the sparse 
coding method represent constraints that can be modified or 
even removed to learn better dictionaries or to extend the 
method to other signal models. Lewicki and Sejnowski have 
modified the first assumption and proposed a new way to 
approximate the integral in (4) with a Gaussian around the 
posterior estimate of the coefficient vector a . This changes the 
update rule in the learning step [17]. They have shown that 
the ML dictionary learning method with the new estimate for 
P 1y|F 2  learns dictionaries that improve the efficiency of 
sparse coding. The efficiency is measured here in terms of the 
entropy of data given the overcomplete dictionary. This meth-
od actually represents a generalization of the independent 
component analysis (ICA) method to overcomplete dictionar-
ies. On the other hand, one can also modify the second 
assumption on the existence of Gaussian noise. When the 
noise term is zero (i.e., h 5 0 ), the sparse representation step 
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is performed using the exact ,1 sparse optimization [18]. In 
general, convergence is not guaranteed for the ,1-constrained
methods, although it can be proved in some conditions [19]. 
One could also  introduce smoother sparsity priors to obtain 
more stable solutions. For example, the ,1 constraint is 
replaced by a Kullback-Leibler (KL) divergence in [20], which 
shows that the sparsity is preserved, while the KL-regularization
leads to efficient convex inference and stable coefficient vec-
tors (i.e., stable representations). 

Finally, fast online learning algorithms have been proposed 
recently [19]. As most of the learning methods based on alter-
nate solutions of the sparse coding and dictionary updates 
steps use the whole training set at each iteration, these algo-
rithms become rapidly expensive when the data set is large 
and mostly inappropriate for dynamic systems where data 
evolve over time. Online learning overcomes this limitation by 
increasing progressively the training set. An alternate optimi-
zation of sparse coding and dictionary update steps is per-
formed with a subset of the training data. This subset is then 
augmented with a new training sample. The alternate optimi-

zation is run again on the new training data with the outcome 
of the previous iteration as initialization. The online algorithm 
repeats these iterations until all training data have been used. 
The resulting solution converges with efficient learning per-
formance and drastically lower computational complexity. 

CLUSTERING-BASED METHODS
A slightly different family of dictionary learning techniques is 
based on vector quantization (VQ) achieved by K-means cluster-
ing. The VQ approach for dictionary learning has been first pro-
posed by Schmid-Saugeon and Zakhor in MP-based video coding 
[21]. Their algorithm optimizes a dictionary given a set of image 
patches by first grouping patterns such that their distance to a 
given atom is minimal, and then by updating the atom such that 
the overall distance in the group of patterns is minimal. The 
implicit assumption here is that each patch can be represented 
by a single atom with a coefficient equal to one, which reduces 
the learning procedure to a K-means clustering. Since each 
patch is represented by only one atom, the sparse approximation 
step becomes trivial. 

[FIG2] Overcomplete dictionary learned with sparse coding from a large data set of 16 3 16 natural image patches. [Used with 
permission from SPIE (B. A. Olshausen, C. F. Cadieu, and D. K. Warland, “Learning real and complex overcomplete representations from 
the statistics of natural images,” Proc. SPIE, vol. 7446, 2009).] 
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A generalization of the K-means algorithm for dictionary 
learning, called the K-SVD algorithm, has been proposed by 
Aharon et al. [5]. After the sparse approximation step with 
OMP, the dictionary update is performed by sequentially 
updating each column of F using a singular value decomposi-
tion (SVD) to minimize the approximation error. The update 
step is hence a generalized K-means algorithm since each 
patch can be represented by multiple atoms and with different 
weights. This  algorithm is not guaranteed to converge in gen-
eral. However, in practice, dictionaries learned with K-SVD 
have shown excellent performance in image denoising. 
Figure 1(f) shows how K-SVD finds almost all 20 letters as the 
underlying causes of noisy letter samples. In this example, the 
sparse approximation step has been implemented by OMP, so it 
converges to a local minimum where letters “R” and “P” are 
not successfully separated. 

LEARNING DICTIONARIES WITH SPECIFIC STRUCTURES
Many applications do not necessitate general forms of dictionary 
atoms but can rather benefit from a dictionary that is a set of para-
metric functions. In contrary to the generic dictionaries above, the 
advantages of parametric dictionaries reside in the short descrip-
tion of the atoms. The generating function and the atom parame-
ters are sufficient for building the dictionary functions. This is 
quite beneficial in terms of memory requirements, communica-
tion costs or implementation complexity in practical applications. 

Such generating functions can be built on prior knowl-
edge about the form of signal causes or the target task. For 

example, some perceptual criteria can drive the choice of the 
generating functions in building the dictionary atoms, when 
the objective is to reconstruct data that are eventually per-
ceived by the human auditory or visual system. Learning in 
such parametric dictionaries reduces to the problem of 
learning the parameters for one or more generating func-
tions. Equivalently, it consists in finding a good discrete 
parametrization that leads to efficient sparse signal approxi-
mations. Parametric dictionaries are usually structured, so 
one can enforce some desired dictionary properties during 
learning such as minimal dictionary coherence; for example, 
one can optimize a parametric dictionary such that it gets 
close to an equiangular tight frame (ETF). In [22], a diction-
ary for audio signals is learned based on a Gammatone gen-
erating function, which has been shown to have similarities 
with the human auditory system. The method learns a 
 dictionary with good coherence properties, which tiles the 
time-frequency plane more uniformly than the original 
Gammatone filter bank. The resulting dictionaries are shown 
in Figure 3. 

Priors or models of the underlying signal causes can also lead 
to imposing properties such as shift-invariance [23] or multiscale 
[24] characteristics of the atoms. Such constraints typically limit 
the search space in the dictionary optimization problem, but lead 
to more accurate or task-friendly representations. Similarly, the 
target dictionary might present  specific characteristics in par-
ticular recovery problems, such as a block-based structure [25], 
or orthogonality between subspaces [26]. These requirements 
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[FIG3] Time-frequency representations of structured dictionaries for audio signal representation. It can be observed that the learned 
dictionary (b) provides a more uniform tiling of the time-frequency plane than the original dictionary (a) designed from a Gammatone 
filter bank. This corresponds to a smaller coherence than in the original dictionary. Figure used with permission from [22].
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considerably affect the design of learning strategies as well as the 
approximation performance. 

APPLICATIONS OF DICTIONARY LEARNING
Dictionary learning for sparse signal approximation has found 
successful applications in several domains. For example, it has 
been applied to medical imaging and representation of audio 
and visual data. We overview here some of the main applica-
tions in these directions. 

MEDICAL IMAGING
Dictionary learning has the interesting potential to reveal a prio-
ri unknown statistics of certain types of signals captured by dif-
ferent measurement devices. An important example are medical 
signals, such as electroencephalogram (EEG), electrocardiogra-
phy (ECG), magnetic resonance imaging (MRI), functional MRI 
(fMRI), and ultrasound tomography (UST) where different 
 physical causes produce the observed signals. It is crucial, how-
ever, that representation, denoising, and analysis of these signals 
are performed in the right signal subspace, such that the under-
lying physical causes of the observed signals can be identified. 
Learning of components in ECG signals facilitates ventricular 
cancellation and atrial modeling in the ECG of patients suffering 
from atrial fibrillation [27]. Overcomplete dictionaries learned 
from MRI scans of breast tissues have been shown to provide an 
excellent representation space for reconstructing images of 
breast tissue obtained by the UST scanner [28], which drastically 
reduces the imaging cost compared to MRI. Moreover, standard 
breast screening techniques, such as the X-ray projection mam-
mography and computed tomography can potentially exploit 
highly sparse representations in learned dictionaries [29]. 
Analysis of other signals, such as neural signals obtained by 
EEG, multielectrode arrays, or two-photon microscopy could 
also largely benefit from adapted representations obtained by 
dictionary learning methods. 

REPRESENTATION OF 
AUDIO AND VISUAL DATA
Dictionary learning has introduced significant progress in 
denoising of speech [30] and images [5], and in audio coding 
and source separation [16], [31], where it is very important to 
 capture the underlying causes or the most important constitu-
tive components of the target signals. The probabilistic diction-
ary learning framework has been also proposed for modeling 
natural videos. These methods explicitly model the separation 
of the invariant signal part given by the image content and the 
varying part represented by the motion. Learning under these 
separation constraints can be achieved using the bilinear 
model [32], [33], or the phase coding model [34]. In addition to 
learning the dictionary elements for the visual content, these 
methods also learn the sparse components of the invariant part 
(e.g., translational motion). 

There exist many examples in nature where a physical 
process is observed or measured under different conditions. 
This results in sets of correlated signals whose common part 

corresponds to the underlying physical cause. However, dif-
ferent observation conditions introduce variability in the 
measured signals, such that the common cause is usually dif-
ficult to extract. Dictionary learning methods based on ML 
and MAP can be extended by modifying the objective function 
such that the learning procedures identify the proper sub-
space for the joint analysis of multiple signals. This permits 
to learn the underlying causes under different observation 
conditions. Such modified learning procedures have been 
applied to audio-visual signals [35] and to multiview imaging 
[36]. The synchrony between audio and visual signals is 
exploited in [35] to extract and learn the components of their 
generating cause that is human speech. A multimodal dic-
tionary is learned with elements that have an audio part and 
a video part corresponding to the movement of the lips that 
generate the audio signal. An example of the learned atom for 
the word “one” is shown in Figure 4. One important contri-
bution of this work certainly lies in its benefits towards 
understanding and modeling the integration of audio and 
visual sensory information in the cortex. 

In stereo vision, the same three-dimensional (3-D) scene is 
observed from different viewpoints, which produce correlated 
multiview images. Due to the projective properties of light rays, 
the correlation between multiview images has to comply with 
epipolar geometry constraints. Dictionaries can be learned such 
that they efficiently describe the content of natural stereo imag-
es and si multaneously permit to capture the geometric correla-
tion between multiview images [36]. The correlation between 
images is modeled by the local atom transforms, which is made 
feasible by the use of geometric dictionaries built on scaling, 
rotation and shifts of a generating function. Learning is based 
on an ML objective that includes the probability that left image 
yL and right image yR are well represented by a dictionary F, 
and the probability that corresponding image components in 
different views satisfy the epipolar constraint 

 F* 5 arg max
F

3log P 1yL, yR, D 5 0|F 2 4, (6)

where D 5 0 denotes the event when the epipolar geometry is 
satisfied. This ML objective leads to an energy minimization 
learning method, where the energy function has three terms: 
image approximation error term (for both stereo images), the 
sparsity term, and the multiview geometry term. Dictionary 
learning is performed in two steps: sparse approximation step 

Audio

Video

Word “One”

Time

[FIG4] Learned audio-visual atom representing the word ”one." 
Figure used with permission from [35].
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with the multiview MP algorithm [36], and dictionary update 
step with the conjugate gradient method. An illustrative exam-
ple of a sparse decomposition of two stereo image patches with 
three correlated learned stereo atoms is shown in Figure 5. 
Learned stereo dictionaries can be applied to the joint or dis-
tributed coding of multiple correlated views or to the analysis 
and understanding of the geometry in 3-D scenes [36]. 

The above illustrations demonstrate the benefits of sparse 
approximations with learned dictionaries in very diverse appli-
cations. One of the main advantages of dictionary learning is 
that it allows for representing the underlying causes of signals 
or the main components of data. This is very important for 
proper understanding and analysis of data that are often the 
result of noisy measurements of physical processes. 

LEARNING FOR CLASSIFICATION

DIMENSIONALITY REDUCTION 
AND CLASSIFICATION
Dimensionality reduction has been described so far from a pure 
approximation perspective, where a subspace or a dictionary is 
computed to explain the observed data with a sparse representa-
tion. Alternatively, dimensionality reduction can also target the 
analysis of data with the objective of distinguishing between dif-
ferent classes of signals or physical processes and to beat the 
curse of dimensionality and scale. Low-dimensional problems 
generally involve less complex and more efficient algorithms. 
The reduced subspace emphasizes in this case the most relevant 
information in the signal and permits to distinguish between 
different classes of observations. 

Dimensionality reduction for signal analysis finds numerous 
applications in diverse domains such as sensor networks, com-
puter vision, data mining, machine learning, or information 
retrieval. We can distinguish two main types of algorithms for 
computing the reduced subspace: the discriminative methods 
and the reconstructive methods that are illustrated in Figure 6. 
The main objective of the discriminative method is to find a 
mapping or an embedding between the original data space and a 
reduced dimension subspace, where data can then be efficiently 
analyzed or classified. This mapping can be either linear (e.g., 

linear discriminant analysis (LDA) [37]) or nonlinear (e.g., 
locally linear embedding (LLE) [38], Isomap [39]). The objective 
of the mapping is to clearly separate the data from different 
classes in the low-dimensional subspaces. The discriminative 
methods however aim at pure discrimination objectives and do 
not necessarily rely on the computation of meaningful features 
or specific components of the signal. These methods become 
unfortunately quite vulnerable to noise in the data, to missing 
data, or to imperfect testing conditions. 

The reconstructive methods try to compute representa-
tions that enable analysis and labeling of the data and simul-
taneously capture its constitutive components to provide 
robustness to impairments. We focus here on representations 
that use linear subspaces as opposed to more generic mani-
fold methods. The most common low-rank approximation 
methods used in signal analysis are based on ICA, PCA, or 
part-based representations such as nonnegative matrix factor-
ization (NMF) algorithms [40]. The role of a dimensionality 
reduction algorithm consists here in simplifying the signal to 
its most meaningful components, such that it can be effi-
ciently characterized in the reduced subspace. For example, 
PCA maximizes the variance of the data projected on the 
reduced subspace, which eventually reinforces the discrimina-
tion capabilities of the subspace representation. In most 
reconstructive methods, the projected data are eventually 
labeled based on nearest neighbor or nearest subspace crite-
ria. However, the basis vectors that define the reduced dimen-
sion subspace might unfortunately be holistic, of global 
support, or with long description length. In the next sections, 
we describe methods that build linear subspaces from redun-
dant dictionaries of functions with fine adaptation to the data 
under consideration toward effective signal classification. 

SUBSPACE SELECTION FOR CLASSIFICATION
Dimensionality reduction can first be achieved by selecting a 
subset of functions from a large, fixed dictionary that is used for 
the analysis of particular signals. These functions then deter-
mine a subspace of reduced dimension, where classification can 
be performed by computing the nearest neighbor points among 
the projected data. A simple method to build such a subspace 
consists in modifying the sparse approximation methods 
described in the previous sections, such that the objective func-
tion is augmented with a discrimination term that represents 
the separability properties of the projection subspace. One can 
thus select a subset of functions in a dictionary (represented by 
the matrix F), which approximate the data samples and simul-
taneously encourage the separability of data in different classes. 
In other words, the reduced subspace can be computed by solv-
ing a problem like 

 a* 5 arg min
a
3 ||y 2Fa||2

2 1 gJ 1F,a 2 4, (7)

where the term J 1F,a 2  measures the separability of the differ-
ent classes when data is represented by atoms in F and 
 coefficients a. It typically tries to maximize the variance 

= b1⋅ + b2⋅ + b3⋅

= a1⋅ + a2⋅ + a3⋅ + ηL

+ ηR

(a)

(b)

[FIG5] Sparse decomposition of a stereo image pair with three 
correlated learned stereo atoms. (a) Left image and its atoms. (b) 
Right image and its atoms. Stereo atoms in the two views (three 
right-most columns) are correlated by local geometric transforms 
that obey epipolar geometry constraints.
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between the active atoms from F that represent signals in dif-
ferent classes. The reduced subspace used for classification is 
finally formed by the subset of atoms in F whose correspond-
ing coefficients in a* are nonzero. The subset selection prob-
lem can be interpreted as the inference step in the dictionary 
learning methods when the objective function is modified to 
include a discriminative term. Finally, the weight parameter g 
controls the tradeoff between approximation and classification 
performance in the reduced dimension subspace. A subset of 
F that solves the problem posed in (7) can be determined by 
iterative supervised atom selection built on OMP for example 
[41]. The idea mainly consists in selecting greedily the atoms 
from the dictionary that lead to the best tradeoff between 
approximation of the training data and discrimination 
between classes. 

The minimum of the joint objective function above can 
be achieved with several distinct sets of functions: finding 
the best subspace for classification becomes nontrivial due 
to the redundancy of the dictionary. However, good subspac-
es for reconstructive dimensionality reduction are charac-
terized by sparsity properties, where only a few significant 
components participate in the representation of the data. 
The method of sparse representation for signal classification 
in [42] thus explicitly includes sparsity constraints in the 
dimensionality reduction process. The reduced subspace is 
determined here by a simultaneous sparse approximation 
algorithm built on OMP, where the data separability term 
J 1F,a 2  is given by a Fisher’s discrimination criterion used in 
LDA. The reduced dimensionality subspace is therefore cho-
sen as a compromise between approximation of data within 
classes, discrimination of data in different classes, and spar-
sity of the data representation as determined by an optimiza-
tion problem of the following generic form: 

 a* 5 arg min
a
3 ||y 2Fa||2

2 1 g1||a||0 1 g2   
J 1F, a 2 4. (8)

SUPERVISED DICTIONARY LEARNING
An important advantage of redundant dictionaries for classifi-
cation is that signal analysis can be performed with functions 
that are likely to match the data characteristics in different 
classes of signals. Similarly to data approximation problems, 
data analysis applications can further benefit from dictionary 
learning methods. The previous section describes subspace 
selection methods from predefined dictionaries. However, 
learning can improve the classification performance, as it 
leads to a better adaptation of the dictionary by enforcing 
sparsity in the representation of data in the different classes. 
The atoms in a dictionary D that is computed with dictionary 
learning methods generally capture the most important con-
stitutive components of the signals. They naturally permit to 
classify the data into the corresponding linear subspace as 
shown in [5], for example. However, there is no guarantee 
that the subspace built on a learned dictionary F is truly opti-
mal for classification, as it targets efficient representation but 

not necessarily class separability. For example, one may define 
a set of functions that are good to (sparsely) approximate sig-
nals in a face image data set. However, there is no good rea-
son why this same set of functions is also the best one for 
distinguishing different persons in this data set. 

o
x Class 1

Class 2

o

x

x

x

x

x
x

x x

x
x

x

x

x
xx

x

x

x

x

x

x
x

x

x

x

x

o

o

o

oo

o

o

o

o

o
o

o

o

o o

o

o

o

o o

o

o

o

x Class 1
Class 2

v2

v1

Projections of
Classes 1 and 2

Projection
Subspace

(a)

o

x
x

x

x
xx

x x

x
x

x

x

x
xx

x

x

x

x
x

x x

x
x

x

x

o

o

o

oo

o

o

o

o

o
o

o

o

o o

o

o

o

o o

o

o

o

Projection
Subspace

v1

v2

Projections of
Class 1

Projections of
Class 2

(b)

[FIG6] Illustration of dimensionality reduction of a two-class data 
set, by projection on a linear subspace defined by vectors 1v1,v2 2. 
(a) Purely reconstructive methods compute a representative 
subspace where the projections of the data are close to the 
original data points. The approximation of data by their 
projections is optimized, but the classification of the projected 
data is not trivial. (b) Purely discriminative methods compute the 
reduced dimensionality subspace so that the classification can be 
done efficiently from the data projections. Data approximation is 
quite poor in this case, which results in low robustness to data 
impairments. The optimal subspace has to be the result of a 
tradeoff between approximation and separability.
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Dictionary learning methods should rather be modified so 
that they become simultaneously reconstructive (for robustness 
to noise) and discriminative (for efficient classification with the 
learned dictionary). The addition of a discriminative term into 
the dictionary learning algorithms requires supervision, where 
labels of training data are used to ensure that the data represen-
tation is sufficiently different in each class. It can be achieved by 
modifying the sparse coding step in the learning algorithms, so 
that it optimizes an objective function that favors the sparsest 
representation of a given signal and simultaneously the repre-
sentation that is also the most different from the one of signals 
in other data classes. The supervised dictionary learning prob-
lem can be cast as a mixed formulation that minimizes the aver-
age value of the sparse approximation errors over different 
classes and also enforces discrimination between classes. For 
example, the dictionary optimization problem can be written as 

F* 5 arg min
F,a

3 ||y 2Fa||2
2 1 g1||a||1 1 g2C 1a,F,u 2 4, (9)

where the function C 1a,F,u 2  is a discrimination term that 
depends on the dictionary, the coefficient vectors, and the 
parameters u of the model used for classification. Since the 
dictionary is learned, alternate inference and learning steps 
have to be used in solving (9). In contrary, the subspace selec-
tion problem in the section “Classification Subspace Selection” 
is solved only within the inference step. Note that the discrimi-
nation term is specific to the chosen classifier through the 
parameters u so that the learning problem becomes highly 
dependent on the classification method and unfortunately non-
convex. Still, it can be solved efficiently by fixed-point continu-
ation methods [43] when the classifier is based on logistic 
regression methods. 

The use of one learned dictionary for all the data classes 
leads to a straightforward classification stage where the diction-
ary vectors and the coefficients in the signal representation are 
used directly to make classification decisions. Alternatively, one 
may want to improve the discrimination by building a distinc-
tive projection subspace for each data class. Classification is 
then performed by selecting the subspace that is the nearest to 
the test signal, or equivalently the subspace that leads to the 
best representation of the test signal. A simple way to build 
adaptive dictionaries for each class is to use the signals in the 
training set for the class dictionary. Sparsity constraints are 
then rather applied within the classification process, where the 
sparsest representation of the test signal determines its class 
label. For example, Wright et al. [44] have proposed a face rec-
ognition method that uses training face images as dictionaries 
and an l1 sparse optimization method in the classification stage. 
The authors show that the recognition task can be successfully 
accomplished even using random features at first. Furthermore, 
the algorithm is robust to a certain amount of noise due to the 
sparsity constraints. 

It is often preferable, however, to construct adapted dic-
tionaries that can lead to an efficient classification process 
based on simple subspace projections. The construction of 

class dictionaries can be performed with learning methods 
where the sparse coding step in the iterative learning 
 algorithms is modified, so that sparse coding is computed 
independently within each class. Such a sparse coding stage 
can be implemented by class-supervised versions of simultane-
ous pursuit algorithms, for example, where a joint sparse rep-
resentation of the training data is selected independently in 
each class. The subsequent dictionary update step further 
favors the reconstruction of signals with the functions selected 
in the modified sparse coding step. If the update step is based 
on an SVD algorithm, it simply leads to a supervised version of 
the K-SVD algorithm [45], where the K-SVD learning algo-
rithm becomes adapted to classification tasks. As supervised 
dictionary learning should intuitively lead to subspaces that 
are good for approximating data in their own class but bad for 
representing data from any other class, the subspaces can also 
be computed with a hierarchical process that ensures that fea-
tures selected in different dictionaries have only a minimal 
correlation [46]. Alternatively, global softmax discriminative 
functions can enforce that the learned dictionaries are better 
for representing data of their classes than data from any other 
classes. Such a discrimination can be achieved by modifying 
the dictionary update steps in the learning process with a 
modified version of MOD/K-SVD algorithm whose role is thus 
extended to ensuring data separability with the updated dic-
tionary in addition to good approximation properties [47]. 

Finally, discrimination in dictionary learning can also be 
achieved by enforcing incoherency between the subspaces that 
represent data in different classes and not only by minimizing 
the correlation between the features in different subspaces. It 
relies on the intuition that some features might be relatively 
good in representing data in different classes, but several fea-
tures taken together form a subspace that is mostly good in 
approximating data from the corresponding class. For example, 
the subspace formed by noses and eyes of persons in different 
classes are incoherent, even if these persons have similar eyes or 
the same nose. With the assumption that the residue of the sub-
space projection is minimal in the correct class, incoherent sub-
spaces can be designed by an alternate projection method [48]. 
It builds on the natural conditions that the interplay between 
features of different classes should be small, while the 
 interaction of training data with features in the correct class 
should be clearly higher than the interaction with features rep-
resenting any other class (see Figure 7). With minimal assump-
tions on the signal models or sparsity features, such a dictionary 
learning method reaches state-of-the-art performance on a face 
classification experiment. 

CONCLUSIONS
The goal of dimensionality reduction is to find efficient, low-
dimensional data representations within the large dimensional 
space where the observed data lies. This article has presented 
some of the recent results supporting the idea that these repre-
sentations are sparse within an overcomplete dictionary of 
atoms or subspaces. In this context, the methods for dictionary 
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learning have much to offer since they are able to adapt the data 
representation to the underlying causes of the observations. We 
have given a broad overview of the main dictionary learning 
algorithms and shown their usage in various applications, such 
as audio-visual coding and stereo image approximation. We 
have also discussed the discriminative power of sparse represen-
tations and outlined the large potential benefits of  dictionary 
learning in classification and face recognition  applications. 

Many challenges are still open in dictionary learning. 
Understanding the underlying causes of signals or the relevant 
information in observations becomes more challenging when 
the training samples are imperfect. In many applications, the 
training samples are noisy, distorted by the sensing process, or 
simply incomplete like in the case of occlusions in multiview 
imaging. The last example particularly makes us question the 
validity of linear representation models in vision where we usu-
ally encounter nonlinearities such as occlusions. Linear models 
also become invalid in advanced applications like medical imag-
ing where the acquisition methods are typically nonlinear. In all 
these situations, dictionary learning still faces critical research 
questions. Similarly, signal analysis may require more complex 
models than linear subspaces for efficient  classification. One can 
build dictionaries to be used in the definition of manifold mod-
els or graph-based representations that could potentially handle 

transformation-invariant classifications problems. In general, 
dictionaries offer a very flexible and  powerful way to represent 
relevant information in high-dimensional signals. However, the 
proper modeling of the complex underlying causes of observa-
tions poses many exciting questions about the proper construc-
tion of these dictionaries. 
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[FIG7] Images of two subjects: Parts (a) and (d) show original projections onto the span of features from their own class. Parts (b) and 
(e) show projections onto the span of features of the (c) and (f) wrong class. The representation of signal with the subspace of the 
proper class is clearly more relevant than the representation with a subspace of another class: the scales and positions of projection 
components are close to the original signal. Figure used with permission from [48]. 
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incomplete measurements]

S
ampling, coding, and streaming even the most
essential data, e.g., in medical imaging and
weather-monitoring applications, produce a
data deluge that severely stresses the avail-
able analog-to-digital converter, communica-

tion bandwidth, and digital-storage resources. Surprisingly,
while the ambient data dimension is large in many problems, the

relevant information in the data can reside in a much lower dimen-
sional space. This observation has led to several important theoretical

and algorithmic developments under different low-dimensional modeling
frameworks, such as compressive sensing (CS) [1], [2], matrix completion [3],

[4], and general factor-model representations [5], [6]. These approaches have enabled new measurement
systems, tools, and methods for information extraction from dimensionality-reduced or incomplete data. A
key aspect of maximizing the potential of such techniques is to develop appropriate data models. In this
article, we investigate this challenge from the perspective of nonparametric Bayesian analysis.

Before detailing the Bayesian modeling techniques, we review the form of measurements. Specifically,
we consider measurement systems based on dimensionality reduction, where we linearly project the signal
of interest into a lower-dimensional space via

y ¼ Ux þ d: (1)

The signal is x 2 Rd , themeasurements are y 2 Rd 0,U is a d0 3 d matrix with d05 d, and d accounts for noise.
Such a projection process loses signal information in general, since U has a nontrivial null space.

Hence, there has been significant interest over the last few decades in finding dimensionality reductions
that preserve as much information as possible in the incomplete measurements y about certain signals x.
One way to preserve information is for U to provide a stable embedding that approximately preserves pair-
wise distances between all signals in some set of interest. In some cases, this property allows the recovery
of x from its measurement y.
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Geometric data models, such as sparsity, union of subspaces,
manifolds, and mixture of factor analyzers (MFAs), are at the core
of low-dimensional modeling frameworks [7]. For instance, given
a signal x 2 Rd and an appropriate basis W 2 Rd3 d , we can
transform the signal as x ¼ Wh, where h is sparse or can be well
approximated as such, that is, it has only a few nonzero elements.
CS exploits this fact to recover signals from its compressive sam-
ples y 2 Rd0 , which are dimensionality-reducing, nonadaptive
random measurements. According to CS theory, the number of
measurements for stable recovery is proportional to the signal
sparsity (hence, d0 � d) rather than to its Fourier bandwidth, as
dictated by the Shannon/Nyquist theorem. While signal recovery
at such measurement rates is impressive, significant improve-
ments can be achieved through the generalization of sparsity; for
instance, union-of-subspace models encode dependencies among
sparse coefficients; manifold models exploit smooth variations in
the signals; and MFAs combine the strength of both models using
amixture of low-rank Gaussians [5], [7], [8].

The existing results in signal recovery from compressive or
incomplete measurements of the type discussed in the ‘‘Stable
Embeddings’’ section are predicated upon the knowledge of the
appropriate low-dimensional signal model; a signal recovery algo-
rithm relies on this model to locate the correct signal among all
possible signals that can generate the samemeasurement.

In this article we consider the more difficult, but more
broadly applicable, problem for which we must first learn the
signal model from a set of training data. One can use this learned
model to subsequently recover the underlying signal from
compressive measurements. There are also examples for which
we jointly learn the underlying model and recover the high-
dimensional data, without any a priori training data; specifically,
this is done when considering the image-interpolation problem
(closely related to matrix completion), for which the underlying
image is recovered based on the measurement of a small subset
of pixels uniformly selected at random.

The tools and methods used to tackle the rich problems associ-
ated with learning low-dimensional signal models are based on
probabilistic, nonparametric Bayesian techniques. By nonparamet-
ric, we mean that the number of parameters within the probabilis-
tic models is unspecified beforehand. While it has been historically
challenging to find workable prior distributions in the parameter
space for such problems, we leverage the beta process (BP), Ber-
noulli process, Dirichlet process (DP), and Indian buffet process
(IBP). We observe that these distributions provide a nice scaffold
for analytically managing posterior distributions, given a set of
training samples as well as observations. Additionally, we develop
performance bounds for recovering high-dimensional data based
on incomplete measurements. We present several examples of
how this technology may be used in practice in CS, inmatrix com-
pletion (when we recover a full low-rank matrix based on a small
number of randomly sampled matrix elements), and in image
interpolation based on highly incomplete measurements. These
applications are of significant practical importance; for example,
matrix-completion techniques are of interest for automatic rec-
ommendation systems (e.g., for movies, music, and books).

STABLE EMBEDDINGS
We consider several classes of low-dimensional models for which
the dimensionality reduction process (1) is stable. This means
that we not only have the information-preservation guarantee
that Ux1 6¼ Ux2 holds for all signal pairs x1, x2 belonging to the
model set but also the guarantee that if x1 and x2 are far apart in
Rd , then their respective projections Ux1 and Ux2 are also far
apart in Rd0 . This latter guarantee ensures the robustness of the
dimensionality-reduction process to noise d.

A requirement on the matrix U that combines both informa-
tion preservation and stability properties for a signal model is
the so-called �-stable embedding property

(1� �) k x1 � x2 k22 � k Ux1 � Ux2 k22 � (1þ �) k x1 � x2 k22 ,
(2)

which must hold for all x1, x2 in the model set. The interpreta-
tion is simple: a stable embedding approximately preserves the
Euclidean distances between all points in a signal model.

A dimensionality reduction y ¼ Ux from Rd down to Rd 0 ,
d0 5 d, cannot hope to preserve all of the information in all signals
x 2 Rd , since it is impossible to guarantee that Ux1 6¼ Ux2 holds
for all signal pairs x1, x2 2 Rd . This is because there are infinitely
many x þ x0, with x0 from the (d � d0)-dimensional null space of
U, which yield exactly the same measurement y. However, by
restricting our attention only to signals from a low-dimensional
model that occupies a subset of Rd , such an information-preserva-
tion guarantee becomes possible, meaning that we can uniquely
identify/recover any signal x in themodel from its measurement y.

Let us review the three deterministic model classes that
have been shown to support stable dimensionality reduction.
First, a sparse signal x 2 Rd can be represented in terms of
just k � d nonzero coefficients in the basis expansion x ¼ Wh,
whereW is a fixed basis. Concisely, we say that khk‘0¼ k, where
‘0 is the pseudonorm that merely counts the nonzero entries in
x. The set of all sparse signals Rk is the union of d

k

� �
, k-dimen-

sional canonical subspaces in Rd , aligned with the coordinate
axes of the basis W. For sparse signals, the stable embedding
property (2) corresponds to the restricted isometry property
(RIP) [9]. Although the design of such a stable embedding is
an nondeterministic polynomial time (NP) complete problem, in
general, it has been shown that any independent identically dis-
tributed (i.i.d.) sub-Gaussian random matrix U stably embeds Rk

intoRd 0 with high probability as long as d0 ¼ O(k log (d=k)) [10].
Second, a structured sparse signal is not only sparse but also

has correlated coefficients, such that it lies on one of a subset of
the d

k

� �
subspaces of Rk [8]. As a result, a random dimensionality

reduction U is stable for a commensurately smaller value of d0

than for a conventional sparse signal.
Third, an ensemble of articulating signals often live on a

manifold, in particular, when the family of signals fxh : h 2 Hg
is smoothly parameterized by a k-dimensional parameter vector
h [11]. The manifold dimension k is equal to the number of
degrees of freedom of the articulation. It has been shown
that a random dimensionality reduction U stably embeds a
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k-dimensional smooth manifold from Rd into Rd0 as long as
d0 ¼ O(k log (d)) [12].

Given a stable embedding of the form (1), a number of techni-
ques have been developed to recover a (structured) sparse signal of
interest x from the measurements y, including various sparsity-
promoting convex optimizations [1], [2], [13], greedy algorithms
[14], [15], and Bayesian approaches [16]–[18]. Recently, algo-
rithms have also been developed that recover signal manifolds
from randomized measurements [19]. The challenge this article
addresses concerns learning the underlying signal models, par-
ticularly union-of-subspace and manifold models, with this
learning performed nonparametrically based on the available
data. The MFA model discussed later is a statistical form of the
union-of-subspace data model, and the MFA may also be used to
approximate a manifold. Once these models are learned, they
may be used in algorithms that seek to recover high-dimensional
data based on low-dimensional compressive measurements.

LEARNING CONCISE SIGNAL MODELS
In this section, we assume that we may not have access to the
model but instead to training data representative of the signals
of interest. Our goal is to learn a concise signal model from this
data, enabling stable signal recovery. We design these models in
a statistical manner, using nonparametric Bayesian techniques.

UNION-OF-SUBSPACE
MODEL FOR SPARSE SIGNALS
Assume access to a set of N training data fxngn¼1,N . Our goal is to
infer a concise model for fxngn¼1,N appropriate for recovering
high-dimensional data from compressive measurements. Further,
we would like to learn the model parameters nonparametrically
(e.g., without having to set the dimensionality of the subspaces or
the number of mixture components). We express each xn 2 Rd as

xn ¼ A(cn � bn)þ �n, (3)

where cn 2 RK , bn 2 f0, 1gK , and � denotes a pointwise
or Hadamard vector product. The columns of the matrix
A 2 Rd3K define a dictionary, and in many cases K4d, such
that A may be overcomplete. Because of the binary nature of
bn and because kbn k‘0 5 d, each xn is represented by a subset
of the columns of A (defining a subspace); �n is meant to rep-
resent the portion of xn not contained within the aforemen-
tioned subspace.

If we assume that the components of �n are drawn from
N (0, a�1

0 Id), where Id represents the d-dimensional identity
matrix, and if cn � N (0, a�1IK ), then, after integrating out cn,
xn is drawn from

xn � N (0, a�1AKnAT þ a�1
0 Id ), (4)

whereKn ¼ diag(bn) is a binary diagonal matrix. Therefore, if the
columns of AKn are linearly independent, and if rn represents the
number of nonzero components in bn, then xn is drawn from a
zero-mean Gaussian with approximate rank rn (approximate

because a�1
0 Id , with generally small a�1

0 , is added to the rank-
rn a�1AKnAT). Note that priors like cn � N (0, a�1IK ), and other
similar priors considered later, are typically selected for modeling
convenience; the inferred posterior on such model parameters
are not in general as simple as the prior (e.g., they are typically
not Gaussian).

One of our objectives is to learn the dictionary matrix
A, and in a Bayesian setting, we place a prior on it. Specifi-
cally, a convenient prior is to draw the kth column of A, ak,
i.i.d. as

ak � N 0,
1
d
Id

� �
, k ¼ 1, . . . ,K , (5)

such that each column has a unit-expected norm, and the col-
umns have zero-expected correlation. One typically also places
gamma priors on the precisions a and a0 (these priors are
selected because of model conjugacy [20]).

The final part of the model involves placing a prior on the
sparse matrix B 2 f0, 1gN 3K , with the nth row defined by bn;
the cumulative set of binary vectors fbngn¼1,N defines the total
number of columns needed from A. The prior we will employ for
fbngn¼1,N is the beta-Bernoulli process, which is closely con-
nected to the IBP [21] developed by Griffiths and Ghahramani;
this is discussed in detail in the ‘‘Completely RandomMeasures’’
section. At this point, we simply assume that an appropriate
prior for Bmay be constituted.

As a first look at an application, to be discussed further in the
‘‘Applications’’ section, in Figure 1, fxngn¼1,N correspond to N
patches of pixels from a red, green, and blue (RGB) image. In
this problem, only 20% of the pixels are observed, selected uni-
formly at random, and the model is used to infer the missing pix-
els in the image. In this analysis, the incomplete data (image)
are used as model inputs to infer all model parameters, and
importantly, A and fcn � bngn¼1,N . Note that the columns of A

(a) (b)

[FIG1] Recovery of an RGB image based on measuring 20%
of the voxels, uniformly at random. (a) Recovered image
(PSNR¼ 29.73), (b) local usage of BP dictionary elements,
where the color denotes a specific usage of a subset of
dictionary elements. (Results courtesy of J. Paisley.)
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have the same support as xn, and hence, they may be used to
infer missing pixel values via A(cn � bn). It is important that
the pixels are missing at random; if the same pixel is missing in
all fxngn¼1,N , then it is impossible to learn the corresponding
components in A (the row of A corresponding to this missing
pixel cannot be inferred). Because the pixels are missing at
random, information about a missing pixel may be inferred by
using the information from a similar patch elsewhere in the
image. Hence, the simultaneous (collaborative) analysis of all
fxngn¼1,N allows one to infer information about the missing
pixels by exploiting the observed versions of that pixel from
similar patches (we are exploiting self-similarity between image
patches, which is typical of natural imagery). Inferring interre-
lationships between incomplete patches with complementary
missing pixels is consequently critical to model success.

MFA MODEL FOR SIGNAL ENSEMBLES
In the aforementioned model, all data share the same dictionary
defined by the columns of A, but each sample xn generally employs
a subset of the dictionary elements, defined by the binary vector
bn. When the number of samplesN is large, it can be expected that
many of the bn will be the same or similar, defining a union of sub-
spaces. This can be statistically represented as a mixture of Gaus-
sians with covariancematrices that are nearly of low rank.

Specifically, we generalize (4) as

xn �
XM
m¼1

mmN (lm, a
�1
m AmKmAT

m þ a�1
0 Id), (6)

where
PM

m¼1mm ¼ 1, Km ¼ diag(bm), with bm 2 f0, 1gK , again
a binary vector that selects particular columns of Am to define the
subspace spanned by themth mixture component [in (3), there is
a separate binary vector bn for each sample xn, and now there is a
related binary vector bm associated with the mixture component
m]. Note that the number of nonzero components inAm may vary
with m, implying that the dimensionality of the mixture compo-
nents need not be the same. If for eachm the number of nonzero
components of bm is small (i.e., k bm k‘0� d), then each mixture
component N (lm, a�1

m AmKmAT
m þ a�1

0 Id ) defines a relatively
low-dimensional pancake in Rd , with the number of principal
dimensions in the mth associated subspace defined by k bm k‘0 .
The means lm locate the center of each pancake, and these are
assumed to be drawn from N (0, b�1

m Id ), with a gamma prior
placed on bm (again due to conjugacy).

The model (6) is called MFA [22], and the nonzero columns
of AmKm define the factor loadings associated with the mth
mixture component. When building an MFA model, a natural
question concerns how many mixture components M are
appropriate for the training data fxngn¼1,N . One may use
model-selection techniques to choose a single setting of M.
Perhaps the most widely employed approach for choosing M is
the Bayesian information criteria (BIC) [23]–[25]. Alternatively,
later we consider nonparametric modeling, which yields a
posterior distribution on M, and inference essentially performs
model averaging across a weighted set of models with differentM.

This is implemented via DP [26], as summarized in the ‘‘Com-
pletely Random Measures’’ section.

Note that in (3) the bn selects a subset of the columns of A for
the representation of xn, and one may expect that different xn will
(partially) share the usage of these columns. In themixturemodel
of (6), bm selects which subset of the columns of Am are used for
themth mixture component; bmtherefore defines the dimension-
ality and subspace of thismixture component. In general, the sub-
spaces spanned by AmKm and Am0Km0 are different. Hence, (3)
implies that xn are drawn from partially overlapping subspaces,
without an explicit clustering; (6) explicitly clusters the data, with
the data in clusterm spanned by the nonzero columns of AmKm.
The representation in (6) is of most interest when one wishes to
approximate a data manifold as a mixture of low-rank Gaussians,
with the number of mixture components and their characteristics
(e.g., ranks) inferred by the data.

A relatedmodel is themixture of probabilistic principal compo-
nent analyzers (MPPCA) framework of Tipping and Bishop [27];
MPPCA is similar to the proposed MFA, but in [27], one must set
the dimensionality (rank) of each mixture component as well as
the number of mixtures, where this is inferred via nonparametric
Bayesian inference. In [27], the authors achieve a point estimate of
model parameters via expectation maximization (EM), where we
estimate a full posterior density function onmodel parameters.

MANIFOLD MODELS FOR SIGNAL ENSEMBLES
One intriguing use of the MFAmodel in (6) is for data living along
a nonlinear k-dimensional manifold in Rd . Locally, a k-dimen-
sional manifold can be well approximated by its tangent plane,
with the quality of this approximation depending on the local
curvature of the manifold. Therefore, an MFA model as in (6) may
be considered a candidate for manifold-modeled data, where the
mean vectors lm roughly correspond to points sampled from the
manifold, the columns of AmKm roughly span the k-dimensional
local tangent spaces, the thickness parameter a�1

0 depends on
the manifold curvature, and the weights mm reflect the
density of the data across the manifold [28].

When an MFA model is used for recovering data of this type
from compressive measurements, one will expect the recovered
signal to draw only from a small number of MFA components.
The recovered signal is therefore an affine combination of the col-
umns of the few active AmKm. This is reminiscent of the classical
CS problem in which an unknown signal must be recovered as a
sparse superposition of vectors from some dictionary. Indeed, one
could alternatively formulate the MFA recovery program using CS
techniques [5], in which bx is recovered as a sparse superposition
of the columns of Am. A key consideration in this formulation,
however, is that the set of selected columns may draw from only
a few MFA components; this requirement is closely related to
the notion of block sparsity that has been studied in CS. An
example application of this framework is presented in Figure 2.

MATRIX COMPLETION
As a final model, consider a matrix M 2 Rd3N with N � d (this
can always be achieved by matrix transpose). Let the N columns
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of M constitute the set of vectors fxngNn¼1, where x0n is the nth
column manifested with randomly selected missing entries (in
this problem x0n ¼ Unxn, where the rows of Un are randomly
selected rows of the d3 d identity matrix, with Un different for
each n). If the matrixM is such that its columns satisfy the prop-
erties inherent to (4), specifically that each xn resides approxi-
mately within a subspace defined by the columns in matrices of
the form AKn, then the data-recovery technique discussed in the
‘‘Pixel/Voxel Recovery Via Union of Subspaces’’ section may be
applied directly to achieve matrix completion.

It is of interest to examine how such a procedure is related to
conventional matrix-completion frameworks based on low-rank

constructions [3], [30], [31]. In this context, assume that the
matrix may be expressed as

M ¼
Xd
k¼1

kkbkukv
T
k þ E, (7)

where kk 2 R, bk 2 f0, 1g, uk 2 Rd , and vk 2 RN . We may again
draw uk � N (0, (1=d)Id), vk � N (0, (1=N)IN ), kk � N (0, a�1),
and each component of E drawn i.i.d. from N (0, a�1

0 ). A binary
sparseness-promoting prior (see the ‘‘Completely Random
Measures’’ section) may again be employed to define the binary
vector b ¼ (b1, . . . , bd ), thereby imposing a preference for low-
rank constructions. Note that, in this case, because it is assumed

Original Image 5% 10% 15% 20% 25% 30%

(a) (b) (c) (d) (e) (f) (g)

[FIG2] Sparse signal recovery performed on anMFAmodel, inferred based on the training data using DP and BP. Column (a) shows
the original data, and columns (b)–(g) represent CS recovery based on random compressive measurements. The results show the
performance when the number of CS measurements are 5%, . . . , 30% of the total number of pixels in the image. In columns (b)–(g),
the left figure employs the CS-recovery algorithm in [29], which does not exploit the MFA, and the right image is based on the
learnedMFA. (Results courtesy of M. Chen.)
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that each column of M is drawn from the same linear subspace,
there is only a single b (so in this case, we do not use a BP); how-
ever, this model may be clearly generalized to the nonlinear case
by making b a function of index n, as in (3). This shows that the
matrix completion problem is closely linked to the inference of
missing pixels in images.

Considering (7), let vkn represent the nth component of vk.
Then the nth column ofMmay be expressed as

xn ¼ U(cn � b)þ �n, (8)

where �n represents the nth column of E, U 2 Rd3 d has col-
umns defined by uk, and cn ¼ (k1v1n, . . . , kdvdn). Therefore,
matrix completion based on a sparseness constraint of the
form in (7) represents each column of M as being drawn from
a single linear subspace spanned by the columns of U, while the
union-of-subspace construction [32] in (3), applied to the N col-
umns of M, is nonlinear in that each column xn in general has
its own subspace defined by the binary vector bn.

BAYESIAN NONPARAMETRIC INFERENCE
Based on the earlier discussions, learning a model for concise
representation of high-dimensional data requires the ability to
infer the dimensionality of the subspace data reside in, with this
defined by the number of columns needed in A and U. Further, in
the context of MFA model, we require a means of inferring an
appropriate number of mixture components. The former problem
will be addressed using the beta-Bernoulli process. The latter will
be addressed via DP. These nonparametric models represent spe-
cial cases of a more general concept, the completely random
measure. Later, we first review the completely random measure,
and then we show three examples for which it may be applied: for
the BP, gamma process, and DP. Finally, we explain how BP may
be combined with Bernoulli process to place a prior on the afore-
mentioned matrix B (to infer the dimensionality of the subspace
in which a signal resides), and how the DP may be used to infer
the appropriate number of mixture components in MFA. For a
thorough discussion of nonparametric Bayesian methods, the
interested reader is referred to [33].

COMPLETELY RANDOM MEASURES
The key idea of Bayesian nonparametrics is easily stated: one
replaces classical finite-dimensional prior distributions with
general stochastic processes. Recall that a stochastic process
is an indexed collection of random variables, where the index
set may be infinite; thus, by using stochastic processes as
priors, we introduce an open-ended number of degrees of
freedom in a model. For this idea to be useful in practical mod-
els, it is necessary for these stochastic processes to have sim-
plifying properties, and, in particular, it is necessary that they
combine in simple ways with the likelihoods that arise in com-
mon statistical models so that posterior inference is feasible.
One general approach to designing such stochastic processes
is to make use of the notion of completely random measures,
a class of objects that embody a simplifying independence
assumption. We begin by presenting a general framework of
completely randommeasures, and then we show how to derive
some particularly useful stochastic processes—BP and DP—
from this framework. When learning MFA, BP is used to infer
the number of factor loadings (equivalently the rank) for each
mixture component, while DP is used to infer the number of
mixture components.

Letting X denote a measurable space endowed with a sigma
algebra A, a random measure G is a stochastic process whose
index set isA. That is, G(A) is a random variable for each set A in
the sigma algebra. A completely randommeasureG is defined by
the additional requirement that whenever A1 and A2 are disjoint
sets in A, the corresponding random variables G(A1) and G(A2)
are independent [34].

Kingman [34] presented a way to construct completely ran-
dom measures based on the nonhomogeneous Poisson process.
The construction runs as follows (see Figure 3 for a graphical
depiction). Consider the product space X� R and place a
product measure g on this space. Treating g as the rate measure
for a nonhomogeneous Poisson process, draw a sample f(xi, pi)g
from this Poisson process. From this sample, form a measure on
X in the following way:

G ¼
X1
i¼1

pidxi , (9)

where dxi corresponds to a unit-point measure concentrated at
the parameter/atom xi. We refer to fxig as the atoms of the
measure G and fpig as the weights.

Clearly, the random measure defined in (9) is completely
random, because the Poisson process assigns independent mass
to disjoint sets. The interesting fact is that all completely ran-
dom processes can be obtained this way (up to a deterministic
component and Brownian motion).

BETA PROCESS
BP is an example of a completely random measure. In this case,
we define the rate measure g as a product of an arbitrary mea-
sure B0 onX and an improper beta distribution on (0, 1)

g(dx, dp) ¼ cp�1(1� p)c�1dp B0(dx), (10)

Ω

[FIG3] Construction of a completely randommeasure on
X from a nonhomogeneous Poisson process on X� R.
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where c > 0. Note that the expression cp�1(1� p)c�1 integrates
to infinity; this has the consequence that a countably infinite
number of points are obtained from the Poisson process.

We denote a draw from BP as

B � BP(c,B0), (11)

where c > 0 is referred to as a concentration parameter and B0

as the base measure.
For further details on this derivation of BP, see [35]. For an

alternative derivation that does not make use of the framework
of completely random measures, see [36]. Additional work on
the applications of BP can be found in [37]–[39].

GAMMA PROCESS
As a second example, let the rate measure be a product of base
measure G0 and an improper gamma distribution

g(dx, dp) ¼ cp�1e�cpdpG0(dx): (12)

Again the density on p integrates to infinity, yielding a countably
infinite number of atoms. The resulting completely randommea-
sure is known as the gamma process. We write

G � GaP(c,G0) (13)

to denote a draw from the gamma process. Note that the weights
fpig lie in (0,1), and their sum is again finite.

DIRICHLET PROCESS
It is also of interest to consider randommeasures that are obtained
from completely randommeasures by normalization. For example,
returning to the rate measure defining the gamma process in (12),
let f(xi, pi)g denote the points obtained from the corresponding
Poisson process. Form a random probability measure as follows:

G ¼
X1
i¼1

pidxi , (14)

where pi ¼ pi=
P1

j¼1 pj. This is called DP [26]. We denote a draw
from DP asG � DP(a,H0), where a ¼ G0ðXÞ andH0 ¼ G0=a.

APPLICATION TO DATA MODELS
From the ‘‘Learning Concise Signal Models’’ section, there are
two principal modeling objectives: 1) an ability to infer the num-
ber of mixture components needed in an MFA and 2) the
capacity to infer the number of needed factor loadings and their
characteristics. Item 2) is related to inferring the binary matrix
B discussed in the ‘‘Union-of-Subspace Model for Sparse Sig-
nals’’ section. First, considering 1), recall from above that a draw
from DP may be expressed as G ¼P1

i¼1 pidxi , where because of
the aforementioned normalization

P1
i¼1 pi ¼ 1 and pi � 0. In

this application, the atoms fxigi¼1,1 correspond to the candi-
date mixture model parameters (am, lm,Am,Km) used in the
mixture model of (6). Specifically, we constitute the following
generative process for the data fxngn¼1,N when these data are
assumed to be drawn fromMFA:

xn � f (an, ln,An,Kn, a0),

(an, ln,An,Kn) � G,

G � DP(a,G0), (15)

where f ( � ) represents the Gaussian distribution in (6). In this
case, the base measure G0 from whichxi is drawn corresponds to
a factorized prior for the set of parameters (an, ln,An,Kn), with
the individual components of that prior, as defined in the
‘‘Mixture of Factor Analyzers Model for Signal Ensembles’’ sec-
tion. A gamma prior is also placed on a0. Note that because of the
form of G ¼P1

i¼1 pidxi with
P1

i¼1 pi ¼ 1 and pi � 0, the set of
parameters fan, ln,An,Kngn¼1,N are characteristic of being
drawn from a mixture model. With probability pi, any particular
set (an, ln,An,Kn) corresponds to xi. Therefore, although there
are an infinite set of atoms inG ¼P1

i¼1 pidxi , at most,N of them
will be used in the generative process, and typically fewer than N
are needed, as often the same atom xi is shared among multiple
data samples fxngn¼1,N . We therefore manifest a clustering of
fxngn¼1,N (with data in the same cluster sharing a particular
model parameter xi), and the model posterior density function
allows inference of the number of mixture components needed.
Therefore, in principle, the number of mixture components is
unbounded, while in practice, the model allows one to infer the
finite number of mixture components needed to represent the data.

There is a so-called Chinese restaurant process (CRP) view-
point of DP. The data are viewed as customers, and the clusters
are tables, with the dish associated with a given table manifested
by the associated model parameters. One may explicitly draw
from this CRP by marginalizing out DP draw G [33].

We now consider BP as a prior for the binary vectors
fbngn¼1,N in the model (4); these binary vectors are also of inter-
est in the matrix-completion problem in the ‘‘Matrix Completion’’
section of the ‘‘Learning Concise Signal Models’’ section. Recall
that a draw from BP may be expressed as G ¼P1

i¼1 pidwi , where
each pi 2 (0, 1). In this case, each atomxi corresponds to a poten-
tial column of the matrix A in (4) or a potential column of U in (8).
Therefore, in this case, the base measure B0 in BP corresponds to
the same prior used for the columns A or U. The random variable
pi defines the probability that the ith column of A or U is used to
represent the data of interest. Specifically, the data sample xn
selects from among dishes in a buffet, where the dishes correspond
to the columns ofA orU. With probability pi data, xn selects the ith
column of A orU, with the respective column denoted by the atom
xi . Therefore, pi defines the parameter of a Bernoulli distribution,
with which a particular xn decides which xi to use for data
representation. This beta-Bernoulli process therefore defines a
binary matrix B 2 f0, 1gN 31, where each row corresponds to a
particular data sample xn and the columns correspond to spe-
cific atoms fxigi¼1,1; hence, the rows of B are defined by
fbigi¼1,N , and sample xn selects atom/dish xi if the ith compo-
nent of bn is equal to one. While B has an infinite number of col-
umns in principle, it can be shown that only a finite number of
columns in each row will have nonzero values [21]; in practice,
one may truncate the model toK columns/atoms for large K .
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The beta-Bernoulli process yields a so-called IBP [33] if the
BP draw is marginalized out. In this construction, the data are
again customers, and the model parameters are dishes at a buf-
fet. Each customer sequentially selects parameters from the buf-
fet, where the binary vector bn for customer/data n defines
which dishes/parameters are selected; if the kth component of
bn is one, then the kth parameter is used by data n, and if the
kth component of bn is zero, the kth parameter is not used.

POSTERIOR INFERENCE
Markov chain Monte Carlo (MCMC) procedures provide the
dominant approach to inference with randommeasures. In such
methods, one approximates the posterior distribution of all model
parameters in terms of a set of parameter-vector samples. These
samples yield an ensemble of models, and the relative frequency
of samples approximates the posterior distribution. In this
manner, one need not explicitly compute the high-dimensional
integrals that would be required of a direct evaluation of the
posterior distribution.

A special case of MCMC is Gibbs sampling, for which samples
from the posterior distribution are drawn by sequentially sampling
conditional distributions. By appropriate design of the model, of
the form discussed earlier, these conditional distributions may
often be expressed analytically. As an example of such samplers,
consider DP in particular. Working the marginal distribution
embodied in CRP, the core problem is to sample the seating assign-
ment of a single customer conditioning on the seating assignments
of the remaining customers. By exchangeability, one can pretend
that this customer is the last to arrive in the restaurant, and the
contribution of the prior to the seating assignment becomes the
following rule: the customer sits at a table with the probability pro-
portional to the number of customers at that table. Multiplying this
prior by a likelihood term, one obtains a conditional probability
that can be sampled. Similarly, in models based on BP, one can
work with the marginal distribution embodied in IBP, and sam-
pling the sparse binary vector associated with a data point by pre-
tending that that data point is the last to arrive in the restaurant.

The insight of exploiting exchangeability in inference for
random measures is due to Escobar [40], and a large literature
has emerged. See Neal [41] for a thorough discussion in the case
of DP. Another direction of research on inference has involved
working directly with the random measures rather than the
marginals obtained from these random measures. There have
been two main approaches: 1) truncate the random measure by
limiting the random measure to a fixed number of atoms that is
larger than any value expected to arise during sampling [42] and
2) use slice sampling to adaptively truncate the randommeasure
[43]. See [44] for a discussion of these methods in the setting of
BP and for pointers to literature on variational approaches to
inference for randommeasures.

APPLICATIONS
To illustrate the broad applicability and high performance of
the earlier approach to learning concise signal models, we con-
sider several representative examples.

PIXEL/VOXEL RECOVERY VIA UNION OF SUBSPACES
We first consider an application of the union-of-subspaces model
from (4), in which it is assumed that the data D ¼ fxngn¼1,N are
constituted from pixels/voxels in an image. Specifically, each of
the N image patches is defined by a set of contiguous pixels, with
xn 2 Rd representing data from the nth patch (it is possible that
patches may overlap). For a color image, one often considers
d ¼ 8 � 8 � 3 ¼ 192, corresponding to the RGB components of an
83 8 image patch.

From (3), note that xn is defined by the matrix A 2 Rd3K , by
the sparse vector cn � bn (with rn nonzero components), and by
�n 2 Rd . We assume that �n may be made negligibly small,
which implies a0 � a (to be demonstrated in the experiments).
Since A is shared for all vectors in D, the total number of real-
model components needed is dK þPN

n¼1 rn, if the fbngn¼1;N

are known (i.e., if it is assumed we know which columns of A are
associated with each xn, with this clearly impossible in practice).
Nevertheless, under these assumptions, note that we have Nd
real numbers in D available for computation of dK þPN

n¼1 rn
real-model parameters. Therefore, if N � K and rn � d, and
if we process all fxngn¼1,N jointly to infer the cumulative set of
model parameters (exploiting the fact that A is shared among all),
it appears that we have more data in D than needed. Further, it
would appear that we have enough data to infer, which among
the rn columns of A are needed for the representation of each xn
(therefore, we do not need a priori access to fbngn¼1,N ).

On the basis of the earlier observations, researchers have
recently assumed access to only a subset of components of each
xn, with the observed components selected uniformly at random
[38], [45], [46]. For example, rather than measuring all d ¼ 192
contiguous pixels in an 83 83 3 patch, a fraction of the pixels is
measured, with the measured subset of pixels selected uniformly
at random. Let D0 ¼ fx0ngn¼1,N represent a modified form of D,
with each x0n defined by a fraction of the components of each xn,
with the observed samples selected uniformly at random. Process-
ing all of the data inD0 jointly (collaboratively), it has been demon-
strated that for real, natural images, one may indeed recover the
missing data accurately, even when downsamplingD significantly.
Further, the compressive measurements may be performed very
simply: by just randomly sampling/measuring the pixels/voxels in
existing cameras (no need to develop new compressive-sampling
cameras). An example is shown in Figure 1.

Note that this looks like CS [47], [48], in that a small subset
of measurements are performed, with the full data recovered
based upon the exploitation of properties of the signal (that the
signals live in a low-dimensional subspace of Rd). However, in
CS, it is typically assumed that projection-type measurements
are performed and that the signal is sparse in an underlying
known basis or frame. The projections should be incoherent
with the basis vectors [49], and for a discrete cosine transform
(DCT)-type basis, one could use delta-function-like projections
(selecting random components of each xn), like those consid-
ered earlier. However, in an earlier collaborative-filtering frame-
work, we not only perform random sampling but also infer the
underlying union of subspaces in which the signals reside, as
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defined by the columns of A, thereby matching the signal sub-
space to the observed data adaptively. In fact, as discussed in the
‘‘Matrix Completion’’ section of the ‘‘Applications’’ section, col-
laborative filtering for image recovery is closer to the field of
matrix completion [3] than it is to CS.

The model in (4) is well suited for recovering the missing
components of D from D0 [38]. Specifically, when perform-
ing computations for the posterior distribution of the
model parameters, the likelihood function represented byQN

n¼1x N (x0nj0, a�1AKnAT þ a�1
0 Id) is simply evaluated at the

pixels for which data are observed. As discussed in the ‘‘Posterior
Inference’’ section, a Gibbs sampler may be implemented, and
from this, one may obtain an approximation to all model param-
eters. Hence, the posterior probability of each xn in D, based on
observedD0 and model hyperparametersH, may be expressed as

p(xnjD0,H) ¼
Z
A

Z
a

Z
Kn

Z
a0

N (xnj0, a�1AKnAT þ a�1
0 Id)

3 p(A, a,Kn, a0jD0,H), (16)

with the posterior p(A, a,Kn, a0jD0,H) approximated via sam-
ples from the Gibbs computations, and the integrals are approxi-
mated as sums.

A model like that in (3) or (6) has a posterior on model
parameters that is invariant to exchanging the order of the data
fxngn¼1,N . In other words, any permutation of the order of the
data will yield exactly the same inferred model parameters. This
implies that the model is not utilizing all available prior infor-
mation, since if one reconstituted an image after permuting the

order of fxngn¼1,N , very distinct images are manifested (recall
that each xn corresponds to an 83 83 3 patch of contiguous
pixels, and reordering these patches causes significant changes
to the overall image). It is therefore desirable to impose within
the model that if xn and xn0 are spatially proximate, they will
likely employ similar factors (manifested by similar binary
factor-selection vectors bn and bn0 ).

Toward this end, we utilize DP in an additional manner
(beyond within the MFA) to exploit spatial information. Specifi-
cally, we cluster the image patches spatially using a DP and
impose that if two patches are spatially proximate, they are likely
to be drawn from the same Gaussian mixture component and
from the spatial mixture component. Figure 1(b) uses a different
color to represent each Gaussian mixture component, and
effective spatial segmentation is realized. One may therefore envi-
sion extending this framework for simultaneous image recovery
and segmentation based on randomly subsampled images.

As another example of this type, consider Figure 4. In this
example, rather than processing all possible (overlapping) image
patches at once, we select a subset of them for analysis; the
approximate posterior on model parameters so inferred is used
as a prior for the next randomly selected subset of patches for
analysis. In Figure 4, the peak signal-to-noise ratio (PSNR)
curve shows how the model performance improves as we con-
sider more data in a sequential manner. Each analysis of a subset
of the image patches is termed a learning round.

Theoretically, one would expect to need thousands of Gibbs
iterations to achieve convergence. However, our experience is
that even a single iteration in each of the above B2 rounds yields
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[FIG4] Inpainting results. The curve shows the PSNR as a function of the 64 Gibbs learning rounds. Part (a) shows is the test image, with
80% of the RGB pixels missing, (b) is the result 64 after Gibbs rounds (final result), and (c) is the original uncontaminated image.
(Results courtesy ofM. Zhou.)
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good results. In Figure 4, we show the PSNR as a function of
each of the 64 rounds discussed earlier. For Gibbs rounds 16,
32, and 64, the corresponding PSNR values were 27.64, 28.20,
and 28.66 dB. For this example, we used K ¼ 256. This example
was considered in [50]; the best results reported was a PSNR of
29.65 dB. However, to achieve those results, a training data set
was employed for initialization [50]; the BP results are achieved
with no a priori training data.

SIGNAL RECOVERY FROM MFAs AND MANIFOLDS
Assume that it is known a priori that the data of interest are
drawn from an MFA of the form in (6), with the MFA learned off-
line based upon training data D ¼ fxngn¼1,N . We now wish to
measure a single new x 2 Rd , under the assumption that x is
drawn from the same MFA [5]. Since the MFA may be used to
approximate a manifold, we may also consider the case for which
x is drawn from a knownmanifold [12]. On the basis of this prior
knowledge, we wish to measure y 2 Rd0 , with d05d, and ideally
with d0 � d; based on the measured y, x is recovered.

It is assumed that y ¼ Ux, where U 2 Rd0 3 d is a projection
matrix typically defined randomly. In the ‘‘Bayesian Nonpara-
metric Inference’’ section, we discuss the desired properties
of U and the connection of such to the characteristics of MFA.
In a statistical sense, to recover x from y, we desire p(xjy) ¼
p(yjx)p(x)=p(y), under the assumption that p(x) is the known
MFA of the form in (6). Assuming that the compressive mea-
surements are noisy, we may express y ¼ Ux þ d, where d 2 Rd 0

represents additive noise. If d � N (0, b�1
0 Id0 ), then we have

p(yjx) ¼ N (Ux, b�1
0 Id 0 ). If b0 is known, under the MFA assump-

tion for p(x), the expression p(xjy) may also be expressed analyti-
cally in terms of a mixture of Gaussians. If needed, we may also
infer b0 by placing a (conjugate) gamma prior on it. Therefore,
under the assumption of an MFAmodel for p(x), one may readily
constitute a statistical estimate of x based on the observed y,
with performance bounds discussed in the ‘‘Performance Guar-
antees’’ section. An example of CS recovery for images that live
on a union of subspaces is shown in Figure 2; we are unaware of
such CS inversion being performed by any previous method.

MATRIX COMPLETION
As our final example, we consider the problem of matrix comple-
tion, as applied to movie-rating matrices. We tested the union-
of-subspace construction on the widely employed 10M Movie-
Lens dataset (10,681 movies by 71,567 users). Table 1 shows the
results for both ra and rb partitions provided with the data, in
which ten ratings per user are held out for testing. One of the
best competing algorithms is the Gaussian process latent-variable

model (GP-LVM) [51]. Averaged over both partitions, the GP-
LVM reports the root-mean-square error (RMSE) of 0:8740 �
0:0278 using a ten-dimensional latent space, while the baselines
of our approaches achieve average RMSEs of 0:8539 � 0:0298
and 0:8499 � 0:0250. In this example, we employed the model in
(3) in two constructions. In Table 1, we show the results when the
vectors xn correspond to the user-dependent rankings of all mov-
ies (user profile), and with xn corresponding to the movie-
dependent rankings manifested by all people (movie profile).
In other words, one construction is in terms of the rows of the
ranking matrix and the other construction is in terms of the
columns, with the state-of-the-art results manifested in each
case. While the Bayesian models may readily be extended to inte-
ger-observed matrices via a probit or logistic link function, the
integer values are simply approximated as real numbers.

These results were computed using a Gibbs sampler, with a
truncated BP implementation with K ¼ 256 dishes. One Gibbs
iteration required 150 s on a 2.53-GHz E5540 Xeon processor,
using nonoptimizedMATLAB software. The results in Table 1 cor-
respond to 50 burn-in iterations and 100 collection iterations.

PERFORMANCE GUARANTEES
The BP and DP nonparametric methods may be used to infer an
MFA based upon the given training data. Once this model is so
learned, MFA may be assumed known and can be used in the
inversion of subsequent compressive measurements. An exam-
ple of such MFA learning and the subsequent utilization within
CS signal recovery was presented in Figure 2. It is of interest to
examine the performance guarantees based on CS measure-
ments and a known MFA model (learned based on training data,
using nonparametric techniques of the type discussed earlier). It
should be emphasized that the underlying MFA for general data
is typically not identifiable or unique. This implies that multiple
MFAs may provide similar generative models for the underlying
data of interest. For the following bounds, we assume that one
learned MFA is used to perform CS inversion, and this model pro-
vides an accurate statistical representation of the data; it is for
such a learnedMFA that the bounds are constituted.

BOUNDS FOR MFAs
Recall our expression for compressive measurements y ¼
Ux þ d 2 Rd0 of a signal x 2 Rd as in (1). As discussed in the
‘‘Signal Recovery from MFAs and Manifolds’’ section, if we
assume that x is drawn from an MFA of the form in (6), whose
parameters are known (based on training data), then the
posterior distribution p(xjy) can be expressed as a mixture of
Gaussians [5]. Using this model, we obtain an analytical
expression for the mean estimate of x

bx ¼XM
m¼1

bmm bxm, (17)

where

bmm ¼ mmN (y;Ulm, b
�1
0 Id0 þ UXmU

T)PM
‘¼1 m‘N (y;Ul‘, b

�1
0 Id0 þ UX‘U

T)

[TABLE 1] RMSE OF UNION-OF-SUBSPACE MODEL ON
10MILLIONMOVIELENS DATA.

METHODS ra PARTITION rb PARTITION

USER PROFILE 0:8749� 0:0009 0:8328� 0:0004
MOVIE PROFILE 0:8676� 0:0006 0:8323� 0:0002

RESULTS COURTESY OF M. ZHOU.
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represents an estimated mixture weight of themth component,

bxm ¼ XmU
T(b�1

0 Id0 þ UXmU
T)�1(y� Ulm)þ lm

equals the signal estimate that would be recovered if only compo-
nentm was present in the MFA, andXm ¼ a�1

m AmKmAT
m þ a�1

0 Id
represents the covariance matrix of the mth component in
the MFA.

We can also consider the situation where a�1
0 ! 0 and

b�1
0 ! 0, in which case the matrix inverse in (17) should be

treated as a pseudoinverse.
For an MFA being used for manifold-modeled data, an analo-

gous requirement to the stable embedding is that (2) holds
for lm1

� lm2
for all 1 � m1,m2 � M and that (2) also holds for

all vectors in colspan(AmKm) for all 1 � m � M. From the
Johnson-Lindenstrauss lemma, we know that when U is gener-
ated randomly with i.i.d. Gaussian or sub-Gaussian entries, the
former property holds with high probability as long as d0 ¼
O( log (M)��2), and using similar arguments, the latter property
also holds as long as d0 ¼ O((kþ log (M))��2) [10].

Under the assumption that these two conditions are met, we
can establish certain guarantees [28] about the performance of
the mean estimator (17) when recovering a signal x that is drawn
from themanifold.

For example, supposing that b�1
0 ! 0, the isometry property for

colspan (AmKm) discussed essentially guarantees that k x � bxm k2
is a combination of the two error terms, one depending on the
size of x � lm when projected onto colspan(AmKm), and one
depending on the size of x � lm when projected orthogonal to
colspan(AmKm).

The size of a�1
0 controls the balance between these two

terms, and by choosing sufficiently small a�1
0 , we can ensure

that the dependence on the first of these terms is small; this allows
us to guarantee that k x � bxm k2 is small for any signal x living near
mixture componentm.

Analysis of the recovery error k x � bx k2 for a multicomponent
mean estimator (17) is more involved but can proceed based on
the observation that for any m0 2 f1, 2, . . . ,Mg, we can write
k x�bx k2 � k x�bxm0 k2þ

P
m6¼m0

m̂m k x�bxm k2 : One conclu-
sion that can be drawn from this is that if the mixture centers
flmg are well separated in Rd and remain well separated in
Rd0 (as discussed earlier), then for a signal x living near mixture
component m0, all m̂m will be small for m 6¼m0, thus k x�bx k2
will be small.

We refer the interested readers to [28] for a more
detailed analysis.

BOUNDS ON MATRIX COMPLETION
Earlier, we considered bounds for CS measurements and an
underlying MFA model, with the example results; in Figure 2, the
CS projection matrix U was defined by draws from a Gaussian
distribution. In Figure 1, rather than taking such random-projec-
tion measurements, we observed a small subset of pixels, with
these selected at random. This is closely related to the matrix-
completion problem, for which we briefly review theoretical

guarantees. We also showed the experimental results in the
‘‘Applications’’ section for the matrix-completion problem, using
nonparametric Bayesian techniques.

Several recent papers have examined the problem of recover-
ing a low-rank matrix from just a fraction of its entries. As in the
‘‘Matrix Completion’’ section of the ‘‘Learning Concise Signal
Models’’ section, let us consider a matrixM 2 Rd3N with N � d
and let us suppose that M has rank r. Because such a matrix has
only (d þ N � r)r degrees of freedom [4], it seems natural that
one may be able to recover the matrix when observing far less
than all of its dN entries. We denote by m � dn the number of
available entries.

A recent approach for recovering the missing entries of M
involves solving a convex optimization problem, wherein one
seeks the matrixM0 having the smallest nuclear norm, such that
M0 agrees with M at the m observed entries. (The nuclear norm
of a matrix equals the sum of its singular values.) As an example,
it has been shown that, with high probability, nuclear norm
minimization recovers the matrix M exactly supposing that
m � CNr log6 N and that the locations of the m observed posi-
tions are drawn uniformly at random [52]; the constant C in this
expression depends on the coherence of the singular vectors of
M, implying that some matrices are easier to recover than
others. Similar statements [4] have also been made for matrix
recovery in terms of a generalization of RIP from CS, which is
discussed in the ‘‘Stable Embeddings’’ section. Like signal
recovery in CS, matrix completion has also been shown to be
robust to noise in the observed entries [53].

To the best of our knowledge, there do not exist bounds avail-
able for the alternative form of matrix completion discussed in
the ‘‘Matrix Completion’’ section of the ‘‘Learning Concise Signal
Models’’ section, in which each column of thematrix is defined by a
unique subspace and thus conventional rankminimization techni-
ques will not be appropriate. This problem includes conven-
tional rank-based matrix recovery as a special case (when the
columns happen to share a common subspace), however, it is
likely to be more difficult to solve in general, both in terms of
the requisite number of observations and in terms of algorith-
mic complexity.

CONCLUSIONS
While the dimensionality of data used for visualization by humans
(e.g., imagery and video) may be very large, the underlying infor-
mation content in the data may be relatively low. We have
reviewed addressing this problem through the representation of
data in terms of the underlying (low-dimensional) manifold or
union of subspaces on which it resides. By exploiting this low-
dimensional representation, one may significantly reduce the
quantity of data that need be measured from a given scene (or
needed within a general data matrix), manifesting compressive or
incomplete measurements. There are several technical challenges
thatmust be addressed, including development of models to learn
the underlying low-dimensional latent space. In this article, we
have examined such learning from a nonparametric Bayesian
viewpoint, with the example results presented for CS of signals
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that reside on a union of subspaces, image interpolation, and
matrix completion. We have also reviewed the theoretical results
on the accuracy of data recovery for such problems.

Concerning future research, note that the discussion in the
‘‘Bayesian Nonparametric Inference’’ section on completely ran-
dom measures is quite general, with the DP and beta-Bernoulli
processes considered here as special cases. It is of interest to con-
sider more general nonparametric models. For example, such
models may be replaced by generalized forms, which yield power-
law behavior in the number of clusters and dictionary elements as
a function of the quantity of data. Such power-law behavior may
be better matched to the properties of real data, such as images,
video, and general matrices. There are early and promising stud-
ies that have examined this power-law construction [54], [55].
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T
he past few years have witnessed an explo-
sion in the availability of data from multi-
ple sources and modalities. For example,
millions of cameras have been installed
in buildings, streets, airports, and cities

around the world. This has generated extraordinary advan-
ces on how to acquire, compress, store, transmit, and process
massive amounts of complex high-dimensional data.
Many of these advances have relied on the observation

that, even though these data sets are high dimensional, their
intrinsic dimension is often much smaller than the dimension of the

ambient space. In computer vision, for example, the number of pixels in an
image can be rather large, yet most computer vision models use only a few

parameters to describe the appearance, geometry, and dynamics of a scene. This has motivated the
development of a number of techniques for finding a low-dimensional representation of a high-dimen-
sional data set. Conventional techniques, such as principal component analysis (PCA), assume that the
data are drawn from a single low-dimensional subspace of a high-dimensional space. Such approaches
have found widespread applications in many fields, e.g., pattern recognition, data compression, image
processing, and bioinformatics.

In practice, however, the data points could be drawn from multiple subspaces, and the mem-
bership of the data points to the subspaces might be unknown. For instance, a video sequence
could contain several moving objects, and different subspaces might be needed to describe the
motion of different objects in the scene. Therefore, there is a need to simultaneously cluster the
data into multiple subspaces and find a low-dimensional subspace fitting each group of points.
This problem, known as subspace clustering, has found numerous applications in computer
vision (e.g., image segmentation [1], motion segmentation [2], and face clustering [3]), image pro-
cessing (e.g., image representation and compression [4]), and systems theory (e.g., hybrid system
identification [5]).
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A number of approaches to sub-
space clustering have been pro-
posed in the past two decades. A
review of methods from the data-
mining community can be found
in [6]. This article will present
methods from themachine learning
and computer vision communities, including algebraic methods
[7]–[10], iterative methods [11]–[15], statistical methods [16]–[20],
and spectral clustering-based methods [7], [21]–[27]. We review
these methods, discuss their advantages and disadvantages, and
evaluate their performance on the motion segmentation and face-
clustering problems.

THE SUBSPACE CLUSTERING PROBLEM
Consider the problem of modeling a collection of data points
with a union of subspaces, as illustrated in Figure 1. Specifically,
let fxj 2 RDgNj¼1 be a given set of points drawn from an unknown
union of n � 1 linear or affine subspaces fSigni¼1 of unknown
dimensions di ¼ dim (Si), 05di5D, i ¼ 1; . . . ; n. The subspa-
ces can be described as

Si ¼ fx 2 RD : x ¼ li þ Uiyg, i ¼ 1, . . . , n, (1)

where li 2 RD is an arbitrary point in subspace Si that can be
chosen as li ¼ 0 for linear subspaces, Ui 2 RD3 di is a basis for
subspace Si, and y 2 Rdi is a low-dimensional representation for
point x. The goal of subspace clustering is to find the number of
subspaces n, their dimensions fdigni¼1, the subspace bases
fUigni¼1, the points fligni¼1, and the segmentation of the points
according to the subspaces.

When the number of subspaces is equal to one, this problem
reduces to finding a vector l 2 RD, a basis U 2 RD3 d , a low-
dimensional representation Y ¼ ½y1; . . . ; yN 	 2 Rd3N , and the
dimension d. This problem is known as PCA [28]. (The problem of
matrix factorization dates back to the work of Beltrami [29]
and Jordan [30]. In the context of stochastic signal process-
ing, PCA is also known as Karhunen-Loeve transform [31].
In the applied statistics literature, PCA is also known as Eck-
art-Young decomposition [32].) PCA can be solved in a remark-
ably simple way: l ¼ (1=N)

PN
j¼1 xj is the mean of the data

points (U ;Y ) can be obtained from the rank-d singular value
decomposition (SVD) of the (mean-subtracted) data matrix X ¼
½x1 � l, x2 � l, . . . , xN � l	 2 RD3Nas

U ¼ U and Y ¼ RV>, where X ¼ URV>, (2)

and d can be obtained as d ¼ rank(X) with noise-free data
or using model-selection techniques when the data are
noisy [28].

When n41, the subspace clustering problem becomes sig-
nificantly more difficult due to a number of challenges.

n First, there is a strong coupling between data segmenta-
tion and model estimation. Specifically, if the segmentation
of the data is known, one could easily fit a single subspace

to each group of points using
standard PCA. Conversely, if
the subspace parameters were
known, one could easily find
the data points that best fit
each subspace. In practice,
neither the segmentation of

the data nor the subspace parameters are known, and one
needs to solve both problems simultaneously.
n Second, the distribution of the data inside the subspaces
is generally unknown. If the data within each subspace are
distributed around a cluster center and the cluster centers
for different subspaces are far apart, the subspace clustering
problem reduces to the simpler and well-studied central
clustering problem. However, if the distribution of the data
points in the subspaces is arbitrary, the subspace clustering
problem cannot be solved by central clustering techniques.
In addition, the problem becomes more difficult when many
points lie close to the intersection of two or more subspaces.
n Third, the position and orientation of the subspaces rela-
tive to each other can be arbitrary. As we will show later,
when the subspaces are disjoint or independent, the sub-
space clustering problem can be solved more easily. How-
ever, when the subspaces are dependent, the subspace
clustering problem becomes much harder. (n linear sub-
spaces are disjoint if every two subspaces intersect only at
the origin. n linear subspaces are independent if the
dimension of their sum is equal to the sum of their dimen-
sions. Independent subspaces are disjoint, but the converse
is not always true. n affine subspaces are disjoint, inde-
pendent, if so are the corresponding linear subspaces in
homogeneous coordinates.)
n The fourth challenge is that the data can be corrupted by
noise, missing entries, and outliers. Although robust estima-
tion techniques for handling such nuisances have been devel-
oped for the case of a single subspace, the case of multiple
subspaces is not well understood.
n The fifth challenge is model selection. In classical PCA,
the only parameter is subspace dimension, which can be
found by searching for the subspace of the smallest dimension

S1 S2

S3

3

[FIG1] A set of sample points inR3 drawn from a union of three
subspaces: two lines and a plane.

A NUMBER OF APPROACHES
TO SUBSPACE CLUSTERING HAVE
BEEN PROPOSED IN THE PAST

TWODECADES.
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that fits the data with a given accuracy. In the case of
multiple subspaces, one can fit the data with N different
subspaces of dimension one, i.e., one subspace per data
point, or with a single subspace of dimension D. Obviously,
neither solution is satisfactory. The challenge is to find a
model-selection criteria that favors a small number of sub-
spaces of small dimensions.
In what follows, we present a number of subspace clustering

algorithms and show how they try to address these challenges.

SUBSPACE CLUSTERING ALGORITHMS

ALGEBRAIC ALGORITHMS
We first review two algebraic algorithms for clustering noise-
free data drawn frommultiple linear subspaces, i.e., li ¼ 0.

The first algorithm is based on linear algebra, specifically
matrix factorization, and is provably correct for independent sub-
spaces. The second one is based on polynomial algebra and is
provably correct for both dependent and independent subspaces.

Although these algorithms are designed for linear subspaces,
in the case of noiseless data, they can also be applied to affine
subspaces by using homogeneous coordinates, thus interpreting
an affine subspace of dimension d in RD as a linear subspace of
dimension d þ 1 in RDþ1. (The homogeneous coordinates of
x 2 RD are given by ½x>1	> 2 RDþ1.)

Also, while these algorithms operate under the assumption
of noise-free data, they provide great insights into the geometry
and algebra of the subspace clustering problem. Moreover, they
can be extended to handle moderate amounts of noise.

MATRIX FACTORIZATION-BASED ALGORITHMS
These algorithms obtain the segmentation of the data from a
low-rank factorization of the data matri X. Hence, they are a
natural extension of PCA from one to multiple independent
linear subspaces.

Specifically, let Xi 2 RD3Ni be the matrix containing the Ni

points in subspace i. The columns of the data matrix can be
sorted according to the n subspaces as ½X1,X2, . . . ,Xn	 ¼ XC,
where C 2 RN 3N is an unknown permutation matrix. Because
each matrix Xi is of rank di, it can be factorized as

Xi ¼ UiYi i ¼ 1, . . . , n, (3)

where Ui 2 RD3 di is an orthogonal basis for subspace i and
Yi 2 Rdi 3Ni is the low-dimensional representation of the points
with respect to Ui. Therefore, if the subspaces are independent,
then r ¼D rank(X) ¼Pn

i¼1 di � minfD,Ng and

XC ¼ U1,U2, � � � ,Un½ 	
Y1

Y2
. .
.

Yn

26664
37775 ¼D UY , (4)

where U 2 RD3 r and Y 2 Rr3N . The subspace clustering prob-
lem is then equivalent to finding a permutation matrix C, such

that XC admits a rank-r factorization into a matrix U and a block
diagonal matrix Y . This idea is the basis for the algorithms of
Boult and Brown [7], Costeira and Kanade [8], and Gear [9],
which compute C from the SVD of X [7], [8] or from the row
echelon canonical form of X [9].

Specifically, the Costeira and Kanade algorithm proceeds as
follows. Let X ¼ URV> be the rank-r SVD of the data matrix,
i.e., U 2 RD3 r, R 2 Rr3 r, and V 2 RN 3 r. Also, let

Q ¼ VV> 2 RN 3N : ð5Þ

As shown in [2] and [33], the matrix Q is such that

Qjk ¼ 0 if points j and k are in different subspaces: (6)

In the absence of noise, (6) can be used to obtain the segmenta-
tion of the data by applying spectral clustering to the eigenvectors
of Q [7] (see the ‘‘Spectral Clustering-Based Methods’’ section)
or by sorting and thresholding the entries of Q [8], [34]. For
instance, [8] obtains the segmentation by maximizing the sum of
the squared entries of Q in different groups, while [34] finds the
groups by thresholding a subset of the rows of Q. However, as
noted in [33] and [35], this thresholding process is very sensitive to
noise. Also, the construction of Q requires knowledge of the rank
ofX, and using the wrong rank can lead to very poor results [9].

Wu et al. [35] use an agglomerative process to reduce the effect
of noise. The entries of Q are first thresholded to obtain an initial
oversegmentation of the data. A subspace is then fit to each group
Gi, and two groups are merged when the distance between their
subspaces is below a threshold. A similar approach is followed by
Kanatani et al. [33], [36], except that the geometric Akaike informa-
tion criterion [37] is used to decide when tomerge the two groups.

Although these approaches indeed reduce the effect of noise, in
practice, they are not effective because the equation Qjk ¼ 0 holds
only when the subspaces are independent. In the case of dependent
subspaces, one can use the subset of the columns of V that do not
span the intersections of the subspaces. Unfortunately, we do not
know which columns to choose a priori. Zelnik-Manor and Irani
[38] propose to use the top columns ofV to defineQ. However, this
heuristic is not provably correct. Another issue with factorization-
based algorithms is that, with a few exceptions, they do not provide
a method for computing the number of subspaces, n, and their
dimensions, fdigni¼1. The first exception is when n is known. In
this case, di can be computed from each group after the segmenta-
tion has been obtained. The second exception is for independent
subspaces of equal dimension d. In this case rank(X) ¼ nd, hence
wemay determine n when d is known or vice versa.

GENERALIZED PCA
Generalized PCA (GPCA; see [10] and [39]) is an algebraic-
geometric method for clustering data lying in (not necessarily
independent) linear subspaces. The main idea behind GPCA is
that one can fit a union of n subspaces with a set of polynomials
of degree n, whose derivatives at a point give a vector normal to
the subspace containing that point. The segmentation of the
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data is then obtained by grouping these normal vectors using
several possible techniques.

The first step of GPCA, which is not strictly needed, is to
project the data points onto a subspace of RD of dimension
r ¼ dmax þ 1, where dmax ¼ maxfd1, . . . , dng. (The value of r is
determined using model-selection techniques when the subspace
dimensions are unknown.) The rationale behind this step is as fol-
lows. Since the maximum dimension of each subspace is dmax, a
projection onto a generic subspace of RD of dimension dmax þ 1
preserves the number and dimensions of the subspaces with
probabilty one. As a by-product, the subspace clustering problem
is reduced to clustering subspa-
ces of dimension at most dmax

in Rdmaxþ1. As we shall see, this
step is very important to reduce
the computational complexity
of the GPCA algorithm. With an
abuse of notation, we will denote
the original and projected sub-
spaces as Si, and the original and projected data matrix as

X ¼ ½x1, . . . , xN 	 2 RD3N or Rr3N : (7)

The second step is to fit a homogeneous polynomial of degree
n to the (projected) data. The rationale behind this step is as fol-
lows. Imagine, for instance, that the data came from the union
of two planes in R3, each one with normal vector bi 2 R3. The
union of the two planes can be represented as a set of points,
such that p(x) ¼ (b>1 x)(b

>
2 x) ¼ 0. This equation is nothing but

the equation of a conic of the form

c1x21 þ c2x1x2 þ c3x1x3 þ c4x22 þ c5x2x3 þ c6x23 ¼ 0: (8)

Imagine now that the data came from the plane b>x ¼ 0 or
the line b>1 x ¼ b>2 x ¼ 0. The union of the plane and the line is
the set of points, such that p1(x) ¼ (b>x)(b>1 x) ¼ 0 and
p2(x) ¼ (b>x)(b>2 x) ¼ 0. More generally, data drawn from the
union of n subspaces of Rr can be represented with polynomials
of the form p(x) ¼ (b>1 x) � � � (b>n x) ¼ 0, where the vector bi 2 Rr

is orthogonal to Si. Each polynomial is of degree n in x and can be
written as c>mn(x), where c is the vector of coefficients and mn(x)
is the vector of all monomials of degree n in x. There are

Mn(r)¼ nþ r�1
n

� �

independent monomials; hence, c 2 RMn(r).
In the case of noiseless data, the vector of coefficients c of

each polynomial can be computed from

c>½mn(x1), mn(x2), � � � , mn(xN )	 ¼D c>Vn ¼ 0> (9)

and the number of polynomials is simply the dimension of the
null space of Vn. While in general the relationship between
the number of subspaces, n, their dimensions, fdigni¼1, and the

number of polynomials involves the theory of Hilbert functions
[40], in the particular case where all the dimensions are equal to
d and r ¼ d þ 1, there is a unique polynomial that fits the data.
This fact can be exploited to determine both n and d. For exam-
ple, given d, n can be computed as

n ¼ minfi : rank(V i) ¼ Mi(r)� 1g: (10)

In the case of data contaminated with small-to-moderate
amounts of noise, the polynomial coefficients (9) can be found
using least squares—the vectors c are the left singular vectors of

Vn corresponding to the small-
est singular values. To handle
larger amounts of noise in the
estimation of the polynomial
coefficients, one can resort to
techniques from robust statis-
tics [20] or rank minimization
[41]. Model-selection techni-

ques can be used to determine the rank of Vn and, hence, the
number of polynomials, as shown in [42]. Model-selection
techniques can also be used to determine the number of sub-
spaces of equal dimensions in (10), as shown in [10]. However,
determining n and fdigni¼1 for subspaces of different dimen-
sions from noisy data remains a challenge. The reader is
referred to [43] for a model-selection criteria called minimum
effective dimension, which measures the complexity of fitting
n subspaces of dimensions fdigni¼1 to a given data set within a
certain tolerance, and to [40] and [42] for algebraic relation-
ships among n, fdigni¼1 and the number of polynomials, which
can be used for model-selection purposes.

The last step is to compute the normal vectors bi from the vec-
tor of coefficients c. This can be done by taking the derivatives of
the polynomials at a data point. For example, if n ¼ 2, we have
rp(x) ¼ (b>2 x)b1 þ (b>1 x)b2. Thus, if x belongs to the first sub-
space, thenrp(x) � b1. More generally, in the case of n subspaces,
we have p(x) ¼ (b>1 x) � � � (b>n x) and rp(x) � bi if x 2 Si . We can
use this result to obtain the set of all normal vectors to Si from
the derivatives of all the polynomials at x 2 Si . This gives us a
basis for the orthogonal complement of Si from which we can
obtain a basis Ui for Si. Therefore, if we knew one point per sub-
space, fyi 2 Signi¼1, we could compute the n subspace bases
fUigni¼1 from the gradient of the polynomials at fyigni¼1 and then
obtain the segmentation by assigning each point fxjgNj¼1 to its clos-
est subspace. A simple method for choosing the points fyigni¼1 is to
select any data point as y1 to obtain the basis U1 for the first sub-
space S1. After removing the points that belong to S1 from the data
set, we can choose any of the remaining data points as y2 to obtain
U2, hence S2, and then repeat this process until all the subspaces
are found. In the ‘‘Spectral Clustering-Based Methods’’ section, we
will describe an alternativemethod based on spectral clustering.

The first advantage of GPCA is that it is an algebraic algo-
rithm; thus, it is computationally cheap when n and d are
small. Second, intersections between subspaces are automati-
cally allowed; hence, GPCA can deal with both independent and

GENERALIZED PCA IS AN ALGEBRAIC-
GEOMETRIC METHOD FOR
CLUSTERING DATA LYING IN

(NOT NECESSARILY INDEPENDENT)
LINEAR SUBSPACES.
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dependent subspaces. Third, in the noiseless case, it does not
require the number of subspaces or their dimensions to be
known beforehand. Specifically, the theory of Hilbert functions
may be used to determine n and fdig, as shown in [40].

The first drawback of GPCA is that its complexity increases expo-
nentially with n and fdig. Specifically, each vector c is of dimension
O(Mn(r)), while there are only O(r

Pn
i¼1 ðr � di)Þ unknowns in

the n sets of normal vectors. Second, the vector c is computed using
least squares; thus, the computation of c is sensitive to outliers.
Third, the least-squares fit does not take into account nonlinear
constraints among the entries of c (recall that pðx) must factorize
as a product of linear factors). These issues cause the performance
of GPCA to deteriorate as n increases. Fourth, themethod in [40] to
determine n and fdigni¼1 does not handle noisy data. Fifth, while
GPCA can be applied to affine
subspaces by using homogene-
ous coordinates, in our experi-
ence, this does not work very
well when the data are conta-
minated with noise.

ITERATIVE METHODS
A very simple way of improving
the performance of algebraic algorithms in the case of noisy data
is to use iterative refinement. Intuitively, given an initial seg-
mentation, we can fit a subspace to each group using classical
PCA. Then, given a PCA model for each subspace, we can assign
each data point to its closest subspace. By iterating these two
steps, we can obtain a refined estimate of the subspaces and seg-
mentation. This is the basic idea behind the K-planes [11] algo-
rithm, which generalizes the K-means algorithm [44] from data
distributed around multiple cluster centers to data drawn from
multiple hyperplanes. The K-subspaces algorithm [12], [13]
further generalizes K-planes frommultiple hyperplanes to multi-
ple affine subspaces of any dimensions and proceeds as follows.
Let wij ¼ 1 if point j belongs to subspace i and wij ¼ 0 otherwise.
Referring back to (1), assume that the number of subspaces n and
the subspace dimensions fdigni¼1 are known. Our goal is to find
the points fli 2 RDgni¼1, the subspace bases fUi 2 RD3 digni¼1,
the low-dimensional representations fYi 2 Rdi 3Nigni¼1, and the
segmentation of the data fwijgj¼1, ...,N

i¼1, ..., n . We can do so by minimiz-
ing the sum of the squared distances from each data point to
its own subspace

min
flig, fUig, fyig, fwijg

Xn
i¼1

XN
j¼1

wij k xj � li � Uiyj k2

subject to wij 2 f0, 1g and
Xn
i¼1

wij ¼ 1: (11)

Given flig, fUig, and fyjg, the optimal value for wij is

wij ¼
1 if i ¼ arg min

k¼1, ...,n
kxj � lk � Ukyj k2

0 else
:

(
(12)

Given fwijg, the cost function in (11) decouples as the sum of n
cost functions, one per subspace. Since each cost function is
identical to that minimized by standard PCA, the optimal values
for li, Ui, and yj are obtained by applying PCA to each group of
points. The K-subspaces algorithm then proceeds by alternating
between assigning points to subspaces and reestimating the sub-
spaces. Since the number of possible assignments of points to
subspaces is finite, the algorithm is guaranteed to converge to a
local minimum in a finite number of iterations.

The main advantage of K-subspaces is its simplicity since it
alternates between assigning points to subspaces and estimating
the subspaces via PCA. Another advantage is that it can handle
both linear and affine subspaces explicitly. The third advantage
is that it converges to a local optimum in a finite number of

iterations.However,K-subspaces
suffers from a number of draw-
backs. First, its convergence to
the global optimum depends
on a good initialization. If a
random initialization is used,
several restarts are often needed
to find the global optimum. In
practice, one may use any of the

algorithms described in this article to reduce the number of
restarts needed. We refer the reader to [22] and [45] for two addi-
tional initialization methods. Second, K-subspaces is sensitive to
outliers, partly due to the use of the ‘2-norm. This issue can be
addressed using a robust norm, such as the ‘1-norm, as done by
the median K-flat algorithm [15]. However, this results in a more
complex algorithm, which requires solving a robust PCA problem
at each iteration. Alternatively, one can resort to nonlinear mini-
mization techniques, which are only guaranteed to converge to a
local minimum. Third, K-subspaces requires n and fdigni¼1 to be
known beforehand. One possible avenue to be explored is to use
the model-selection criteria for mixtures of subspaces proposed in
[43]. We refer the reader to [45] and [46] for a more detailed analy-
sis of some of the aforementioned issues.

STATISTICAL METHODS
The approaches described so far seek to cluster the data according
tomultiple subspaces usingmostly algebraic and geometric proper-
ties of a union of subspaces. While these approaches can handle
noise in the data, they do not make explicit assumptions about the
distribution of data inside the subspaces or about the distribution of
noise. Therefore, the estimates they provide are not optimal, e.g., in
a maximum likelihood (ML) sense. This issue can be addressed by
defining a proper generativemodel for the data, as described next.

MIXTURE OF PROBABILISTIC PCA
Resorting back to the geometric PCA model (1), probabilistic PCA
(PPCA) [47] assumes that the datawithin a subspaceS is generated as

x ¼ lþ Uyþ �, (13)

where y and � are independent zero-mean Gaussian random vec-
tors with covariance matrices I and r2I, respectively. Therefore,

A VERY SIMPLEWAYOF IMPROVING
THE PERFORMANCE OF ALGEBRAIC
ALGORITHMS IN THE CASE OF NOISY

DATA IS TO USE ITERATIVE
REFINEMENT.
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x is also Gaussian with mean l and covariance matrix
R ¼ UU> þ r2I. It can be shown that the ML estimate of l is
the mean of the data, and ML estimates of U and r can be
obtained from the SVD of the data matrix X.

PPCA can be naturally extended to a generative model for a
union of subspaces [n

i¼1Si by using a mixture of PPCA (MPPCA)
model [16]. Let G(x;l,R) be the probability density function of a
D-dimensional Gaussian with mean l and covariance matrix R.
MPPCA uses a mixture of Gaussians model

p(x) ¼
Xn
i¼1

piG( x;li, UiU>
i þ r2i I),

Xn
i¼1

pi ¼ 1, (14)

where the parameter pi, called the mixing proportion, represents
the a priori probability of drawing
a point from subspace Si . The
ML estimates of the parameters
of this mixture model can be
found using expectation maxi-
mization (EM) [48]. EM is an
iterative procedure that alter-
nates between data segmenta-
tion and model estimation. Specifically, given initial values
(eli, ~Ui, ~ri, ~pi) for the model parameters, in the E-step, the proba-
bility that xj belongs to subspace i is estimated as

~pij ¼ G(xj;li, ~Ui
~U>
i þ ~r2i I)~pi

p(xj)
, (15)

and in the M-step, the ~pijs are used to recompute the subspace
parameters using PPCA. Specifically, pi and li are updated as

~pi ¼ 1
N

XN
j¼1

~pij and eli ¼ 1
N ~pi

XN
j¼1

~pij xj, (16)

and ri and Ui are updated from the SVD of

~Ri ¼ 1
N ~pi

XN
j¼1

~pij(xj � eli)(xj � eli)>: (17)

These two steps are iterated until convergence to a local max-
ima of the log-likelihood. Notice that MPPCA can be seen as a
probabilistic version of K-subspaces that uses soft assignments
pij 2 ½0; 1	 rather than hard assignments wij ¼ f0; 1g.

As in the case of K-subspaces, the main advantage of
MPPCA is that it is a simple and intuitive method, where each
iteration can be computed in closed form by using PPCA. More-
over, the MPPCA model is applicable to both linear and affine
subspaces and can be extended to accommodate outliers [49]
and missing entries in the data points [50]. However, an impor-
tant drawback of MPPCA is that the number and dimensions of
the subspaces need to be known beforehand. One way to
address this issue is to put a prior on these parameters, as
shown in [51]. A second drawback is that MPPCA is not optimal
when the data inside each subspace or the noise is not Gaussian.

A third drawback is that MPPCA often converges to a local
maximum; hence, a good initialization is critical. The initiali-
zation problem can be addressed by using any of the methods
described earlier for K-subspaces. For example, the multistage
learning (MSL) algorithm [17] uses the factorization method of
[8] followed by the agglomerative refinement steps of [33] and
[36] for initialization.

AGGLOMERATIVE LOSSY COMPRESSION
The agglomerative lossy compression (ALC) algorithm [18]
assumes that the data are drawn from amixture of degenerate Gaus-
sians. However, unlike MPPCA, ALC does not aim to obtain an ML
estimate of the parameters of the mixture model. Instead, it looks
for the segmentation of the data that minimizes the coding length

needed to fit the points with a
mixture of degenerate Gaussians
up to a given distortion.

Specifically, the number of
bits needed to optimally code N
independent identically distrib-
uted (i.i.d.) samples from a zero-
mean D-dimensional Gaussian,

i.e., X 2 RD3N , up to a distortion d can be approximated as
½(N þ D)=2	 log2 det (I þ (D=d2N)XX>). Thus, the total number
of bits for coding amixture of Gaussians can be approximated as

Xn
i¼1

Ni þ D
2

log2 det I þ D

d2Ni
XiX>

i

� �
� Ni log2

Ni

N

� �
, (18)

where Xi 2 RD3Ni is the data from subspace i, and the last term
is the number of bits needed to code (losslessly) the membership
of the N samples to the n groups.

The minimization of (18) over all possible segmentations of
the data is, in general, an intractable problem. ALC deals with
this issue by using an agglomerative clustering method. Ini-
tially, each data point is considered as a separate group. At each
iteration, two groups are merged if doing so results in the great-
est decrease of the coding length. The algorithm terminates
when the coding length cannot be further decreased. Similar
agglomerative techniques have been used [52], [53], though
with a different criterion for merging subspaces.

ALC can naturally handle noise and outliers in the data. Specif-
ically, it is shown in [18] that outliers tend to cluster either as a
single group or as small separate groups depending on the dimen-
sion of the ambient space. Also, in principle, ALC does not need to
know the number of subspaces and their dimensions. In practice,
however, the number of subspaces is directly related to the param-
eter d. When d is chosen to be very large, all the points could be
merged into a single group. Conversely, when d is very small, each
point could end up as a separate group. Since d is related to the
variance of the noise, one can use statistics on the data to deter-
mine d (see [22] and [33] for possible methods). When the number
of subspaces is known, one can run ALC for several values of d, dis-
card the values of d that give the wrong number of subspaces, and
choose the d that results in the segmentation with the smallest

AN IMPORTANT DRAWBACK OF
MPPCA IS THAT THE NUMBER AND
DIMENSIONS OF THE SUBSPACES

NEED TO BE KNOWN BEFOREHAND.
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coding length. This typically increases the computational
complexity of the method. Another disadvantage of ALC, perhaps
the major one, is that there is no theoretical proof for the opti-
mality of the agglomerative procedure.

RANDOM SAMPLE CONSENSUS
Random sample consensus (RANSAC) [54] is a statistical method
for fitting a model to a cloud of points corrupted with outliers in a
statistically robust way. More specifically, if d is the minimum
number of points required to fit a model to the data, RANSAC ran-
domly samples d points from the data, fits a model to these d
points, computes the residual of each data point to this model,
and chooses the points whose residual is below a threshold as the
inliers. The procedure is then repeated for d sample points, until
the number of inliers is above a
threshold, or enough samples
have been drawn. The outputs
of the algorithm are the param-
eters of the model and the
labeling of inliers and outliers.

In the case of clustering sub-
spaces of equal dimension d,
the model to be fit by RANSAC
is a subspace of dimension d. Since there are multiple subspaces,
RANSAC proceeds in a greedy fashion by fitting one subspace at a
time as follows:

1) Apply RANSAC to the original data set and recover a basis
for the first subspace along with the set of inliers. All points in
other subspaces are considered as outliers to the first subspace.
2) Remove the inliers from the current data set and repeat
Step 1 to find the second subspace and so on until all the
subspaces are recovered.
3) For each set of inliers, use PCA to find an optimal basis
for each subspace. Segment the data into multiple subspa-
ces by assigning each point to its closest subspace.
The main advantage of RANSAC is its ability to handle out-

liers explicitly. Also, notice that RANSAC does not require the
subspaces to be independent, because it computes one subspace
at a time. Moreover, RANSAC does not need to know the number
of subspaces beforehand. In practice, however, determining the
number of subspaces depends on the user-defined thresholds.
An important drawback of RANSAC is that its performance dete-
riorates quickly as the number of subspaces n increases, because
the probability of drawing d inliers reduces exponentially with
the number of subspaces. Therefore, the number of trials needed
to find d points in the same subspace grows exponentially with
the number and dimension of the subspaces. As shown in [55],
this issue can be addressed by introducing a nonuniform prior
in the sampling strategy so that points in the same subspace are
more likely to be chosen than points in different subspaces.
Another critical drawback of RANSAC is that it requires the
dimension of the subspaces to be known and equal. In the case
of subspaces of different dimensions, one could start from the
largest to the smallest dimension or vice versa. However, those
procedures suffer from a number of issues, as discussed in [20].

SPECTRAL CLUSTERING-BASED METHODS
Spectral clustering algorithms (see [56] for a review) are a very
popular technique for clustering high-dimensional data. These
algorithms construct an affinity matrix A 2 RN 3N , whose
(j, k)th entry measures the similarity between points j and k.
Ideally, Ajk ¼ 1 if points j and k are in the same group and
Ajk ¼ 0 if points j and k are in a different group. A typical
measure of similarity is Ajk ¼ exp (� dist2jk), where distjk is
some distance between points j and k. Given A, the segmenta-
tion of the data is obtained by applying the K-means algorithm to
the eigenvectors of a matrix L 2 RN 3N formed from A. Specifi-
cally, if fU jgNj¼1 are the eigenvectors of L, then n � N eigenvec-
tors are chosen and stacked into a matrix V 2 RN 3 n. The
K-means algorithm is then applied to the rows of V . Typical

choices for L are the affinity
matrix itself, L ¼ A, the Lapla-
cian, L ¼ diag(A1)� A, where
1 is the vector of all ones, and the
normalized Laplacian, Lsym ¼
I � diag(A1)�1=2Adiag(A1)�1=2.
Typical choices for the eigen-
vectors are the top n eigenvec-
tors of the affinity or the bottom

n eigenvectors of the (normalized) Laplacian, where n is the num-
ber of groups.

One of the main challenges in applying spectral clustering to
the subspace clustering problem is to define a good affinity matrix.
This is because two points could be very close to each other but lie
in different subspaces (e.g., near the intersection of two subspa-
ces). Conversely, two points could be far from each other but lie
in the same subspace. As a consequence, one cannot use the
typical distance-based affinity.

In what follows, we review some of the methods for building
a pairwise affinity for points lying in multiple subspaces. The
first two methods (factorization and GPCA) are designed for lin-
ear subspaces, though they can be applied to affine subspaces by
modifying the affinity or using homogeneous coordinates. The
remaining methods can handle either linear or affine subspaces.

FACTORIZATION-BASED AFFINITY
Interestingly, one of the first subspace clustering algorithms is
based on both matrix factorization and spectral clustering.
Specifically, the algorithm of Boult and Brown [7] obtains the
segmentation of the data from the eigenvectors of the matrix
Q ¼ VV> in (6). Since these eigenvectors are the singular vec-
tors of X, the segmentation is obtained by clustering the rows of
V. However, recall that the affinity Ajk ¼ Qjk has a number of
issues. First, it is not necessarily the case that Ajk 
 1 when points
i and j are in the same subspace. Second, the equation Qjk ¼ 0 is
sensitive to noise, and it is valid only for independent subspaces.

GPCA-BASED AFFINITY
As noticed in [2] and [57], the GPCA algorithm can also be used
to define an affinity between two points. Specifically, recall that
an estimate Ŝj of the subspace passing through the point xj can

RANDOM SAMPLE CONSENSUS IS A
STATISTICALMETHOD FOR FITTING A

MODEL TO A CLOUDOF POINTS
CORRUPTEDWITH OUTLIERS IN A
STATISTICALLY ROBUSTWAY.
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be obtained from the derivatives of the polynomials p(x) at xj.
Let hmjk be the mth principal angle between Ŝj and Ŝk, for
j; k ¼ 1; . . . ,N . One can use these angles to define an affinity as

Ajk ¼
Ymin (dj , dk)

m¼1

cos2(hmjk): (19)

Notice that this affinity is applicable only to linear subspaces,
because it only captures the similarity between the subspace
bases. To see this, notice that when two affine subspaces are par-
allel to each other, all their principal angles are equal to zero;
hence, Ajk is equal to one not only for points j and k in the same
subspace, but also for points j and k in two different subspaces.
Therefore, in the case of data drawn from affine subspaces, Ajk
needs to be modified to also incorporate an appropriate distance
between points j and k. We will discuss ways to do this in the
next paragraph. Given a pairwise affinity, GPCA finds the seg-
mentation of the data by applying spectral clustering to the nor-
malized Laplacian.

LOCAL SUBSPACE AFFINITY
AND SPECTRAL LOCAL BEST-FIT FLATS
The local subspace affinity (LSA) [21] and spectral local best-fit flats
(SLBF) [22] algorithms are based on the observation that a point
and its nearest neighbors (NNs) often belong to the same subspace.
Therefore, we can fit an affine subspace Ŝj to each point j and its d-
NNs using, e.g., PCA. In practice, we can chooseK � d NNs; hence,
d does not need to be known exactly: we only need an upper bound.

Then, if two points j and k lie in the same subspace Si, their
locally estimated subspaces Ŝj and Ŝk should be the same, while
if the two points lie in different subspaces, Ŝj and Ŝk should be
different. Therefore, we can use a distance between Ŝj and Ŝk to
define an affinity between the two points.

The first (optional) step of the LSA and SLBF algorithms is
to project the data points onto a subspace of dimension r ¼
rank(X) using the SVD of X. With noisy data, the value of r is
determined using model-selection techniques. In the case of
data drawn from linear subspaces, the LSA algorithm projects
the resulting points inRr onto the hypersphereSr�1.

The second step is to compute the K-NNs of each point j
and to fit a local affine subspace Ŝj to the point and its neigh-
bors. LSA assumes that K is specified by the user and finds
K-NN using the angle between the two data points or as a
metric. PCA is then used to fit the local subspace Ŝj. The sub-
space dimension dj is then determined using model-selection
techniques. SLBF determines both the number of neighbors Kj

and the subspace Ŝj for each point j automatically. It does so by
searching for the smallest value of Kj that minimizes a certain
fitting error.

The third step of LSA is to compute an affinity matrix as

Ajk ¼ exp �
Xmin (dj , dk)

m¼1

sin2(hmjk)

" #
, (20)

where hmjk is the mth principal angle between the estimated
subspaces Ŝj and Ŝk. As in the case of the GPCA-based affinity in
(19), the affinity in (20) is applicable only to linear subspaces.
SLBF addresses this issue by using the affinity

Ajk ¼ exp (� d̂jk=2r2j )þ exp (� d̂jk=2r2k), (21)

where rj measures how well point j and its Kj-NNs are fit by Ŝj,

d̂jk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dist(xj, Ŝk)dist(xk, Ŝj)

q
, and dist(x; S) is the Euclidean

distance from point x to subspace S. Notice that this affinity uses
the distance from points to subspaces; thus, it is applicable to
both linear and affine subspaces. Given a pairwise affinity, LSA
and SLBF find the segmentation of the data by applying spectral
clustering to the normalized Laplacian.

The LSA and SLBF algorithms have two main advantages
when compared with GPCA. First, outliers are likely to be rejected,
because they are far from all the points, and so they are not con-
sidered as neighbors of the inliers. Second, LSA requires only
O(ndmax) data points, while GPCA needs O(Mnðdmax þ 1)Þ. On
the other hand, LSA has two main drawbacks. First, the neigh-
bors of a point could belong to a different subspace. This is more
likely to happen near the intersection of two subspaces. Second,
the selected neighbors may not span the underlying subspace.
Thus, K needs to be small enough so that only points in the
same subspace are chosen and large enough so that the neigh-
bors span the local subspace. SLBF resolves these issues by
choosing the size of the neighborhood automatically.

Notice also that both GPCA and LSA are based on a linear pro-
jection followed by spectral clustering. While in principle both
algorithms can use any linear projection, GPCA prefers to use the
smallest possible dimension r ¼ dmax þ 1, so as to reduce the
computational complexity. On the other hand, LSA uses a slightly
larger dimension r ¼ rank(X)� P di. This is because if the
dimension of the projection is too small [less than rank(X)], the
projected subspaces become dependent. While in theory, LSA
can handle both independent and dependent subspaces, the
projection increases the dimension of the intersection of two
subspaces; hence, many of the data points could be projected
close to the intersection. As a consequence, LSA does not per-
form as well with dependent subspaces, as the experiments will
show. Another major difference between LSA and GPCA is that
LSA fits a subspace locally around each projected point, while
GPCA uses the gradient of a polynomial that is globally fit to the
projected data.

LOCALLY LINEAR MANIFOLD CLUSTERING
The locally linear manifold clustering (LLMC) algorithm [23] is
also based on fitting a local subspace to a point and its K-NNs.
Specifically, every point j is written as an affine combination of
all other points k 6¼ j. The coefficients wjk are found in closed
form by minimizing the costXN

j¼1

k xj �
X
k6¼j

wjk xk k2 ¼k (I �W )X> k2F , (22)

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE   [60]   MARCH 2011

where Xk k2F¼
P

Xi
2
J is the Frobenius norm of X, subject toP

k6¼j wjk ¼ 1 and wjk ¼ 0 if xk is not a K-NN of xj. Then, the
affinity matrix and the matrix L are built as

A ¼ W þW>� W>W and L ¼ (I �W )>(I �W ): (23)

It is shown in [23] that when every point and its K-NNs are
always in the same subspace, then there are vectors v in the null
space of L with the property that vj ¼ vk when points j and k are
in the same subspace. However,
these vectors are not the only
vectors in the null space of L;
hence, spectral clustering is not
directly applicable. In this case, a
procedure for properly selecting
linear combinations of the eigen-
vectors of L is needed, as dis-
cussed in [23].

A first advantage of LLMC is its robustness to outliers. This is
because, as in the case of LSA and SLBF, outliers are often far
from the inliers, hence it is unlikely that they are chosen as
neighbors of the inliers. Another important advantage of LLMC
is that it is also applicable to nonlinear subspaces, while all the
other methods discussed so far are only applicable to linear (or
affine) subspaces. However, LLMC suffers from the same disad-
vantage of LSA, namely, that it has problems with points near
the intersections, because it is not always the case that a point and
its K-NNs are in the same subspace. Also, properly choosing the
number of NNs is a challenge. These issues could be resolved by
choosing the neighborhood automatically, as done by SLBF.
Finally, even though, in theory, LLMC can handle both de-
pendent and independent subspaces, in practice, it does not
perform as well with dependent subspaces for the same rea-
sons as for LSA.

SPARSE SUBSPACE CLUSTERING
Sparse subspace clustering (SSC) [24], [25] is also based on the
idea of writing a data point as a linear or affine combination of
neighboring data points. However, while LSA, SLBF, and LLMC
use the angular or Euclidean distance between two points to
choose the K-NNs, SSC uses the principle of sparsity to choose
any of the remaining data points (N � 1 � K) as a possible
neighbor. Specifically, SSC relies on the fact that a point in a lin-
ear or affine subspace of dimension d can always be written as a
linear or affine combination of d or d þ 1 data points in the
same subspace. Therefore, if we write a data point xj 2 Si as a
linear or affine combination of all other N � 1 data points
fxkgk6¼j drawn from [n

i¼1Si with di ¼ dim (Si), then a sparse lin-
ear or affine combination can be obtained by choosing di or
di þ 1 nonzero coefficients corresponding to points from Si.
This sparse linear or affine combination xj ¼

P
k6¼j wjkxk can be

found by minimizing the number of nonzero coefficients wjk,
subject to

P
wjk ¼ 1 in the case of affine subspaces. Since this

problem is combinatorial, the SSC algorithm solves the follow-
ing simpler ‘1 optimization problem instead

min
fwjkg

X
k 6¼j

jwjkj s:t: xj ¼
X
k 6¼j

wjk xk

�
and

X
k 6¼j

wjk ¼ 1
�
: (24)

It is shown in [24] and [25] that, when the subspaces are
either independent or disjoint, the solution to the optimization
problem in (24) is such that wjk ¼ 0 only if points j and k are in
different subspaces. In other words, a sparse representation is
obtained, where each point is written as a linear or affine combi-
nation of a few points in its own subspace.

In the case of data contami-
nated by noise, the SSC algo-
rithm does not attempt to write
a data point as an exact linear
or affine combination of other
points. Instead, a penalty in the
‘2-norm of the error is added
to the ‘1 norm. Specifically, the
sparse coefficients are found

by solving the problem

min
fwjkg

X
k6¼j

jwjkjþk k xj�
X
k6¼j

wjk xk k2
�
s:t :
X
k 6¼j

wjk ¼ 1
�
, (25)

where k40 is a parameter. Obviously, different solutions for
fwjkg will be obtained for different choices of the parameter k.
However, we are not interested in the specific values of wjk: all
what matters is that, for each point j, the top nonzero coeffi-
cients come from points in the same subspace.

In the case of data contaminated with outliers, the SSC algo-
rithm assumes that xj ¼

P
k 6¼j wjkxk þ ej, where the vector of

outliers ej is also sparse. The sparse coefficients and the outliers
are found by solving the problem

min
fwjkg, fejg

X
k 6¼j

jwjkjþ k ej k1 þk k xj �
X
k6¼j

wjk xk � ej k2 (26)

subject to
P

k6¼j wjk ¼ 1 in the case of affine subspaces.
Given a sparse representation for each data point, the pair-

wise affinity matrix is defined as

A ¼ jW j þ jW>j: (27)

The segmentation is then obtained by applying spectral cluster-
ing to the Laplacian.

The SSC algorithm presents several advantages with respect
to all the algorithms discussed so far. With respect to factoriza-
tion-based methods, the affinity in (27) is very robust to noise.
This is because the solution changes continuously with the
amount of noise. Specifically, with moderate amounts of noise,
the top nonzero coefficients will still correspond to points in the
same subspace. With larger amounts of noise, some of the non-
zero coefficients will come from other subspaces. These mis-
takes can be handled by spectral clustering, which is also robust
to noise (see [56]). With respect to GPCA, SSC is more robust to
outliers because, as in the case of LSA, SLBF, and LLMC, it is

SSC RELIES ON THE FACT THAT A
POINT IN A LINEAR OR AFFINE

SUBSPACE OF DIMENSION D CAN
ALWAYS BEWRITTEN AS A LINEAR OF
AFFINE COMBINATION OF DOR Dþ 1

DATA IN THE SAME SUBSPACE.
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very unlikely that a point in a subspace will write itself as a lin-
ear combination of a point that is very far from all of the subspa-
ces. Also, the computational complexity of SSC does not grow
exponentially with the number of subspaces and their dimen-
sions. Nonetheless, it requires solving N optimization problems
in O(N) variables, as per (24), (25), or (26), hence, it can be slow.
With respect to LSA and LLMC, the great advantage of SSC is
that the neighbors of a point are automatically chosen, without
having to specify the value of K . Moreover, the dimension of the
individual subspaces does not need to be known beforehand and
can be estimated from the number of nonzero coefficients. More
importantly, the SSC algorithm is provably correct for independ-
ent [24] and disjoint [25] subspaces; hence, its performance is not
affected when the NNs of a point (in the traditional sense) do not
come from the same subspace containing that point. Another
advantage of SSC over GPCA is that it does not require the data to
be projected onto a low-dimensional subspace. A possible disad-
vantage of SSC is that it is provably correct only in the case of
independent or disjoint subspaces. However, the experiments will
show that SSC performs well also for dependent subspaces.

LOW-RANK REPRESENTATION
This algorithm [26] is very similar to SSC, except that it aims to
find a low-rank representation (LRR) instead of a sparse repre-
sentation. Before explaining the connection further, let us first
rewrite the SSC algorithm in a matrix form. Specifically, recall
that SSC requires solvingN optimization problems in O(N) varia-
bles, as per (24). TheseN optimization problems can be written as
a single optimization problem in O(N2) variables as

min
fwjkg

XN
j¼1

X
k 6¼j

jwjkj s:t: xj ¼
X
k6¼j

wjk xk

�
and

X
k6¼j

wjk ¼ 1
�
: (28)

This problem can be rewritten in matrix form as

min
W

k W k1 s:t: X ¼ XW>, diag(W ) ¼ 0 (and W1 ¼ 1): (29)

Similarly, in the case of data contaminated with noise, the N
optimization problems in (25) can be written as

min
W ,E

k W k1 þk k E k2F
s:t: X ¼ XW> þ E, diag(W ) ¼ 0 (and W1 ¼ 1): (30)

The LRR algorithm aims to minimize rank(W ) instead of
k W k1. Since this rank-minimization problem is nondeterministic
polynomial (NP) time hard, the authors replace the rank ofW by its
nuclear norm k W k�¼

P
ri(W ), where ri(W ) is the ith singular

value ofW . In the case of noise-free data drawn from linear (affine)
subspaces, this leads to the following (convex) optimization problem

min
W

k W k� s:t: X ¼ XW> (and W1 ¼ 1): (31)

It can be shown that when the data are noise free and drawn
from independent linear subspaces, the optimal solution to (31)
is given by the matrix Q of the Costeira and Kanade algorithm,

as defined in (5). Recall from (6) that this matrix is such that
Qjk ¼ 0 when points j and k are in different subspaces, hence it
can be used to build an affinity matrix.

In the case of data contaminated with noise or outliers, the
LRR algorithm solves the (convex) optimization problem

min
W

k W k� þk k E k2, 1 s:t: X ¼ XW> þ E (and W1 ¼ 1),

(32)

where k E k2;1¼
PN

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1 jEjkj2

q
is the ‘2;1 norm of the

matrix of errors E. Notice that this problem is analogous to (30),
except that the ‘1 and Frobenius norms are replaced by the
nuclear and ‘2;1 norms, respectively.

The LRR algorithm proceeds by solving the optimization
problem in (32) using an augmented Lagrangian method. The
optimal W is used to define an affinity matrix A as in (27). The
segmentation of the data is then obtained by applying spectral
clustering to the normalized Laplacian.

One of the main attractions of LRR is that it provides a theo-
retical justification for the Costeira and Kanade algorithm. A
second advantage is that, similarly to SSC, the optimization
problem is convex. One drawback of LLR is that it is provably
correct only in the case of noiseless data drawn from independ-
ent subspaces. Another drawback is that the optimization prob-
lem involves O(N2) variables.

SPECTRAL CURVATURE CLUSTERING
The methods discussed so far choose a data point plus d NNs
(LSA, SLBF, LLMC) or d sparse neighbors (SSC), fit an affine
subspace to each of these N groups of d þ 1 points, and build a
pairwise affinity by comparing these subspaces. In contrast,
multiway clustering techniques such as [27], [58], and [59]
are based on the observation that a minimum of d þ 1 points
are needed to define an affine subspace of dimension d (d for
linear subspaces). Therefore, they consider d þ 2 points, build
a measure of how likely these points are to belong to the same
subspace, and use this measure to construct an affinity between
two points.

Specifically, let Xdþ2 ¼ fxj‘gdþ2
j¼1 be d þ 2 randomly chosen

data points. One possible affinity is the volume of the (d þ 1)-
simplex formed by these points, vol(Xdþ2), which is equal to
zero if the points are in the same subspace. However, one
issue with this affinity is that it is not invariant to data trans-
formations, e.g., scaling of the d þ 2 points. The spectral
curvature clustering (SCC) algorithm [27] is based on the
concept of polar curvature, which is also zero when the points
are in the same subspace. The multiway affinity Aj1, j2, ..., jdþ2

is defined as

exp � 1
2r2

diam2(Xdþ2)
Xdþ2

‘¼1

(d þ 1)!2vol2(Xdþ2)Q
m6¼‘

1�m�dþ2 k xjm� xj‘ k2

0@ 1A (33)

if j1, j2, . . . , jdþ2 are distinct and zero otherwise, where
diam(Xdþ2) is the diameter of Xdþ2. Notice that this affinity is
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invariant to scaling of the data points while the volume is not.
A pairwise affinity matrix is then defined as

Ajk ¼
X

j2, ..., jdþ12f1, ...,Ng
Aj, j2, ..., jdþ2Ak, j2, ..., jdþ2

: (34)

This requires computing O(Ndþ2) entries ofA and summing
over O(Ndþ1) elements of A. Therefore, the computational
complexity of SCC grows expo-
nentially with the dimension
of the subspaces. A practical
implementation of SCC uses
a fixed number c of (d þ 1)-
tuples (c � Ndþ1) for each point
to build the affinity A. A choice
of c 
 c0ndþ2 is suggested in
[27], which is much smaller but still exponential in d. In practice,
the method appears to be not too sensitive to the choice of c but
more importantly to how the d þ 1 points are chosen. Reference
[27] argues that a uniform sampling strategy does not performwell,
because many samples could contain subspaces of different dimen-
sions. To avoid this, two stages of sampling are performed. The first
stage is used to obtain an initial clustering of the data. In the second
stage, the initial clusters are used to guide the sampling and thus
obtain a better affinity. Given A, the segmentation is obtained by
applying spectral clustering to the normalized Laplacian. One dif-
ference of SCC with respect to the previous methods is that SCC
uses a procedure for initializingK-means based onmaximizing the
variance among all possible combinations ofK rows of V .

One advantage of SCC (and also of SSC) over LSA, SLBF, and
LLMC is that it uses points from the entire data set to define the
affinity between two points, while LSA, SLBF, and LLMC restrict
themselves to K-NNs. This ultimately results in better affinities
because it is less likely that they are built using points from different
subspaces. One advantage of SCC over factorization-based methods
and GPCA is that it can handle noisy data drawn from both linear
and affine subspaces. Another advantage of SCC over GPCA is that it
does not require the data to be projected onto a low-dimensional
subspace. Also, when the data are sampled from a mixture of distri-
butions concentrated around multiple affine subspaces, SCC per-
forms well with overwhelming probability, as shown in [60]. Finally,
SCC can be extended to nonlinear manifolds by using kernel meth-
ods [61]. However, the main drawbacks of SCC are that it requires
sampling of the affinities to reduce the computational complexity
and that it requires the subspaces to be of known and equal dimen-
sion d. In practice, the algorithm can still be applied to subspaces of
different dimensions by choosing d ¼ dmax, but the effect of this
choice on the definition of spectral curvature remains unknown.

APPLICATIONS IN COMPUTER VISION

MOTION SEGMENTATION FROM
FEATURE POINT TRAJECTORIES
Motion segmentation refers to the problem of separating a
video sequence into multiple spatiotemporal regions corre-
sponding to different rigid-body motions. Most existing motion

segmentation algorithms proceed by first extracting a set of
point trajectories from the video using standard tracking meth-
ods. As a consequence, the motion segmentation problem is
reduced to clustering these point trajectories according to the
different rigid-body motions in the scene.

The mathematical models needed to describe the motion of
the point trajectories vary depending on the type of camera

projection model. Under the
affine model, all the trajectories
associated with a single rigid
motion live in a three-dimen-
sional (3-D) affine subspace.
To see this, let fxfj 2 R2gf¼1;..., F

j¼1;...,N
denote the two-dimensional
(2-D) projections ofN 3-D points

fXj 2 R3gNj¼1 on a rigidly moving object onto F frames of a mov-
ing camera. The relationship between the tracked feature points
and their corresponding 3-D coordinates is

xfj ¼ Af
Xj

1

� �
, (35)

where Af 2 R23 4 is the affine motion matrix at frame f . If we
form a matrix containing all the F tracked feature points corre-
sponding to a point on the object in a column, we get

x11 � � � x1N
..
. ..

.

xF1 � � � xFN

264
375
2F3N

¼
A1
..
.

AF

264
375
2F3 4

X1 � � �XN

1 � � � 1
� �

43N
: (36)

We can briefly write this as W ¼ MS>, where M 2 R2F3 4 is
called the motion matrix and S 2 RN 3 4 is called the structure
matrix. Since rank(M)�4 and rank(S)�4 we get

rank(W ) ¼ rank(MS>)� min (rank(M), rank(S))� 4: (37)

Moreover, since the last row of S> is one, the feature point tra-
jectories of a single rigid-body motion lie in an affine subspace
ofR2F of dimension at most three.

Assume now that we are given N trajectories of n rigidly
moving objects. Then, these trajectories lie in a union of n affine
subspaces in R2F . The 3-D motion segmentation problem is the
task of clustering these N trajectories into n different groups
such that the trajectories in the same group represent a single
rigid-body motion. Therefore, the motion segmentation problem
reduces to clustering a collection of point trajectories according
tomultiple affine subspaces.

In what follows, we evaluate a number of subspace clustering
algorithms on the Hopkins155 motion segmentation database,
which is available online at http://www.vision.jhu.edu/data/
hopkins155 [57]. The database consists of 155 sequences of two
and three motions, which can be divided into three main catego-
ries: checkerboard, traffic, and articulated sequences. The checker-
board sequences contain multiple objects moving independently
and arbitrarily in 3-D space, hence the motion trajectories are

ONE ADVANTAGE OF SCC OVER
FACTORIZATION-BASEDMETHODS
AND GPCA IS THAT IT CAN HANDLE
NOISY DATA DRAWN FROM BOTH
LINEAR AND AFFINE SUBSPACES.
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expected to lie in independent affine subspaces of dimension
three. The traffic sequences contain cars moving independ-
ently on the ground plane, hence the motion trajectories are ex-
pected to lie in independent affine subspaces of dimension two.
The articulated sequences contain motions of people, cranes, etc.,
where object parts do not move independently, and so the motion
subspaces are expected to be dependent. For each sequence, the
trajectories are extracted auto-
matically with a tracker and
outliers are manually removed.
Therefore, the trajectories are
corrupted by noise but do not
have missing entries or outliers.
Figure 2 shows sample images
from videos in the database with
the feature points superimposed.

Tomake our results comparable to those in the existing liter-
ature, for each method we apply the same preprocessing steps
described in their respective articles. Specifically, we project the
trajectories onto a subspace of dimension r � 2F using either
PCA (GPCA, RANSAC, LLMC, LSA, ALC, and SCC) or a random
projection matrix (SSC) whose entries are drawn from a Ber-
noulli (SSC-B) or normal (SSC-N) distribution. Historically,
there have been two choices for the dimension of the projection:
r ¼ 5 and r ¼ 4n. These choices are motivated by algebraic
methods, which model 3-D affine subspaces as four-dimensional
(4-D) linear subspaces. Since dmax ¼ 4, GPCA chooses r ¼
dmax þ 1 ¼ 5, while factorization methods use the fact that for
independent subspaces r ¼ rank(X) ¼ 4n. In our experiments,

we use r ¼ 5 for GPCA and RANSAC and r ¼ 4n for GPCA,
LLMC, LSA, SCC, and SSC. For ALC, r is chosen automati-
cally for each sequence as the minimum r such that
r � 8 log (2F=r). We will refer to this choice as the sparsity pre-
serving (sp) projection. We refer the reader to [62] for more
recent work that determines the dimension of the projec-
tion automatically. Also, for the algorithms that make use of

K-means, either a single re-
start is used when initialized
by another algorithm (LLMC,
SCC), or ten restarts are used
when initialized at random
(GPCA, LLMC, LSA). SSC uses
20 restarts.

For each algorithm and
each sequence, we record the

classification error defined as

Classification error ¼ number of misclassified points
total number of points3 100%

: (38)

Table 1 reports the average and median misclassification
errors, and Figure 3 shows the percentage of sequences for which
the classification error is below a given percentage of misclassifi-
cation. More detailed statistics with the classification errors and
computation times of each algorithm on each of the 155 sequen-
ces can be found at http://www.vision.jhu.edu/data/hopkins155/.

By looking at the results, we can draw the following conclu-
sions about the performance of the algorithms tested.

(a) (b) (c)

(d) (e) (f)

[FIG2] Sample images from some sequences in the database with tracked points superimposed: (a) 1R2RCT_B, (b) 2T3RCRT, (c) cars3,
(d) cars10, (e) people2, and (f) kanatani3.

MOTION SEGMENTATION REFERS TO
THE PROBLEMOF SEPARATING A
VIDEO SEQUENCE INTOMULTIPLE

SPATIOTEMPORAL REGIONS
CORRESPONDING TO DIFFERENT

RIGID-BODYMOTIONS.
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GPCA
To avoid using multiple polynomials, we use an
implementation of GPCA based on hyperplanes in
which the data are interpreted as a subspace of
dimension r � 1 inRr, where r ¼ 5 or r ¼ 4n.

For two motions, GPCA achieves a classifica-
tion error of 4.59% for r ¼ 5 and 4.10% for r ¼ 4n.
Notice that GPCA is among the most accurate meth-
ods for the traffic and articulated sequences, which
are sequences with dependent motion subspaces.
However, GPCA has higher errors on the checker-
board sequences, which constitute a majority of the
database. This result is expected because GPCA is
best designed for dependent subspaces. Notice also
that increasing r from 5 to 4n improves the results
for checkerboard sequences but not for the traffic
and articulated sequences. This is also expected
because the rank of the data matrix should be high
for sequences with full-dimensional and independ-
ent motions (checkerboard) and low for sequences
with degenerate (traffic) and dependent (articulated)
motions. This suggests that using model selection to
determine a different value of r for each sequence
should improve the results.

For three motions, the results are completely dif-
ferent with a segmentation error of 29–37%. This is
expected because the number of coefficients fitted
by GPCA grows exponentially with the number of
motions, while the number of feature points remains
of the same order. Furthermore, GPCA uses a least-
squares method for fitting the polynomial, which
neglects nonlinear constraints among the coefficients.
The number of nonlinear constraints neglected also
increases with the number of subspaces.

RANSAC
The results for this purely statistical algorithm are
similar to what we found for GPCA. In the case of
two motions, the results are a bit worse than those
of GPCA. In the case of three motions, the results
are better than those of GPCA but still quite far from
those of the best-performing algorithms. This is
expected because, as the number of motions increases,
the probability of drawing a set of points from the
same group reduces significantly. Another drawback
of RANSAC is that its performance varies between
two runs on the same data. Our experiments report
the average performance by more than 1,000 trials
for each sequence.

LSA
When the dimension of the projection is chosen as
r ¼ 5, this algorithm performs worse than GPCA.
This is because the points in different subspaces are
closer to each other when r ¼ 5, and so a point from
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a different subspace is more likely to be chosen as an NN. GPCA,
on the other hand, is not affected by points near the intersection
of the subspaces. The situation is completely different when
r ¼ 4n. In this case, LSA clearly outperforms GPCA and RAN-
SAC, achieving an error of 3.45% for two groups and 9.73% for
three groups. These errors could be further reduced by using
model selection to determine the dimension of each subspace.
Another important thing to observe is that LSA performs better on
the checkerboard sequences, but has larger errors than GPCA
on the traffic and articulated sequences. This confirms that LSA
has difficulties with dependent subspaces.

LLMC
The results of this algorithm also represent a clear improvement
over GPCA and RANSAC, especially for three motions. The only
cases where GPCA outperforms LLMC are for traffic and articu-
lated sequences. This is expected because LLMC is not designed
to handle dependent subspaces. Unlike LSA, LLMC is not sig-
nificantly affected by the choice of r, with a classification error
of 5:15% for r ¼ 5 and 4:97% for r ¼ 4n. Notice also that the
performance of LLMC improves when initialized with GPCA to
4:87% for r ¼ 5 and 4:37% for r ¼ 4n. However, there are a
few sequences for which LLMC performs worse than GPCA
even when LLMC is initialized by GPCA. This happens for
sequences with dependent motions, which are not well handled
by LLMC.

MSL
By looking at the average classification error, we can see that
MSL, LSA, and LLMC have a similar accuracy. Furthermore,
their segmentation results remain consistent when going from
two to three motions.

However, sometimes the MSL method gets stuck in a local
minimum. This is reflected by high classification errors for
some sequences, as can be seen by the long tails in Figure 3.

ALC
This algorithm represents a significant increase in perform-
ance with respect to all previous algorithms, especially for the
checkerboard sequences, which constitute the majority of
the database. However, ALC does not perform very well on the
articulated sequences. This is because ALC typically needs the
samples from a group to cover the subspace with sufficient
density, while many of the articulated scenes have very few fea-
ture point trajectories. With regard to the projection dimen-
sion, the results indicate that, overall, ALC performs better
with an automatic choice of the projection rather than with a
fixed choice of r ¼ 5. One drawback of ALC is that it needs to be
run about 100 times for different choices of the distortion
parameter d to obtain the right number of motions and the best
segmentation results.

SCC
This algorithm performs even better than ALC in almost all
motion categories. The only exception is for the articulated

sequences with three motions. This is because these sequences
contain few trajectories for the sampling strategy to operate cor-
rectly. Another advantage of SCC with respect to ALC is that it is
not very sensitive to the choice of the parameter c (number of
sampled subsets), while ALC needs to be run for several choices
of the distortion parameter d. Notice also that the performance
of SCC is not significantly affected by the dimension of the pro-
jection r ¼ 5, r ¼ 4n, or r ¼ 2F.

SSC
This algorithm performs extremely well not only for checker-
board sequences, which have independent and fully dimensional
motion subspaces, but also for traffic and articulated sequences,
which are the bottleneck of almost all existing methods, because
they contain degenerate and dependent motion subspaces. This
is surprising because the algorithm is provably correct only for
independent or disjoint subspaces. Overall, the performance of
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[FIG3] Percentage of sequences for which the classification
error is less than or equal to a given percentage of
misclassification. The algorithms tested are GPCA (4,5),
RANSAC (4,5), LSA (4,4n), LLMC (4,4n), MSL, ALC (4,sp), SCC
(4,4n), and SSC-N (4,4n). (a) Twomotions. (b) Three motions.
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SSC is not very sensitive to the choice of the projection (Bernoulli
versus normal), though SSC-N gives slightly better results. We
have also observed that SSC is not sensitive to the dimension
of the projection (r ¼ 5 versus r ¼ 4n versus r ¼ 2F) or the
parameter k.

SLBF
This algorithm performs extremely well for all motion sequences.
Its performance is essentially on par with that of SSC. We refer
the reader to [22] for additional experiments.

FACE CLUSTERING UNDER
VARYING ILLUMINATION
Given a set of images fIj 2 RDgNj¼1 of n different faces taken from
the same viewpoint under varying illumination conditions, the
face clustering problem consists of clustering the images accord-
ing to the identity of the person. For a Lambertian object, it has
been shown that the set of all images taken under all lighting con-
ditions forms a cone in the image space, which can be well
approximated by a low-dimensional subspace [3]. Therefore, the
face clustering problem reduces to clustering a set of images
according to multiple subspaces.

Table 2 shows the experiments from [22], which evaluate
the performance of the GPCA, ALC, SCC, SLBF, and SSC algo-
rithms on the face clustering problem. The experiments are
performed on the Yale faces B database, which is available
at http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html. This
database consists of 103 93 64 images of ten faces taken
under nine different viewpoints and 64 different illumination
conditions. Nine subsets containing the images of the frontal
views of the following n ¼ 2; . . . , 10 individuals are consid-
ered: {5, 8}, {1, 5, 8}, {1, 5, 8, 10}, {1, 4, 5, 8, 10}, {1, 2, 4, 5, 8,
10}, {1, 2, 4, 5, 7, 8, 10}, {1, 2, 4, 5, 7, 8, 9, 10}, {1, 2, 3, 4, 5, 7,
8, 9, 10}, and {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. For computational
efficiency, the images are downsampled to 1203 160 pixels.
Since this number is still large compared with the dimension
of the subspaces, PCA is used to project the images onto a sub-
space of dimension r ¼ 5 for GPCA and r ¼ 20 for ALC, SCC,
SLBF, and SSC. In all cases, the dimension of the subspaces is
set to d ¼ 2.

By looking at the results, we can draw the following conclu-
sions about the performance of the algorithms tested.

GPCA
This algorithm does not perform very well. This is attributed
to the fact that it is very hard to distinguish faces from only

five dimensions. While one could have chosen to project the
faces to a space of larger dimension, GPCA cannot handle a
large number of variables, especially as the number of
groups increases.

SCC
This algorithm performs better than GPCA, achieving a perfect
classification for n � 4. However, as n increases from 5 to 10,
the classification error ranges from 1.1% to 6.6%.

SSC
This algorithm performs very well, achieving perfect classifica-
tion for n � 8 and classification errors of 2.4% and 4.6% for
n ¼ 9 and n ¼ 10, respectively.

SLBF
This algorithm performs very well, slightly better than SSC. It
achieves perfect classification for n � 8 and errors of 1.2% and
0.9% for n ¼ 9 and n ¼ 10, respectively.

ALC
This algorithm performs extremely well, achieving 100% accu-
racy in all cases. However, this requires using the algorithm
from [22] to set the parameter d. When multiple values of d are
chosen, the error goes up to 50% for n ¼ 2 and stays at 0% in
other cases, as reported in [22].

Although these experiments show very promising results,
we believe there is still plenty of room for improvement. For
example, the face clustering problem is more challenging
from nonfrontal faces, thus it would be natural to evaluate the
algorithms for nonfrontal faces and see if their performance
deteriorates. Also, many of the images in the Yale faces B data-
base contain not only faces but also background, which can
facilitate the clustering of the images using the background
intensities. Thus, it would be natural to evaluate the algo-
rithms on the cropped images and see if their performance
deteriorates. Finally, one could also explore several choices
for the subspace dimensions d and for the dimension of the
projection D.

CONCLUSIONS AND FUTURE DIRECTIONS
Over the past few decades, significant progress has been made in
clustering high-dimensional data sets distributed around a col-
lection of linear and affine subspaces. This article presented a
review of such progress, which included a number of existing
subspace clustering algorithms together with an experimental
evaluation on the motion segmentation and face clustering prob-
lems in computer vision.

While earlier algorithms were designed under the assump-
tions of perfect data and knowledge of the number of subspaces
and their dimensions, throughout the years algorithms started
to handle noise, outliers, data with missing entries, unknown
number of subspaces, and unknown dimensions.

In the case of noiseless data drawn from linear subspaces, the
theoretical correctness of existing algorithms is well studied.

[TABLE 2] MEAN PERCENTAGE OFMISCLASSIFICATION ON
CLUSTERING YALE FACE B DATA SET.

n 2 3 4 5 6 7 8 9 10

GPCA 0.0 49.5 0.0 26.6 9.9 25.2 28.5 30.6 19.8
SCC 0.0 0.0 0.0 1.1 2.7 2.1 2.2 5.7 6.6
SSC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 4.6
SLBF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.9
ALC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Some algorithms are provably
correct for independent subspa-
ces, others are provably correct
for disjoint subspaces, and others
are able to handle an unknown
number of subspaces of un-
known dimensions in an arbi-
trary configuration. However,
a theoretical analysis of the
applicability of many methods to affine subspaces in the noise-
less case is still due.

In the case of noisy data, the theoretical correctness of exist-
ing algorithms is largely untouched. To the best of our knowl-
edge, the first works in this direction are [45] and [60]. By and
large, most existing algorithms assume that the number of sub-
spaces and their dimensions are known. While some algorithms
can provide estimates for these quantities, their estimates come
with no theoretical guarantees. In our view, the development of
theoretically sound algorithms for finding the number of sub-
spaces and their dimension in the presence of noise and outliers
is a very important open challenge.

On the other hand, it is important to mention that most
existing algorithms operate in a batch fashion. In real-time
applications, it is important to cluster the data as it is being col-
lected, which motivates the development of online subspace clus-
tering algorithms. The works of [15] and [63] are two examples in
this direction.

Finally, in our view, the grand challenge for the next decade
will be to develop clustering algorithms for data drawn from
multiple nonlinear manifolds. The works of [64]–[67] have
already considered the problem of clustering quadratic, bilin-
ear, and trilinear surfaces using algebraic algorithms designed
for noise-free data. The development of methods that are appli-
cable to more general manifolds with corrupted data is still at
its infancy.
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the circle [10]. Every one-
dimensional connected set can 
be mapped homeomorphically 
to one of these one dimension-
al manifolds. (A homeomor-
phism is a mapping that has a 
continuous inverse.) The situation for two-dimensional 
manifolds is only slightly more complicated. Compact mani-
folds in two dimensions are characterized by the number of 
their holes, or genus. A two-dimensional manifold with no 
holes is a sphere; with one hole a torus and so on. In con-
trast, three-dimensional manifolds have no simple charac-
terization. We still have a three-dimensional sphere and a 
three-dimensional torus, but, in general, three-dimensional 
manifolds are an area of intense research. Grigori Perelman 
recently proved the Poincare conjecture, a century old prob-
lem about three-dimensional manifolds.  

Loosely speaking, we can think of a manifold as a nonlinear 
object that looks locally linear. Indeed, a local approximation to a 
manifold is given by its tangent space, a vector space with the 
same dimension as the manifold. 

The rate at which the manifold departs from this point of tan-
gency is a measure of how nonlinear, or curved, the manifold is. 
If we move about the manifold, constructing local approxima-
tions as we go, we will observe that the dimension of each tan-
gent space is exactly the same, i.e., a fixed integer m. For every 

point on this m-dimensional 
manifold there is a nonlinear 
mapping from the m-dimension-
al Euclidean space, i.e., the tan-
gent space, to the manifold. In 
this sense, manifolds can be mod-

eled locally as mappings on tangent spaces. Although we will not 
pursue this direction here, we note that this approach is of con-
siderable interest [35], [34]. 

Manifolds may be modeled mathematically in a variety of ways. 
For example, consider x as n-dimensional and suppose 

f 1x 2 5 0, 

where f  is a scalar valued function. The locus of points x for 
which this equation is satisfied may be used to represent an 1n 2 1 2 -dimensional manifold; each additional constraint 
may reduce the dimension of the manifold by one. 
Alternatively, the graph of a function 1x, g 1x 2 2  is another 
model for a manifold; we will discuss the latter model in 
more detail below. 

In contrast to subspaces of vector spaces, submanifolds 
of manifolds are not closed under addition. In other words, 
if you take two points in a subspace, the sum of these two 
points is also in the subspace. However, the sum of two 
points on a submanifold generally is not contained in the 
submanifold. For example, the sum of two points in a plane 
remain in the plane while the sum of two points on a unit 
circle do not live on the unit circle. Evidence suggests that 
the set of digital images of human faces reside on a mani-
fold rather than a subspace. If faces did lie in a subspace, 
then eigenfaces, which are just an appropriately weighted 
sum of faces, should look human! See Figure 1 for confir-
mation. See [1] for details. 

One of the first issues that arises when one is attempting 
to model data as one or more manifolds is whether the data 
really has a manifold structure. One of the most effective 
approaches we have found for doing this is based on an P-ball 
scaling algorithm [9]. Here one picks a point from the data 
at random and then probes it with a ball, or local neighbor-
hood. As the ball of radius P grows, one looks at the data 
contained in it and performs a singular value decomposition. 
The set of singular values that scale linearly with the epsilon 
ball span the tangent space and hence determine the dimen-
sion of the manifold. If one repeats this calculation over and 
over and the same fixed dimension is obtained, this is excel-
lent evidence that the data resides on a manifold. 

It can also been argued that the data of interest need not 
actually live on a manifold for this mathematical framework to 
be useful. If the data does not reside on a manifold, we may 
invoke the idea of a manifold model in the same sense that we 
use lines of best fit to approximate data that is not really on a 
line. Also, as we see at the end of this article, we can take any 
data and build special manifolds that can be exploited for 
knowledge discovery. 

[FIG1] Eigenfaces are the weighted sum of the digital images in 
the database. Since they do not appear human, we may 
conclude that the data set is not closed under addition. This data 
does not reside in a subspace but appears to lie on a manifold. 
This figure originally appeared in [1] and is reprinted with 
permission from John Wiley & Sons, Inc. 

MANIFOLDS ARE, IN SOME SENSE, 
WELL KNOWN TO US, AND AT THE SAME 

TIME, THEY ARE ONE OF THE MOST 
INTRIGUING TOPICS IN MATHEMATICS. 
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MANIFOLDS AND 
NONLINEAR DATA 
REDUCTION
We assume that the data is 
collected in an n-dimensional 
ambient (or data-acquisition) 
space and that  the actual 
topological, i.e., local, dimension of the data is in general 
much smaller than n. The task is to determine a repre-
sentation of the data that exploits its geometric structure 
and is consequently greatly simplified. 

As our motivating example, we consider a closed curve that 
passes through each of the standard basis vectors ei where this 
vector consists of n 2 1 zeros and a one in the ith component. 
It is clear that standard techniques such as the singular value 
decomposition, or principal component analysis, suggest that 
the basis dimension of the space is n while the topological 
dimension of the curve is only one. 

Closed curves of data arise in nature whenever a periodic 
phenomenon is being observed or modeled. They may be mod-
eled by recognizing that there exists a homeomorphism 
between such a data set and the unit circle in R2.

BOTTLENECK MANIFOLDS 
AND NEURAL NETWORKS
This section concerns nonlinear data reduction to a bottleneck 
manifold using a technique proposed in [43]. It is based on the 
idea that we can compose mappings G and H such that they 
behave as the identity, i.e., 

x 5 1H + G 2 1x 2 ,
where 

y 5 G 1x 2 [ Rm

reveals the data in a space of dimension m , n. In one example, 
we reduced the dimension of a closed curve in R20 to the unit cir-
cle, i.e., m 5 2. The drawback to this approach is that the dimen-
sion m is unknown in general and the methods for computing G
and H are based on expensive nonlinear optimization routines 
that determine the parameters for G and H such that their com-
position approximates the identity. Further, the mapping is not 
unique given 

x 5 1H + F + F21 + G 2 1x 2
for an invertible function F.

DATA AS THE GRAPH OF A FUNCTION
The bottleneck neural network idea suggests the representation of 
data as the graph of a function, i.e., the set of points 1 p̂, f 1 p̂ 2 2
where 

q̂ 5 f 1 p̂ 2 ,  (1)

and p̂ is a point in the domain 
U ( Rd of the function and the 
point q̂ in the range V ( Rn2d.
The challenge here is that the data 
initially resides in an n-dimen-
sional ambient, or acquisition, 
space and a useful domain U  as 

well as its dimension are unknown. 
However, if we can solve these problems we may express the 

reconstruction of the original data in terms of two components, 
one linear and one nonlinear, specifically, 

x 5 Fp̂ 1 1I 2 F 2 f 1 p̂ 2 ,  (2)

whereF is a matrix of d basis vectors spanning the domain of f. The 
nonlinear representation of the data comes from writing the 
residuals of the projection onto the range of F in terms of a func-
tion of the projected data values. 

Conditions governing the existence of this function f  when 
the data reside on a manifold are addressed in the section 
“Whitney’s Theorem.” An algorithm for computing the basis 
that has especially nice properties is summarized in the section 
“Bilipschitz Maps Are Good Projections.” 

WHITNEY’S THEOREM
Whitney’s 1930s embedding theorem [12] from differential 
topology assures the existence of the mapping above for data 
sampled from a manifold. Roughly speaking, it states that an 
m-dimensional manifold can be realized in a Euclidean space of 
dimension 2m 1 1. In other words, a potentially low-dimension-
al “copy” of the manifold can be recovered and that a bijection 
exists between the original and its copy. The statement of this 
theorem is independent of the original dimension of the data n.

Whitney’s theorem is more than a theoretical statement 
about the conditions under which a copy of the manifold may 
be found. It actually provides a blueprint for the construction of 
such a representation. Whitney shows that projecting data is 
admissable as long as all bad directions are avoided. Such direc-
tions are defined by the secant set is 

S 5 e x 2 y

||x 2 y||
:4x, y [M, x 2 y f .

In general, it is intuitive that one should not project data along 
a secant of the data if one seeks to invert the mapping. Two 
points projected in this way will be identified as a single point in 
the image of the projection and there is no way to recover the 
original points. 

In summary, Whitney’s theorem indicates that data sampled 
from an m-dimensional manifold may be mapped linearly using 
a projection matrix of rank 2m 1 1 and that this mapping has a 
nonlinear inverse that losslessly recovers the data. Whitney’s 
theorem describes the set of admissible projections as open and 
dense, i.e., they are not hard to find. However, Whitney’s theo-
rem does not prescribe a recipe for constructing these projec-
tions in any algorithmic sense. Further, only the existence of 

WHITNEY’S THEOREM IS MORE 
THAN A THEORETICAL STATEMENT 
ABOUT THE CONDITIONS UNDER 

WHICH A COPY OF THE MANIFOLD 
MAY BE FOUND. 
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the nonlinear inverse is proven 
and no technique for computing 
it is provided. 

We outline practical approaches 
for solving each of these problems, 
i.e., data reduction and reconstruc-
tion, in the sections “Bilipschitz 
Maps Are Good Projections” and “Data Fitting with Radial Basis 
Functions,” respectively. 

BILIPSCHITZ MAPS ARE GOOD PROJECTIONS
A function f 1x 2  is said to be bilipschitz on S if for all x, y [ S
holds that 

a||x 2 y|| # ||f 1x 2 2 f 1y 2 || # b||x 2 y||,

where a is the injectivity parameter and b is the Lipschitz con-
stant. The bilipschitz mapping theorem [6] states that if a func-
tion f : S S T is bilipschitz, then 

 dim 1S 2 5 dim 1T 2 ,
where the dimensions being preserved includes both topo-
logical and fractal dimensions, i.e., the data need not reside 
on a manifold. 

Assume that the data set of interest is a discrete sampling 
of a compact m-dimensional submanifold of a raw vector 
space of high dimension q where typically q W 2m 1 1. We 
would like to reduce the dimension of the data such that we 
have a copy of the data that could be, if needed, mapped back 
to the original data. In other words, the projection should 
be lossless. 

The bilipschitz mapping theorem in conjunction with 
Whitney’s theorem suggests an interesting approach for con-
structing good projections of data. We use the term good here 
rather than optimal, given that we envision cases where the 
iterative approach for determining the projection terminates 
early when it has achieved sufficient quality. See [8], [7], and 
[11] for additional details.

First, the right inequality in the bilipschitz condition is 
satisfied automatically if f 1x 2  is taken to be a projection P,
given that projections only shrink (or maintain) the length of 
secants. Similarly, the condition 

 ||Pk̂|| $ a . 0,  (3)

for all unit secants k̂ [ S ensures that the mapping is bilipschitz. 
Moreover, it has been shown that the Lischitz constant of the 
nonlinear inverse to P is Lipschitz with Lipschitz constant 1/a. This 
provides a strong indication that solving 

P* 5 arg max
P

min
^k[S

 ||Pk̂||

is an excellent way to determine a reduction of the data set as 
the inverse at the heart of the reconstruction is optimally 

smooth. An algorithm for solving 
this optimization problem was 
proposed in [7] and extensions to 
noisy data considered in [8]. A 
related differentiable objective 
function that prohibits small 
projected secants, 

F 1P 2 5
1

|S| a
k̂[g

1
||Pk̂||

, (4)

has also proven to be very useful. Since we are seeking optimal 
subspaces, tools from geometric optimization can be used; see 
[11] and references therein for details. 

It is interesting to distinguish the bilipschitz condition from 
the special case of an isometric, or distance preserving, mapping 
where 

 ||f 1x 2 2 f 1y 2 || 5 ||x 2 y||.

These mappings have also received considerable attention in the 
literature recently [39], [40]. 

TAKENS’ THEOREM AND TIME-DELAYED EMBEDDING
Takens’ theorem [13] provides a theoretical foundation for the 
reconstruction of an m-dimensional manifold when only a scalar 
time series is observable. We assume that the actual time series 
x 1t 2 5 1x1 1t 2 , c, xn 1t 2 2  generated by a dynamical system 

dx
dt

5 f 1x 2 ,
trace out solutions on a manifold of dimension m that cannot 
be observed directly. Takens’ theorem is a result about observ-
ability—in the sense of control theory—of finite-dimensional, 
nonlinear dynamical systems. Imagine that we have a scalar 
measurement that we make on the system; let’s write this as a 
function y : Rn S R. We shall assume that the restriction of 
this function to the manifold is sufficiently smooth. If at some 
time t we make a measurement, the value that we obtain 
is y 1t 2 5 y 1x 1t 2 2 . A sequence of such measurements made 
at  equally spaced times gives a scalar time series: 1 c, y 1t 2 dt 2 , y 1t 2 , y 1t 1 dt 2 , c 2 , where dt is the sam-
pling interval. 

Takens’ theorem is based on the construction of a delay map 
from such a scalar time series 

x̂ 5 1y 1t 2 , y 1t 2 dt 2 , c, y 1t 2 1k 2 1 2dt 2 2 .
Here x̂ should be seen as the image of the point x 1t 2  under a 
map from the m-dimensional manifold to Rk. Takens’ theorem 
amounts to the statement that if k . 2m then, generically, this 
map is an embedding of the manifold. This statement of Takens’ 
theorem assumes that the vector field f and the sampling time 
satisfy certain reasonable—indeed, generic—constraints (see 
[Sect. 2, 21] for more details). Here, generically means that 

THE BILIPSCHITZ MAPPING THEOREM 
IN CONJUNCTION WITH WHITNEY’S 

THEOREM SUGGESTS AN INTERESTING 
APPROACH FOR CONSTRUCTING 
GOOD PROJECTIONS OF DATA.
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within the set of all C2 real-val-
ued measurement functions on 
the manifold, the set which gives 
an embedding is open and dense. 
Embedding means that the 
image of the manifold in Rk is a 
copy of the original with the 
same geometric structure—the image is the same as the orig-
inal up to a smooth (nonlinear) change of coordinates. 

An application to classification can be envisioned as follows: 
assume that x 1t 2  belongs to class C1 if for some smooth, real-
valued function h, h 1x 1t 2 2 . 0 and belongs to C2  if 
h 1x 1t 2 2 # 0. Further, assume that only the scalar y 1x 1t 2 2  is 
observed. In general, it is impossible to tell the class of x 1t 2
from y 1x 1t 2 2 , however, we may use Takens’ theorem and a delay 
embedding to recover this class information. This idea is poten-
tially useful for classification of time series such as those that 
arise in electroencephalography (EEG) analysis [42]. If EEG 
activity in the brain has coherent structure that can be exploit-
ed via time-delay embeddings, this approach is effectively a form 
of super resolution. The application of Takens’ theorem to the 
time series prediction problem is discussed, e.g., in [14]. 

MANIFOLD RECONSTRUCTION
Here we describe a recently developed algorithm for building 
nonlinear models for multivariate data that is particularly use-
ful for modeling time evolving trajectories on manifolds. In 
general, the techniques described here are suitable for finding 
the nonlinear inverse required to represent the data as a graph 
of a function. 

DATA FITTING WITH RADIAL BASIS FUNCTIONS
The mappings described in the previous section are of the form 

f : U ( Rn S V ( Rm,  (5)

where we assume that, in general, both m and n may be greater 
than 1. In the data fitting problem, we assume that we have 
samples x1k2 [ U  and y1k2 [ V  are indexed by k and related via f,
a nonlinear function, as y1k2 5 f 1x1k2 2 .

A standard radial basis function seeks to represent f 1x 2  as 

f 1x 2 5 a
Nc

i51
wi f 1 ||x 2 ci||Wi

2 ,  (6)

where x is an input pattern, f is an RBF centered at location ci,
wi denotes the weight for ith RBF and Nc is the number of func-
tions being used. The term W  denotes the parameters in the 
weighted inner product ||x||W 5"xTWx.

RBFs have been widely used for data approximation. 
Multiquadrics, i.e., functions of the form f 1r 2 5"1 1 r2,
were introduced by [15] for modeling scattered data on topo-
graphical surfaces. Thin plate splines, f 1r 2 5 r2 ln r, were 
introduced by [16] for surface interpolation. Gaussian RBFs, 
f 1r 2 5 exp 12r2/s2 2 , were proposed by [2] for data fitting 
and classification. There is a significant literature treating 

theoretical aspects of RBFs 
including universal approxima-
tion theorems; see, e.g., [4] and 
[18]–[20]. A large number of 
algorithms have been proposed 
in the literature for computing 
the model parameters and are 

reviewed in [26]. The research monographs [22]–[24] con-
tain additional references across theory, algorithms, and 
applications. 

Alternatively, we also consider the sRBFs introduced in 
[25]–[27], which are defined as 

f 1x 2 5 a
Nc

i51
wi z 1x ; ni 2f 1 ||x 2 ci||Wi

2 . (7)

In the above equation, the function z 1x; ni 2  is a skew compo-
nent that makes the representation nonradial, ni contains the 
parameters for the symmetric breaking term. This has the 
advantage of being able to represent asymmetric data, e.g., data 
near boundaries, much more efficiently. An example of an sRBF 
is the skew-Gaussian RBF 

f 1x 2 5 a
Nc

i51
wi exp 1 2 ||x 2 ci||Wi

2 232lT
i Ax2ci2

2`

 exp12y2 2dy, (8)

where li is a vector of skew parameters. In this article, we 
employ a truncated cosine function in the same fashion as 
a Hanning filter to produce an RBF with compact support 
[28], i.e., 

f 1x 2 5 a
Nc

i51
wi 1cos 1 ||x 2 ci||Wi

p 2 1 1 2H 11 2 ||x 2 ci||Wi
2 ,  (9)

where H is the Heaviside function. To create an sRBF here, we 
employ the Arctan function as the skewing term z. These func-
tions, taken together, result in the Arctan-Hanning sRBF. 

Of course the issue now is to determine the parameters asso-
ciated with the data fitting problem. Of particular importance 
are the locations of the fitting functions 5ci6 and the width of 
the basis 5Wi6 as well as the number of fitting functions Nc.

There are a wide range of algorithms that have appeared in 
the literature for determining these parameters, e.g., [17]. Here 
we used an iterative approach that tests whether the residuals 
are independent and identically distributed (i.i.d.) noise at each 
step. If not, then additional functions are added until the i.i.d. 
test is passed with at least 95% confidence. For more details 
concerning the algorithms used to generate the results present-
ed here, see [26], [29], [25], and [30].

EXAMPLES
In this section, we provide several applications of the theoretical 
and algorithmic ideas presented above. 

THE PRINGLE DATA SET
In this example, we illustrate the representation of data, a topo-
logical circle, on a manifold as the graph of a function. We 
employ the pringle data set, generated as the solution to a 

RECENTLY, THERE HAS BEEN 
CONSIDERABLE RESEARCH CONCERNING 
SO-CALLED SPECIAL MANIFOLDS AND 
THEIR APPLICATIONS TO THE ANALYSIS 

OF LARGE DATA SETS.
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[FIG3] The performance of the symmetric and sRBFs on 
hurricane intensity prediction [25]. (a) The training and 
validation data sets. (b) The testing set and the output of the 
one-mode sRBF. (c) The testing set and the output of the 
three-mode symmetric RBF. Figure reprinted with permission 
from the Society for Industrial and Applied Mathematics. 

 system of ordinary differential 
equation as described in [11]. 

The task is to construct a 
mapping from an 1x, y 2  value in 
the plane to its corresponding z 
value on the curve. Thus, we are 
fitting the graph of a function 
from R2 to R. 

Figure 2(a) shows the location and shape of the first (of four 
RBFs) that is generated by the algorithm to model the data; at 
that point the i.i.d. stopping criteria is satisfied. The training 
data (consisting of 101 points, almost two cycles) and the RBFs 
are displayed together to illustrate how the algorithm has fit 
the RBFs to the data. A plot of the output of the model and 
testing data set consisting of 500 points (almost nine cycles) 
are shown in Figure 2(b). The fact that the solution is periodic 
will clearly illustrate the need for spatial as well as temporal 
windowing of the data. 

PREDICTING HURRICANE INTENSIFICATION
In this example, we predict the instantaneous maximum 
 intensity of a hurricane. The data used to build the model was 

generated by a numerical simu-
lation of an axisymmetric model 
as described in [31] and refer-
ences therein. The available data 
represents maximum tangen-
tial wind speed with intervals 
of 5 s. We have employed a time 
delay embedding scheme for 

computing the embedding dimension of the time series [32]. 
The goal is to predict one step ahead using the previous four 
values. In the spirit of Takens’ theorem, this problem could be 
formulated as 

 xn11 5 f 1xn, xn21, xn22, xn23 2 .
Alternatively we aim at constructing an sRBF mapping as 

 f : 1xn, xn21, xn22, xn23 2 [M ( R4 S xn11 [ R, 
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[FIG2] The solution to the dynamical system is corrupted with 
Gaussian noise with standard deviation (STD) of 0.1. (a) The 
primary first RBF allocated by the algorithm and the training data 
set. (b) The testing data set and the output of the four-mode 
model. Originally presented in [29]. Figure reprinted with 
permission by the Society for Industrial and Applied Mathematics.  

TAKENS’ THEOREM PROVIDES A 
THEORETICAL FOUNDATION FOR 

THE RECONSTRUCTION OF AN 
M-DIMENSIONAL MANIFOLD 
WHEN ONLY A SCALAR TIME 

SERIES IS OBSERVABLE.
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where M is the set of all possible points from which the data is 
sampled. Due to the sharp transitions in the maximum wind 
speed, the above map experiences discontinuous behavior, 
which makes the map more difficult to learn using symmetric 
basis functions. Figure 3(a) shows the maximum wind speed of 
a hurricane in a time series format. 

In this study, we model the steady state behavior of the 
dynamics. The data set consists of 1,801 training, 800 valida-
tion, and 500 testing data points taken sequentially in time. 
Figure 3(a) shows the training and validation data sets. 
Figure 3(b) and (c) shows the predicted values using data 
adapted Erf-Gaussian sRBFs and symmetric Gaussian RBFs, 
respectively. Note that the asymmetric fit was complete 
using one RBF, and the root mean square error (RMSE) 
value of the testing data is 1.3036. Confidence levels of 
96.22% and 95.62% were achieved on training and valida-
tions data sets, respectively. The symmetric RBF training 
stopped based on 95.37% confidence criteria on a validation 
set with seven RBFs. A confidence level of 95% was achieved 
on the training using three RBFs. We found that the three-
mode RBF model preformed as well or better than the sev-
en-mode model, and we report results only for this. The 
RMSE on the test set using the three-mode RBF was 5.7918. 
Hence, in this example, a one mode sRBF mode performs 
better than a three-mode RBF model. In this example, the 
parameters are optimized by employing BFGS; see [26] for 
details and references. 

PREDICTING EXCHANGE RATE DATA
This data set consists of the Deutsche Mark/French Franc 
(daily) exchange rates over 701 days. As mentioned in [33], this 
data set has irregular nonstationary components due to 
 government intervention in the European exchange rate mech-
anism. A window of five previous values can be used as input, 
hence forming an interesting data set to make a mapping from 
R5 to R. Figure 4 shows the output of the resulting model (one-
step prediction values) and the target (market) values for the 
test data. The modeling process terminated with a model of 
order three with 97.17% confidence. The model produces the 
RMSE of 0.0043, NPE1 5 0.2760 and NPE2 5 0.1033. The 
results for this exchange rate data reported in [33] show a 
model fit with 11 RBFs and NPE1 of 0.336. 

Although most of the applications shown above form map-
pings from Rm to R, we have also presented multivariate results 
on the pringle and Mackey-Glass data sets in [30]. 

BEYOND DATA MANIFOLDS
Recently, there has been considerable research concerning so-
called special manifolds and their applications to the analysis of 
large data sets; see, e.g., [41]. Now, a point on a data set actually 
is a set of data points. For example, consider the variation of 
illumination on an object such as a human face. The set of 
images collected under a variation in illumination contains 
information concerning the identity of the subject that goes 
beyond an individual snapshot. So, if we can encode this 

 information in a useful way one might suspect the resulting 
recognition algorithm could be very useful. 

The setting of the Grassmann manifold, or Grassmannian 
allows one to encode data as a subspace. The set of k-dimen-
sional subspaces of Rn, referred to as G 1n, k 2 , may be used to 
encode sets of data such as images. Classification of these sets of 
sets may be achieved using standard norms defined on 
Grassmannians. Recognition rates using this approach have 
proved compelling; see [41] and references therein. 

CONCLUSIONS
A wide range of problems, e.g., in machine learning, optimal 
control, mathematical modeling of physical systems, biological 
systems, human behavior, voice recognition, failure prediction, 
and image processing, often require the construction of rela-
tionships from observed data. When this data has a special man-
ifold structure, we can exploit ideas from geometry and 
topology to motivate new analysis techniques. In this article, we 
have focused our applications on time-series modeling where 
there is some explicit or implicit manifold structure. The data 
fitting methodology does not require the tuning of ad hoc 
parameters and, by virtue of their skewness, the sRBFs are suit-
able for learning data with asymmetric behavior or singularities 
such as jumps and sharp transitions. 
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[Paul Honeine and C�edric Richard]

[An intimate connection

with the dimensionality-

reduction problem]

K
ernel machines have gained con-
siderable popularity during the
last 15 years, making a break-
through in nonlinear signal process-
ing and machine learning, thanks

to extraordinary advances. This increased interest is
undoubtedly driven by the practical goal of being able

to easily develop efficient nonlinear algorithms. The key
principle behind this, known as the kernel trick, exploits the

fact that a great number of data-processing techniques do not
explicitly depend on the data itself but rather on a similarity measure

between them, i.e., an inner product. To provide a nonlinear extension of these techni-
ques, one can apply a nonlinear transformation to the data, mapping them onto some

feature space. According to the kernel trick, this can be achieved by simply replacing the inner product with a
reproducing kernel (i.e., positive semidefinite symmetric function), the latter corresponds to an inner product
in the feature space. One consequence is that the resulting nonlinear algorithms show significant performance
improvements over their linear counterparts with essentially the same computational complexity.

While the nonlinear mapping from the input space to the feature space is central in kernel methods, the
reverse mapping from the feature space back to the input space is also of primary interest. This is the case
in many applications, including kernel principal component analysis (PCA) for signal and image denoising.
Unfortunately, it turns out that the reverse mapping generally does not exist and only a few elements in the
feature space have a valid preimage in the input space. The preimage problem consists of finding an approx-
imate solution by identifying data in the input space based on their corresponding features in the high-
dimensional feature space. It is essentially a dimensionality-reduction problem, and both have been
intimately connected in their historical evolution, as studied in this article.
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AN INTRODUCTORY EXAMPLE:
KERNEL PCA FOR DENOISING

LINEAR DENOISING WITH PCA
In general, some correlations exist among data, thus techniques
for dimensionality reduction or the so-called feature extraction
provide a way to confine the initial space to a subspace of lower
dimensionality. The PCA, also known as Karhunen-Loève transfor-
mation, is one of the most widely used dimensionality-reduction
techniques. Conventional PCA seeks principal directions that cap-
ture the highest variance in the data. Mutually orthonormal, these
directions define the subspace, exhibiting information rather than
noise, providing the optimal linear transformation. Here, the opti-
mality is in the sense of least-mean-square reconstruction error.
For instance, in data compression and manifold learning, much
information is conserved by projecting onto the directions of high-
est variance, while in denoising, directions with small variance are
dropped. These schemes are mathematically equivalent, and we
use here a denoising schema without loss of generality.

Consider an input space X endowed by the inner product
h�, �i; for instance, a vectorial space with the Euclidean inner
product hxi , xji ¼ x>i xj. Let fx1, x2, . . . , xng denote a set of avail-
able data (observations) from X . PCA techniques seek the axes
that maximize the mean variance of the projected data under
the unit-norm constraint, namely, w1,w2, . . . ,wk by maximiz-
ing (1=n)

Pn
i¼1 jhxi ,w‘ij2 subject to hw‘,w‘0 i ¼ d‘‘0 for all

‘, ‘0 ¼ 1, 2, . . . , k. In this expression, the Kronecker delta is
defined as d‘‘0 ¼ 1 if ‘ ¼ ‘0, and d‘‘0 ¼ 0 otherwise. Solving this
constrained optimization problem using the Lagrangian pro-
vides the following problem:

k‘ w‘ ¼ Cw‘, (1)

where k‘ defines the amount of variance captured by w‘, and C is
the covariance matrix of the data. In other words, (k‘,w‘) is the
eigenvalue–eigenvector of the covariance matrix, data assumed
zero-mean. Furthermore, eigenvectors lie in the span of the
data, since for every ‘ ¼ 1, 2, . . . , kwe have

w‘ ¼
1
k‘

Cw‘ ¼
1

k‘ n

Xn
i¼1

hxi,w‘i xi:

The eigenvectors associated with the largest eigenvalues
provide a relevant low-dimensional subspace. As a conse-
quence, we are interested in elements from this relevant sub-
space. This is the case, for instance, in data denoising, where
the projection of a given noisy data onto this subspace provides
its noise-free counterpart. Therefore, the latter can be written
as an expansion of the eigenvectors, namely, for a noisy data ~x,
we get the denoised w ¼Pk

i¼1h~x,wiiwi, and from the afore-
mentioned expression, as a linear expansion in terms of the
available data, by taking the form

w ¼
Xn
i¼1

ai xi:

KERNEL PCA FOR NONLINEAR DENOISING
To provide a natural nonlinear extension of PCA, a nonlinear
mapping is applied to the data as a preprocessing stage, prior to
applying the PCA algorithm. Let /( � ) be the nonlinear transfor-
mation mapping data from the input space X to some feature
space H. Then problem (1) essentially remains the same, with
the covariance matrix associated to the transformed data. From
the linear expansion with respect to the latter, the resulting
principal axes take the form

w‘ ¼
Xn
i¼1

h/(xi),w‘iH /(xi), (2)

where h�, �iH denotes the inner product in the feature space H.
In this space, each feature w‘ lies in the span of the mapped
input data, with the coefficients given by the ‘th eigenvector of
the eigenproblem

n k‘ a‘ ¼ K a‘, (3)

whereK is the so-called Grammatrix with entries h/(xi),/(xj)iH,
for i, j ¼ 1, 2, . . . , n. As illustrated here, the expansion coeffi-
cients require only the evaluation of the inner products. With-
out the need to exhibit the mapping function, this information
can be easily exploited for a large class of nonlinearities by sub-
stituting the inner product with a positive semidefinite kernel
function. This argument is the kernel trick, which provides a non-
linear counterpart of the classical PCA algorithm, the so-called
kernel PCA [1].

Consider the denoising application using kernel PCA. For a
given ~x, its nonlinear transformation /(~x) is projected onto the
subspace spanned by the most relevant principal axes, providing
the denoised pattern. The latter can be written as a linear expan-
sion of the k principal axes, w1,w2, . . . ,wk, with

w ¼
Xk
i¼1

hx,wiiwi: (4)

Equivalently, the denoised pattern can also be written as a lin-
ear expansion of the n images of the training data, namely
w ¼Pn

i¼1 ai /(xi), where the expansion in (2) is used. In prac-
tice, one is interested in representing the denoised pattern in
the input space, as illustrated in Figure 1. It turns out that
most elements of the feature space, including the denoised pat-
terns, are not valid images, i.e., the result of applying the map
to some input data. To get the denoised counterpart in the
original input space, one needs to operate an approximation
scheme, i.e., estimate x� such that its image /(x�) is as close as
possible to w.

Beyond this kernel-PCA example, the kernel trick is well
known in the machine-learning community. It provides flexibil-
ity to derive nonlinear techniques based on linear ones, with the
data being implicitly mapped into a feature space. This space is
given by the span of the mapped data, i.e., all the linear expan-
sions of mapped data. The price to pay is that, in general, not
each element of the space is necessarily the image of some data.
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This is the case of most elements in the feature space, since they
can be written as

w ¼
Xn
i¼1

ai /(xi),

as illustrated earlier with either a principal axe w‘ or a denoised
feature w. To give proper interpretation for these components,
one should define the way back from the feature into the input
space. This is the preimage problem in kernel-based machine
learning, as illustrated in Figure 2.

KERNEL-BASED MACHINE LEARNING
In the past 15 years or so, a novel breakthrough for artificial
neural networks has been achieved in the field of pattern recog-
nition and classification within the framework of kernel-based
machine learning. They have gained wide popularity owing to
the theoretical guarantees regarding performance and low com-
putational complexity in nonlinear algorithms. Pioneered by
Vapnik’s support vector machines (SVMs) for classification and
regression [2], kernel-based methods are nonlinear algorithms
that can be adapted to an extensive class of nonlinearities. As a
consequence, they have found numerous applications, including

x̃

x ∗

φ (·)

?

φ (x )˜φ (x )

(a) (b)

ψ

[FIG2] Schematic illustration of the preimage problem for pattern denoising with kernel PCA. While dimensionality reduction
through orthogonal projection is performed in the (b) feature space, a preimage technique is required to recover the denoised
pattern in the (a) input space.

ψ

?
χ

φ (·)

φ (xn)

φ (x1)

φ (x3)

φ (x2)

˜φ (x )

xn

x2

x3

x1

x̃

x ∗

(a) (b)

[FIG1] Kernel machines map the input space [blue region in (a)] into a higher-dimensional space [blue region in (b)]. The reproducing
kernel Hilbert space (rkHs)H is defined as the completion of the span of the mapped input data, with elements written as a linear
expansion of mapped data. However, not each element ofH is necessarily the image of some input data. The preimage problem
consists of going back to the input space, e.g., to represent in the input space elements of the rkHs (e.g., the effect of projecting
onto a subspace).
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classification [3], regression [4], time-series prediction [5], novelty
detection [6], image denoising [7], and bioengineering [8], to
name just a few (see, e.g., [9] for a review).

REPRODUCING KERNELS AND rkHs
Originally proposed by Aizerman et al. in [10], the kernel trick
provides an elegant mathematical means to derive powerful
nonlinear variants of classical linear techniques. Most well-
known statistical (linear) techniques can be formulated as an
inner product between pairs of data. Thus, applying any non-
linear transformation to the data can only impact the values of
the resulting inner products. Therefore, one does not need to
compute such a transformation explicitly for a large class of
nonlinearities. Instead, one only needs to replace the inner
product operator with an appropriate kernel, i.e., a symmetric
hermitian function. The only restriction is that the latter
defines an inner product in some space. A sufficient condition
for this is ensured by Mercer’s theorem [11], which may be
stated as follows: any positive semidefinite kernel can be
expressed as an inner product in some space, where the positive
semidefiniteness of a kernel j:X 3X ! R is determined by
the property X

i, j

ai aj j(xi, xj)� 0,

for all ai, aj 2 R and xi, xj 2 X . Furthermore, theMoore-Aronszajn
theorem [12] states that, to any positive semidefinite kernel j corre-
sponds a unique rkHs, whose inner product h�, �iH, usually called
reproducing kernel, is j itself.

The one-to-one correspondence between rkHs and positive
semidefinite functions has proved to be quite useful in numer-
ous fields (see [13] and references therein). Since the pioneering
work of Aronszajn [12], reproducing kernels and rkHs formal-
ism have been increasingly used, especially, after being selected
for the resolution of interpolation problems by Parzen [14], Kai-
lath [15], andWahba [16]. An rkHs is a Hilbert space of functions
for which point evaluations are bounded and where the exis-
tence and uniqueness of the reproducing kernel are guaranteed
by the Riesz representation theorem. In fact, let H be a Hilbert
space of functions defined on some compact X , for which the

evaluation w(x) of the function w 2 H is bounded for all x 2 X .
By this theorem, there exists a unique function /(x) 2 H such
as w(x) ¼ hw,/(x)iH. Also denoted j( � , x), this function has the
following popular property:

j(xi , xj) ¼ h/(xi),/(xj)iH, (5)

for any xi, xj 2 X . Moreover, the distances can be easily eval-
uated using the kernel trick, since the distance between two ele-
ments can be given using only kernel values, with

k/(xi)� /(xj)k2H ¼ h/(xi)� /(xj),/(xi)� /(xj)iH
¼ j(xi, xi)� 2j(xi, xj)þ j(xj, xj), (6)

where k � kH denotes the norm in the rkHs.
The inherent modularity of reproducing kernels allows scaling-

up linear algorithms into nonlinear ones, adapting kernel-based
machines to tackle a large class of nonlinear tasks. Kernels are
commonly defined on vectorial spaces, X endowed with the
Euclidean inner product hxi, xji ¼ x>i xj and the associated norm
kxik. They can be easily adapted to operate on images, e.g., in
face recognition or image denoising. They are not restricted to
vectorial inputs but can be naturally designed to measure simi-
larities between sets, graphs, strings, and text documents [9]. As
illustrated in Table 1, most of the kernels used in the machine-
learning literature can be divided into two categories: projective
kernels are functions of inner product, such as the polynomial
kernel, and radial kernels (also known by isotropic kernels) are
functions of distance, such as the Gaussian kernel. These ker-
nels implicitly map the data into a high-dimensional space, even
infinite dimensional for the latter.

THE REPRESENTER THEOREM
In machine learning, inferences are focused on the estimation of
the structure of some data, based on a set of available data. Given
n observations, x1, x2, . . . , xn, and eventually the corresponding
labels, y1, y2, . . . , yn, one seeks a function that minimizes a fitness
error over the data, with some control of its complexity (i.e., func-
tional norm). To this end, we consider the rkHs associated to the
reproducing kernel as the hypothesis space from which the opti-
mal is determined. The rkHs associated to j can be identified,
modulo certain details, with a space of functions defined by a
linear combination of the functions /(x1), /(x2), . . . ,/(xn). Its
flexibility efficiently allows for solving optimization problems,
owing to the (generalized) representer theorem. Originally
derived by Kimeldorf and Wahba for splines in [17], it was
recently generalized to kernel-based machine learning in
[18], including SVM and kernel PCA, as follows in Theorem 1.

THEOREM 1 (REPRESENTER THEOREM)
For any function w 2 Hminimizing a regularized cost function
of the form

Xn
i¼1

f
�
yi,wðxi)

�þ g g(kwk2H),

[TABLE 1] COMMONLY USED KERNELS INMACHINE
LEARNING, WITH PARAMETERS c >0,p˛N1, AND r>0.

KERNELS EXPRESSIONS

PROJECTIVE
MONOMIAL (hxi , xji)p
POLYNOMIAL (c þ hxi , xji)p
EXPONENTIAL exp (hxi , xji=2r2)
SIGMOID (PERCEPTRON) tanh (hxi , xji=rþ c)

RADIAL
GAUSSIAN exp (� kxi � xjk2=2r2)
LAPLACIAN exp (� kxi � xjk=2r2)
MULTIQUADRATIC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxi � xjk2 þ c

q
INVERSE MULTIQUADRATIC 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxi � xjk2 þ c

q
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with f ( � , � ) some loss function and g( � ) a strictly monotonic
increasing function on Rþ, can be written as an image expan-
sion in terms of the available data, namely,

w ¼
Xn
i¼1

ai /(xi): (7)

This theorem shows that, even in an infinite-dimensional
rkHs, one only needs to work in the subspace spanned by the n
images of the training data.

Before we proceed further, we examine the effectiveness of
this theorem on two machine-learning techniques: first, con-
sider the kernel PCA where the projected variance is maximized,
namely w1,w2, . . . ,wk ¼ argmaxw (1=n)

P
i jhxi,wij2, under

the orthonormality constraint hw‘,w‘0 iH ¼ d‘‘0 for all ‘, ‘0 ¼
1, 2, . . . , k. As derived in the introductory example, one only
needs to solve the eigenproblem (3), involving only n unknowns
for each principal axes. These unknowns correspond to the
weighting coefficients in the expansion (7). Second, we consider
a regression problem known as ridge regression. In this case,
the mean squared error is minimized, with

min
w

1
n

Xn
i¼1

jyi � w(xi)j2 þ gkwk2H, (8)

where the first term is the fitness error while the second one
controls the complexity of the solution (known as Tikhonov
regularization). By substituting (7) into (8), we get the optimi-
zation problem

min
a

ky� Kak2 þ g a>Ka,

with a ¼ ½a1 a2 � � � an	> and y ¼ ½y1 y2 � � � yn	>. The optimal
weighting coefficients are obtained by solving the linear system

(K þ gI) a ¼ y, (9)

where I is the identity matrix.
Such models as a sum of basis functions have been extensively

studied in the literature, for instance, in interpolation problems
[19], and more recently, in machine learning [20]. To illustrate
this theorem, take for instance, the Gaussian kernel investigated
in [21] for interpolation in two dimensions (2-D). For this kernel,
we can think about the map /(xi): xi 7! exp (� k� �xik2=2r2)
that transforms each input data into a Gaussian bump centered
on that point. Clearly, the representer theorem (Theorem 1)
states that the optimal solution is a linear combination of
Gaussians centered on the available input data. However, it is
well known that the sum of Gaussians centered at different
points cannot be written as a single Gaussian. Thus, the solu-
tion w in (7) cannot be a Gaussian sitting on some arbitrary
data; in other words, it is not a valid image of some x 2 X ,
using the map /( � ) associated to the Gaussian kernel. Finding
an input x� whose image can approximate the function w is the
preimage problem.

SOLVING THE PREIMAGE PROBLEM
A problem is ill posed if at least one of the following three con-
ditions that characterize the well-posed problems in the sense
of Hadamard is violated: 1) a solution exists, 2) it is unique, and
3) it continuously depends on the data (also known as stability
condition). Unfortunately, identifying the preimage is gener-
ally an ill-posed problem. This is an outcome of the higher
dimensionality of the feature space compared with the input
space. As a consequence, most elements of w in the rkHs might
not have a preimage in the input space, i.e., there may not exist
an x� such that /(x�) ¼ w. Moreover, even if x� exists, it may
not be unique. To circumvent this difficulty, one seeks an
approximate solution, i.e., x� whose map /(x�) is as close as
possible to w.

Consider a pattern w in the feature spaceH, obtained by any
kernel-based machine, e.g., a principal axe or a denoised pattern
obtained from kernel PCA. By virtue of Theorem 1, let w ¼Pn

i¼1 ai /(xi). The preimage problem consists of the following
optimization problem

x� ¼ argmin
x2X

			Xn
i¼1

ai /(xi)� /(x)
			2
H
: (10)

Equivalently, from the kernel trick, x� minimizes the objective
function

N(x) ¼ j(x; x)� 2
Xn
i¼1

ai j(x; xi), (11)

where the term independent of x has been dropped.
As opposed to this functional formalism, one may also adopt a

vectorwise representation, with elements in the rkHs given by their
coordinateswith respect to an orthogonal basis. Taking, for instance,
the basis defined by the kernel PCA, as given in (4), each w 2 H is
represented vectorwise with ½hw,w1i hw,w2i � � � hw,wki	>, thus
defining a k-dimensional representation. In such a case, the
Euclidean distance between the latter and the one obtained
from the image of x� is minimized. This is essentially a classical
dimensionality-reduction problem, connecting the preimage
problem to the historical evolution of dimensionality-reduc-
tion techniques. This is emphasized next, providing a survey
on a large variety of methods.

THE EXACT PREIMAGE WHEN IT EXISTS
Suppose that there exists an exact preimage ofw, i.e., x� such that
/(x�) ¼ w, then the optimization problem in (10) results into
that preimage. Furthermore, the preimage can be easily com-
puted when the kernel is an invertible function of hxi , xji, such as
some projective kernels including the polynomial kernel with
odd degree and the sigmoid kernel (see Table 1). Let h:R ! R

define the inverse function such that h(jðxi; xj)Þ ¼ hxi, xji. Then,
given any orthonormal basis in the input space fe1, e2, . . . , eNg,
every element x 2 X can be written as

x ¼
XN
j¼1

hej, xi ej ¼
XN
j¼1

h(jðej, x)
�
ej:
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As a consequence, the exact pre-
image x� of some pattern w ¼Pn

i¼1 ai /(xi), namely /(x�) ¼ w,
can be expanded as

x� ¼
XN
j¼1

h

Xn

i¼1

ai jðej, xi)
�
ej:

Likewise, when the kernel is an invertible function of the distance,
such as radial kernels, a similar expression can be derived by using
the polarization identity 4 hx�, eji ¼ kx� þ ejk2 � kx� � ejk2 [22].

Clearly, such a simple derivation for the preimage is only
valid under the crucial assumption that the preimage x� exists.
Unfortunately, for a large class of kernels, there are no exact pre-
images. Rather than seeking the exact preimage, we consider an
approximate preimage by solving the optimization problem in
(10). In what follows, we present several strategies for solving
this problem. We first review the techniques based on classical
optimization schemes and then present learning-based techni-
ques by incorporating additional prior information.

GRADIENT DESCENT TECHNIQUES
Gradient descent is one of the simplest optimization techniques.
It requires computing the gradient of the objective function
(11), denoted asrxN(x�). In its simplest form, the current guess
x�t is updated into x

�
tþ1 by stepping into the direction opposite to

the gradient, with

x�tþ1 ¼ x�t � gt rx N(x�t ),

where gt is a step size parameter, often optimized using a line-
search procedure. As an alternative to the gradient descent, one
may usemore sophisticated techniques, such as Newton’smethod.
Unfortunately, the objective function is inherently nonlinear
and clearly nonconvex. Thus, a gradient descent algorithm
must be run many times with several starting values, hoping
that a feasible solution will be among the local minima obtained
over the runs.

FIXED-POINT ITERATION METHOD
The structure of the kernel functions provides useful insights to
derive more appropriate optimization techniques beyond classi-
cal gradient descent. More precisely, the gradient of expression
(11) has a closed-form expression for most kernels. By setting
this expression to zero, this greatly simplifies the optimization
scheme, resulting in a fixed-point iterative technique. Taking
for instance the Gaussian kernel [7], the objective function in
(11) becomes

�2
Xn
i¼1

ai exp (�kx � xik2=2r2),

with its gradient

rxN(x) ¼ � 2
r2
Xn
i¼1

ai exp (�kx � xik2=2r2) (x � xi):

We get the preimage by setting
this gradient to zero, which
results in a fixed-point iterative
expression

x�tþ1 ¼
Pn

i¼1 ai j(x
�
t , xi) xiPn

i¼1 ai j(x
�
t , xi)

,

with j(x�t , xi) ¼ exp (� kx�t � xik2=2r2). Similar expressions
can be derived for most kernels, such as the polynomial kernel
of degree p [23] with

x�tþ1 ¼
Xn
i¼1

ai
hx�t , xii þ c
hx�t , x�t i þ c

 !p�1

xi:

Unfortunately, the fixed-point iterative technique still suffers
from local minima and tends to be unstable. The numerical
instability especially occurs when the value of the denominator
decreases to zero. To prevent this situation, a regularized solu-
tion can be easily formulated, as studied in [24].

An interesting fact about the fixed-point iterative method
is that the resulting preimage lies in the span of the available data,
taking the form x� ¼Pi bi xi for some coefficients b1, b2, . . . , bn
to be determined. Thus, the search space is controlled, as opposed
to gradient-descent techniques that explore the entire space. We
further exploit information from available training data and their
mapped counterparts, as discussed later.

LEARNING THE PREIMAGE MAP
To find the preimage map, a learning machine is constructed,
with training elements from the feature space and estimated val-
ues in the input space, as follows: we seek to estimate a function
C� with the property that C�(/ðxi)Þ ¼ xi, for i ¼ 1, 2, . . . , n.
Then, ideally, C�(w) should give x�, the preimage of w. To make
the problem computationally tractable, two issues are consid-
ered in [25] and [26]. First, the function is defined on a vector
space. This can be done by representing vectorwise any w 2 H
with ½hw,w1i hw,w2i � � � hw,wki	>, using an orthogonal basis
obtained from kernel PCA. Second, the preimage map C� is
decomposed into dim (X ) functions to estimate each compo-
nent of x�. From these considerations, we seek functions
C�
1,C

�
2, . . . ,C

�
dim (X ), with C�

m:R
k ! R. Each of these functions

is obtained by solving the optimization problem

C�
m ¼ argmin

C

Xn
i¼1

f (½xi	m;Cðw)
�þ g g(kCk2),

where f ( � , � ) is some loss function and ½�	m denotes the mth
component operator. By taking for instance the distance as a
loss function, we get

C�
m ¼ argmin

C

1
n

Xn
i¼1

��½xi	m � C(w)
��2 þ g kCk2:

This optimization problem can be easily solved by a matrix-
inversion scheme in analogy to the ridge-regression problem (8)

THE STRUCTURE OF THE KERNEL
FUNCTIONS PROVIDES USEFUL
INSIGHTS TO DERIVEMORE
APPROPRIATE OPTIMIZATION

TECHNIQUES.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE   [83]   MARCH 2011

and its linear system (9). This
learning approach is further
investigated in the literature,
incorporating neighborhood
information [27] and regulari-
zation with a penalized learn-
ing [28]. All these methods are
based on a set of available data in the input space and the associ-
ated images in the rkHs. The method discussed next carries this
concept further by exploring pairwise distances in both spaces.

MULTIDIMENSIONAL SCALING-BASED TECHNIQUES
As illustrated in the earlier preimage-learning approach, the pre-
image map seeks data in the input space based on their associated
images in the rkHs. Essentially, this is a low-dimensional embed-
ding of objects from a high-dimensional space. This problem has
received a lot of attention in multivariate statistics under the
framework of multidimensional scaling (MDS) [29]. MDS techni-
quesmainly embed data in a low-dimensional space by preserving
pairwise distances. This approach has been applied with success
to solve the preimage problem [23]. Consider each distance in the
rkHs di ¼ kw� /(xi)kH and its counterpart in the input space
kx� � xik. Ideally, these distances are preserved, namely

kx� � xik2 ¼ kw� /(xi)k2H, (12)

for every i ¼ 1, 2, . . . , n. It is easy to verify that if there exists an i
such thatw ¼ /(xi), then we get the preimage x� ¼ xi (Figure 3).

One way to solve this problem is to minimize the mean-
square error between these distances, with

x� ¼ argmin
x

Xn
i¼1

kx � xik2 � kw� /(xi)k2H
��� ���2:

To solve this optimization
problem, a fixed-point iteration
method is proposed by setting
the gradient of the aforemen-
tioned expression to zero, result-
ing in the expression

x� ¼
Pn

i¼1(kx� � xik2 � d2i ) xiPn
i¼1(kx� � xik2 � d2i )

:

Another approach to solve this problem is to separately con-
sider the identities (12), resulting in n equations

2hx�, xii ¼ hx�, x�i þ hxi, xii � d2i ,

for i ¼ 1, 2, . . . , n. In these expressions, the unknown also
appears on the right-hand side, with hx�, x�i. This unknown
quantity can be easily identified in the case of centered data,
since taking the average of both sides results in

hx�, x�i ¼ 1
n

Xn
i¼1

d2i � hxi , xii

 �

:

Let � be the vector having all its entries equal to (1=n)
Pn

i¼1

(d2i � hxi , xii) then, in matrix form, we have

2X>x� ¼ diag(X>X)� d21 d
2
2 � � � d2n

 �>þ�,

whereX ¼ ½x1 x2 � � � xn	 and diag( � ) is the diagonal operator with
diag(X>X) the column vector with entries hxi, xii. The unknown
preimage is obtained using the least-squares solution, namely

x� ¼ 1
2
(XX>)�1X diagðX>X)� ½d21 d22 � � � d2n	>


 �
,

ψ

?

φ (·)

x ∗

d1
d2

d3

dn

δ2

δn

δ3

δ1

χ

(a) (b)

H

[FIG3] Schematic illustration of theMDS-based technique where the preimage is identified from pairwise distances in both (a) input
and (b) feature spaces.

AN INTERESTING FACT ABOUT FIXED-
POINT ITERATIVEMETHOD IS THAT

THE RESULTING PREIMAGE LIES IN THE
SPAN OF THE AVAILABLE DATA.
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where the term (XX>)�1X� becomes zero, thanks to the
assumption of centered data.

To keep this technique tractable in practice, only a certain
neighborhood is considered in the preimage estimation, in the
same spirit as the locally linear embedding scheme in dimen-
sionality reduction [30]. This approach opened the door to a
range of other techniques, borrowed from dimensionality reduc-
tion and manifold learning literature [31].

CONFORMAL MAP APPROACH
In addition to the distance-preserving method of MDS, one may
also propose a preimage method by preserving inner product
measures. Using such a strategy, the angular measure is also
preserved, since x>i xj=kxikkxjk defines the cosine of the angle
between xi and xj in the Euclidean input space. For this reason it
is called the conformal map approach. A recent technique to
solve the preimage problem based on the conformal map has
been presented in [32]. To this end, a coordinate system in the
rkHs is constructed with an isometry with respect to the input
space. We emphasize the fact that the model is not coupled
with any constraint on the coordinate functions, as opposed to
the orthogonality between the functions resulting from the
kernel PCA.

By virtue of Theorem 1, each of the n coordinate functions
can be written as a linear expansion of the available images,
namely W‘ ¼

Pn
i¼1 h‘, i /(xi), for ‘ ¼ 1, 2, . . . , n, with unknown

weights to be determined, rearranged in a matrix H. There-
fore, the coordinates of any element of the rkHs can be
obtained by a projection onto these coordinate functions,
thus any /(xi) can be represented with the n coordinates in
Wxi ¼ ½hW1,/(xi)i hW2,/(xi)i � � � hWk,/(xi)i	>. Ideally, the inner
products are preserved in both coordinate system and Euclidean
input space, specifically

W>
xi Wxj ¼ x>i xj, (13)

for all i, j ¼ 1, 2, . . . , n. This can be solved by minimizing the fit-
ness error over all pairs,

min
W1, ...,Wn

Xn
i, j¼1

��x>i xj �W>
xiWxj

��2 þ g
Xn
‘¼1

kW‘k2H,

where the second term incorporates regularization. This can be
written in matrix form as

min
H

1
2
kX>X � K H>HKk2F þ g tr(H>HK),

where tr( � ) denotes the trace of a matrix and k � kF the Frobe-
nius norm, i.e., the root of sum of squared (absolute) values
of all its elements, or equivalently kMk2F ¼ tr(M>M). By tak-
ing the derivative of this expression with respect to H>H,
one obtains

H>H ¼ K�1�X>X � gK�1�K�1: (14)

Now we are in a position to determine the preimage of some
w ¼Pn

i¼1 ai /(xi). Its coordinates associated to the system of
coordinate functionsW1,W2, . . . ,Wn are given by

hw,W‘iH ¼
Xn
i, j¼1

h‘, i aj j(xi, xj),

for ‘ ¼ 1, 2, . . . , n. By preserving the inner products in both
spaces, ideally themodel in (13) can be extended tow, resulting in

X>x� ¼ KH>HKa:

By combining this expressionwith (14), we get the simplified expres-
sionX>x� ¼ (X>X � gK�1) a, whose least square solution is

x� ¼ (XX>)�1X(X>X � gK�1) a:

It is worth noting that this expression is independent of the ker-
nel type under investigation.

Furthermore, this technique can be easily extended to identify
the preimages of a set of elements in rkHs, since the term between
parentheses needs to be computed only once. In fact, this is a
matrix-completion scheme like the one studied in [33]. This cor-
responds to completing an inner-product matrix based on another
Grammatrix, thematrix of kernel values.

SCOPE OF APPLICATION OF THE PREIMAGE PROBLEM
In this section, we present some application examples that
involve solving the preimage problem. Our first experiments
are with kernel PCA on toy data and are mainly intended to
illustrate the preimage problem. Then we provide a compara-
tive study of the several methods presented in this article on
image denoising problem. Finally, we show how the preimage
can be required in other applications beyond kernel PCA. To
this end, we consider a problem of autolocalization of sensors
in wireless sensor networks.

SOME APPLICATIONS OF
KERNEL PCA WITH PREIMAGE

FEATURE EXTRACTION
The first illustration considered here is the use of kernel PCA on
synthetic data to provide a visual illustration of PCA versus kernel
PCA for feature extraction. The data distribution takes the form of a
ring in 2-D, with an inner diameter of two and an outer diameter of
three. Within this region, n ¼ 600 training data were generated, as
illustrated in Figure 4 with blue dots. To extract the most relevant
feature, twomethods were used: on the one hand, the conventional
PCA and on the other hand kernel PCA with a preimage step. The
PCA technique provided linear axes by solving the eigenvector
problem and thus did not capture the circular shape of the data.
This is illustrated by projecting the data onto the first principal axis,
given by red curve in Figure 4(a). The kernel PCAwas applied using
a Gaussian kernel with bandwidth r ¼ 2, the principal axes being
defined by a sumof nGaussian functions in an infinite-dimensional
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feature space. A preimage method was required to derive the axes,
or representations of these axes, within the input space. As shown
in Figure 4(b), this technique captured the nonlinear feature in the
original space.

As described at the beginning of this article, when we intro-
duced the preimage problem with the Gaussian kernel, each
data is mapped into a Gaussian bump centered around it. By tak-
ing the sum of these Gaussians with some optimized weighting
coefficients, we get the principal distribution whose mean, if it
exists, provides the preimage. It is worth noting that the defini-
tion of a mean only exists and makes sense for Gaussian like
curves and not for a sum of Gaussians centered at different
points. A schematic illustration of the preimage problem is
given in Figure 5, taking only a (unidirectional) radial cut in the
ring-distributed data. The data obtained by solving the preimage
problem can be interpreted as the center of the distribution
Gaussian that best approximates the sum of Gaussians.

In this application, a fixed-point iterative technique was used.
Next, we give a comparative study of several techniques given in
this article by considering the image-denoising problem.

IMAGE DENOISING
In this section, we illustrate the results obtained in a problem of
real-image denoising, using three techniques: the fixed-point itera-
tive method, MDS-based technique, and conformal map approach.
The images consist of the modified National Institute of Standards
and Technology (NIST) database of handwritten digits [34], corre-
sponding to handwritten digits, from 0 to 9, in (almost) binary 28-
by-28 pixels. From a machine-learning point of view, each image
can be represented as a point in a 28 3 28 dimensional space. The
original images were corrupted by adding a zero-mean white Gaus-
sian noise with variance 0.2. In the training stage, a set of 1,000
images, 100 of each digit, were used to train the kernel PCA, retain-
ing only 100 leading principal axes. We used the Gaussian kernel
for the three algorithms, with the bandwidth set to r ¼ 105.

To illustrate the ability of this method for image denoising,
another set of ten images, one for each digit, was considered

under the same noise conditions. These images are illustrated in
Figure 6(a), with the results obtained with the (b) fixed-point
iterative, (c) MDS-based, and (d) conformal methods. For such
applications, the fixed-point iterative algorithm was found to be
inappropriate, even with a large number of iterations (here
10,000 iterations were used). To take advantage of prior knowl-
edge, the same training data set was used for learning the reverse
map. Realistic results were obtained using the MDS-based method.
It is obvious that the conformal algorithm achieved better denoised
results. For this simulation, the regularization parameter was
set to g ¼ 10�9.

In an attempt to provide a measure of computational require-
ments, we considered the (average) total CPU time of each
algorithm. These algorithms were implemented on a MATLAB
running on a MacBook Pro Duo Core to offer a comparative
study. With 10,000 iterations, the fixed-point iterative algorithm
required a total CPU time of up to 1 h. The MDS-based and con-
formal algorithms required 5 min and 1.5 s, respectively.

(a)

(b)

(c)

(d)

[FIG6] Application to handwritten digit denoising with kernel
PCA, using several preimagemethods presented in this article.
(a) Ten digits corrupted by noise. (b) Fixed-point iterative
method. (c) MDS-based method. (d) Conformal method.

[FIG5] Schematic illustration of the preimage problemwith the
Gaussian kernel, where the profile corresponds to a radial cut
in the ring-distributed data. From the sum of Gaussians (red
curve), the preimage corresponds to the mean value of the
distribution (blue dots).

(a) (b)

[FIG4] Denoising data distributed on a ring, using (a) classical
PCA and (b) kernel PCAwith preimage. The extracted feature is
(a) linear and (b) circular.
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AUTOLOCALIZATION IN
WIRELESS SENSOR NETWORKS
With recent technological advances in both electronics and
wireless communications, low-power and low-cost tiny sen-
sors have been developed for monitoring physical phenomena
and tracking applications. Densely deployed in the inspected
environment with efficiently designed distributed algorithms,
wireless ad hoc networks seem to offer several opportunities.
They were successfully employed in many situations, ranging
frommilitary applications such as battleground supervision to
civilian applications such as habitat monitoring and health-
care surveillance (see [35], [36] and references therein). While
these sensors are often randomly deployed, e.g., for monitor-
ing inhospitable habitats and disaster areas, information cap-
tured by each sensor remains obsolete as long as it stays
unaware of its location. Implementing a self-localization device,
such as a global positioning system receiver, at each sensor
device may be too expensive and too power hungry for the
desired application with battery-powered devices. As a conse-
quence, only a small fraction of the sensors may be location
aware, the so-called anchors or beacons. The other sensors have
to estimate their locations by exchanging some information
with its neighbors.

For this purpose, each sensor determines a ranging (dis-
tance) with other sensors, from intersensor measurements such
as the received signal strength indication (RSSI), the connectiv-
ity, the hop count, and the time difference of arrival. Most meth-
ods used for autolocalization in sensor networks are based on
either MDS techniques or semidefinite programming (for a sur-
vey, see [37] and [38]), identifying a function that links the rang-
ing between sensors to their locations. However, if the data are
not intersensor distances or are linked to coordinates by an
unknown nonlinear function, e.g., using the RSSI measure-
ments or the estimated covariance sensor data [39], linear tech-
niques such as MDS and PCA fail to accurately estimate the
locations. Once again, the kernel machines provide an elegant
way to overcome this drawback.

Here, we describe the method proposed in [40]. The main
idea can be described in three stages. In the first stage, we
construct the reproducing kernel and its associated rkHs
that best describes the anchor pairwise similarities. In the
second stage, a nonlinear manifold is designed from similar-
ities between anchor–sensor measurements by applying the
kernel PCA technique. The final stage consists of estimating
the coordinates of nonanchor sensors by applying a preimage
technique on their projections onto the manifold. Next, we
describe these three stages before presenting the experimen-
tal results.

Consider a network of N sensor nodes, with n location-
aware anchors and N � n sensors of unknown location, living
in a p-dimensional space, e.g., p ¼ 2 for localization in a plane.
Let xi 2 Rp be the coordinates of the ith sensor, rearranged
such that indices i ¼ 1, 2, . . . , n correspond to anchors. Let
~K(i, j) be the intersensor similarity between sensors i and j,
such as RSSI.

KERNEL SELECTION FROM
INTERANCHOR SIMILARITIES
As a model of similarity measurements, the appropriate
reproducing kernel should be chosen and tuned up, which
allows a physical meaning of the results obtained from the
kernel PCA (next stage). The alignment criterion [41] pro-
vides a measure of similarity between the reproducing kernel
and target function, e.g., between a Gaussian kernel and RSSI
measurements. Maximizing the alignment A(K , ~K) provides
the optimal-reproducing kernel, faithful to the interanchor
measurements, where

A(K , ~K) ¼ hK , ~KiFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hK ,KiFh~K , ~KiF

q ,

with h�, �iF as the Frobenius inner product between two matri-
ces. Taking, for instance, the Gaussian kernel, the optimization
problem is reduced to finding the optimal bandwidth. In prac-
tice, this optimization problem is solved at each anchor, using
only the information from its neighborhood.

KERNEL PCA UPON ANCHORS
After identifying the reproducing kernel adapted to the mea-
surements, a kernel-PCA approach is applied to provide the most
relevant subspace of the associated rkHs. Classical kernel PCA is
computed by a diagonalization scheme, which may be computa-
tionally expensive for in-network processing. An alternative
approach can be done using an iterative scheme, such as the ker-
nel-Hebbian algorithm [42] (we refer the reader to [40] for its
implementation in wireless sensor networks).

PREIMAGE FOR LOCATION ESTIMATION
For each sensor, we represent its image in the rkHs associ-
ated to the kernel, maximizing the alignment criterion. The
image is projected onto the manifold, obtained using kernel
PCA with anchor pairwise similarities. The problem of esti-
mating the coordinates from that representation is the pre-
image problem.

EXPERIMENTAL RESULTS
The first batch of experiments was carried out on simulated
measurements. For this purpose, we considered a network of
sensors measuring some physical phenomena, e.g., tempera-
ture, atmospheric pressure, or luminance. In a static field, we
assumed that measurements were jointly generated from a
normal distribution, with decreasing correlations between
measurements as a function of the distance between sensors.
This information was used as a local similarity measure
between sensors [39]. More precisely, we considered the
spherical model, commonly used in environmental and geo-
logical sciences [43], defined by a covariance of the form
f(kxi � xjk) with

f(u) ¼ 1� 3
2d uþ 1

2d3 u
3 for 0 � u � d;

0 for d5u,

�
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where d denotes the cutoff distance, and fixed to d ¼ 60 in our
experiments. The profile of the spherical model is illustrated in
Figure 7. The experiments consisted of 100 sensors, from which
20 were anchors with known locations, randomly spread over a
100-by-100 square region. For each sensor, 200 measurements
were collected, and the Gaussian kernel was considered. Figure 8
illustrates the localization results obtained with this method.

In a second experiment, real measurements of RSSI were
collected from an indoor experiment at the Motorola facility in
Plantation, Florida. The environment is a 14-by-13 m office area,
partitioned by cubicle walls (height ¼ 1.8 m). The network con-
sisted of 40 unknown-location sensors and four anchors near the
corners. The experimental settings are described more in detail
in [44] (see also http://www.eecs.umich.edu/~hero/localize/). For
each sensor i, we collected the RSSI associated to it in a 44-dimen-
sional vector, denoted by ui. The intersensor similarity between
sensors is given by thematrix ~K , defined between sensors i and j by

~K(i, j) ¼ exp
��kui � ujk2=200

�
:

The Gaussian kernel was considered, with its bandwidth optimized
by maximizing the alignment. The proposed method gives a root-
mean-square location error over the 40 sensors of 2.13 m each.
This should be compared to the maximum-likelihood estimator
studied in [44] (that turned out to be biased), having a root-mean-
square location error of 2.18m.

FINAL REMARKS
This article presented the preimage problem inmachine learning,
providing an overview of the state-of-the-art methods and ap-
proaches for solving such a problem. Our aim was to show how
this problem is intimately related to dimensionality reduction
issues, borrowing and enhancing ideas derived from dimensional-
ity reduction and manifold learning. Throughout this article, we
studied this problem for kernel PCA and provided a comparative
study of several methods for image denoising. We extended the
range of application of the preimage problem to another context,
sensor autolocalization in wireless sensor networks.

By interpreting the processing in the feature space to the
original input space, this strategy opens the way to a range of
diverse signal-processing problems. These problems are nonlin-
ear kernel-based formulations of classical signal processing
methods, including the independent component analysis [45]
and the Kalman filter [46]. Another area of application is the pre-
image problem on structured spaces, including biological sequence
analysis in bioinformatics [47] and string analysis in natural
language [48]. In the latter, the authors derived a preimage solu-
tion for a string kernel, using a graph-theoretical formulation. All
these promising areas of application of the preimage problem open
an avenue for future work.

AUTHORS
Paul Honeine (paul.honeine@utt.fr) received his Dipl.-Ing.
degree in mechanical engineering in 2002 and his M.Sc. degree
in industrial control in 2003, both from Lebanese University in

Lebanon. In 2007, he received the Ph.D. degree from the
University of Technology of Troyes, France. Since Septem-
ber 2008, he has been an assistant professor at the Institut
Charles Delaunay (UMR CNRS 6279) at the University of
Technology of Troyes, France. He is the coauthor of the
2009 Best Paper Award at the IEEE Workshop on Machine
Learning for Signal Processing (MLSP). His research inter-
ests include nonstationary signal analysis, nonlinear adapt-
ive identification, and machine learning.

C�edric Richard (cedric.richard@unice.fr) is a full professor
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[FIG8] Estimated locations of 80 sensors (asterisk) based on 20
anchors of known positions (green squares), with error to real
position represented by a line (—).
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[FIG7] Profile of the spherical model as a function of the dis-
tance. The cutoff distance is set to d560.
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[Statistical manifold of

probability distributions]

W
e consider the problem of
dimensionality reduction
andmanifold learning when
the domain of interest is a
set of probability distribu-

tions instead of a set of Euclidean data vectors.
In this problem, one seeks to discover a low-
dimensional representation, called embedding, that

preserves certain properties such as distance between
measured distributions or separation between classes of

distributions. This article presents the methods that are
specifically designed for low-dimensional embedding of infor-

mation-geometric data, and we illustrate these methods for visualiza-
tion in flow cytometry and demography analysis.

DIMENSIONALITY REDUCTION
High-dimensional data visualization and interpretation have become increasingly important for data min-
ing, information retrieval, and information discrimination applications, arising in areas such as search
engines, security, and biomedicine. The explosion in sensing and storage capabilities has generated a vast
amount of high-dimensional data and led to the development of many algorithms for feature extraction
and visualization, known variously as dimensionality reduction, manifold learning, and factor analysis.

Dimensionality reduction strategies fall in two categories: supervised task-driven approaches and unsu-
pervised geometry-driven approaches. Supervised task-driven approaches reduce data dimension accord-
ing to the optimization of a performance criterion that depends on both reduced data and ground truth,
e.g., class labels. Examples include linear discriminant analysis (LDA) [1], supervised principal components
[2], and multi-instance dimensionality reduction [3]. Unsupervised geometry-driven approaches perform
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dimension reduction without ground truth and try to preserve
geometric properties such as distances or angles between data
points. Examples include principal component analysis (PCA),
multidimensional scaling (MDS) [4], and ISOMAP [5]. Most of
these approaches use Euclidean distances between sample
points to drive the dimensionality-reduction algorithm.

It has been recognized that these Euclidean algorithms can be
generalized to non-Euclidean spaces by replacing the Euclidean
distance metric with a more general dissimilarity measure. In par-
ticular, when the data samples are probability distributions, use of
an information divergence such as Kullback-Leibler (KL) instead
of Euclidean distance leads to a class of information-geometric
algorithms for dimensionality reduction [6], [7]. In this article, we
motivate and explain the application of information-geometric
dimensionality reduction (IGDR) for two real-world applications.

IGDRoperates on a statisticalmanifold of probability distributions
instead of the geometric manifold of Euclidean data points. When
such distributional information can be extracted from the data, IGDR
results in significant improvements in information retrieval, visual-
ization, and classification performance [6]–[10]. This improvement
can be understood from the point of view of information-theoretic
bounds: information divergence is generally more relevant to statisti-
cal discrimination performance rather thanEuclidean distance.

For example, for binary classification, the minimum probability
of error converges to zero at an exponential rate, with the rate con-
stant equal to KL information divergence between the distributions
of the data over each class [11]. The KL divergence is not a function
of the Euclidean distances between data points unless these distribu-
tions are spherical Gaussian. Therefore, as it preserves information
divergence, in many cases, IGDR can produce more informative
dimension reductions than classical Euclidean approaches.

Implementation of information-geometric versions of PCA,
ISOMAP, and others is often not as straightforward as the Euclid-
ean counterparts, which are frequently convex and solvable as
generalized eigenvalue problems. Nonetheless, as shown in this
article, the added complexity of implementation can be well worth
the effort. We illustrate the power of IGDR by presenting general-
izations of ISOMAP, PCA, and LDA. These implementations are
called Fisher information nonparametric embedding (FINE) [6],

information-preserving components analysis (IPCA) [9], and
information-maximizing components analysis (IMCA) [12], re-
spectively. Each of these algorithms solves a well-posed optimi-
zation problem over the information-geometric embedding of
each sample point’s distribution.

Probability distributions and information divergence can arise
as useful targets for dimensionality reduction in several ways. In
image-retrieval applications, themost discriminating properties of
an image may be invariants, such as the relative frequency of
occurrence of different textures, colors, or edge features. The his-
togram of these relative frequencies is a probability distribution
that is specific to the particular image, up to scale, translation,
rotation, or other unimportant spatial transformations. Dimen-
sionality reduction on these probabilities can accelerate retrieval
speed, without negatively affecting precision or recall rates. Fur-
thermore, visualization of the database, for example, asmanifested
by clusters of similar images, can be useful for understanding the
database complexity or for comparing the different databases.

In other applications, each object in the database is itself
stored as a cloud of high-dimensional points, and the shape of this
point cloud is what naturally differentiates the objects. For exam-
ple, in the flow cytometry application, discussed in the ‘‘Flow
Cytometry’’ section, the objects are different patients, and the data
points are vector attributes of a population of the patient’s blood
cells, and it is the shape of the point cloud that is of interest to the
pathologist. This is demonstrated in Figure 1, where we compare
the point clouds, with respect to three biomarkers, of two patients
with favorable and unfavorable prognoses. Another example, dis-
cussed in the ‘‘Crime in the 1990s’’ section, is spatiodemographic
analysis of crime data, where the analyst is interested in compar-
ing the patterns of crime in different cities based on distributions
of community and law enforcement characteristics.

All the algorithms presented here are available for download
as MATLAB code on our reproducible research Web site [13].

DISTANCE ON STATISTICAL MANIFOLDS
Information geometry is a field that has emerged from the study of
geometrical constructs on manifolds of probability distributions.
These investigations analyze probability distributions as geometri-
cal structures in a Riemannian space. Using tools and methods
deriving from differential geometry, information geometry is
applicable to information theory, probability theory, and statistics.
(For a more thorough introduction on information geometry, see
[14] and [15].) As most dimensionality reduction techniques are
designed to either preserve pairwise sample distances (unsuper-
vised) or maximize between-class distances (supervised), it is first
necessary to understand the principles of distance in information
geometry. Similar to points on a Riemannian manifold in Euclid-
ean space, probability density functions (PDFs) that share a
parameterization lie on a statistical manifold. A statistical manifold
may be viewed as a set M, whose elements are probability distri-
butions. The coordinate system of this manifold is equivalent to
the parameterization of PDFs. For example, a d-variate Gaussian
distribution is entirely defined by its mean vector l and covariance
matrix R, leading to a d þ d(d þ 1)=2-dimensional statistical
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[FIG1] In clinical flow cytometry, diagnoses and prognoses are
made through the analysis of high-dimensional point clouds,
the measurement space of selected biomarkers.
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manifold, which is of a higher dimension than the dimension d of
a sample realization X � N (l,R) from this distribution.

For a parametric family of probability distributions on a statisti-
cal manifold, it is possible to define a Riemannian metric using the
Fisher information metric, which measures the amount of infor-
mation a random variable contains in reference to an unknown
parameter h. This metric may then be used to compute the Fisher
information distanceDF(p1, p2) between two distributions p(x; h1),
p(x; h2) 2 M. This distance is the length of the shortest path—
the geodesic—onM, connecting coordinates h1 and h2.

Although the Fisher information distance cannot be exactly com-
puted without a priori knowledge about the parameterization h of
the manifold, the distance between PDFs p1 and p2 may be ap-
proximated with a variety of pseudometrics such as KL divergence

KL( p1kp2) ¼
Z

p1(x) log
p1(x)
p2(x)

dx: (1)

KL divergence is very important in information theory and is
commonly referred to as the relative entropy of one PDF to
another. As the pair of densities approaches each other, the KL
divergence is a good approximation to the Fisher information dis-
tance between them [14]:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KL( p1kp2)

p
! DF( p1, p2)

as p1 ! p2. (More precisely, 2KL(p1 k p2) ¼ D2
F(p1, p2)(1þ

O(k p1 � p2 k )), where k p1 � p2 k denotes the L2 norm of the
difference between the densities.) This allows for a data-driven
approximation of the Fisher information distance, through the
use of the empirically determined PDFs in the absence of informa-
tion about the Fisher informationmetric. Although KL divergence
is not a symmetric measure, we can add symmetry by defining
DKL(p1, p2) ¼ KL(p1 k p2)þ KL(p2 k p1), whichmaintains similar
convergence properties. We note that there are several other met-
rics that approximate the Fisher information distance, such as the
Hellinger and cosine distances. Although for brevity, we utilize KL
divergence throughout this article. For additional measures of
probabilistic distance and details on their computation for empiri-
cal data, we refer the reader to [16] and [17].

As the two densities p1 and p2 in (1) become more dissimilar,
the KL-divergence approximation of the Fisher information dis-
tance becomes weak. Additionally, when PDFs are constrained to
form a submanifold of interest, the straight-shot distance is no
longer an accurate description of the manifold distance. This is
illustrated in Figure 2, in which we represent a one-dimensional
submanifold that occupies a subspace of the two-dimensional
hypersphere. The Fisher information distance is equal to the
shortest path along the submanifold (curvy line) and is not equal
to the distance on the full manifold, that is, the portion of a great
circle on a hypersphere connecting the two points. Hence, there
are situations in which standard approximations of the informa-
tion distance do not converge to the true distance, and it is neces-
sary to approximate the geodesic along themanifold.

Using a connected graph, we may define the path between p1
and p2 as a series of connected segments. The geodesic distance

may then be approximated as the sum of the lengths of those
segments. Specifically, given the collection of N PDFs P ¼
p1, . . . , pNf g and using the KL divergence as an approximation

of the Fisher information distance, we can now define an ap-
proximation function G for all pairs of PDFs

G( p1, p2;P) ¼ min
M,P

XM�1

i¼1

DKL( p(i), p(iþ1)), p(i) ! p(iþ1) 8i: (2)

Intuitively, this estimate calculates the length of the shortest
path between points in a connected graph on the well-sampled
manifold, and as such G(p1, p2;P) ! DF(p1, p2) as N ! 1.
Empirically, (2) may be solved with Dijkstra’s shortest-path
algorithm. This is similar to the manner in which ISOMAP [5]
approximates the distances on Euclidean manifolds. Figure 3
illustrates this approximation by comparing the KL graph
approximation to the actual Fisher information distance for the
univariate Gaussian case. As themanifold ismore densely sampled
(uniformly sampling over the range of mean and variance parame-
ters for this simulation), the approximation converges to the true
Fisher information distance.

A

B

[FIG2] Given a one-dimensional submanifold (the curvy dark
line) of interest lying on a two-dimensional sphere manifold,
the Fisher information distance is the shortest path connecting
the points A and B along the one-dimensional submanifold,
rather than the length of a portion of the great circle connect-
ing the points on the sphere.
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[FIG3] Convergence of the graph approximation of the Fisher
information distance using KL divergence. As the manifold is
more densely sampled, KL divergence approaches the Fisher
information distance.
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DIMENSIONALITY REDUCTION IN THE DENSITY SPACE
Consider the collection of PDFsP ¼ p1, . . . , pNf g lying on some
statistical manifold M. By performing dimensionality reduction
in the space of probability densities, one wishes to reconstructM
using only the information available in P. Specifically, the aim is
to find an embedding A : p(x) ! y, where y 2 Rm. This is a simi-
lar setting to traditional manifold learning algorithms that aim to
reconstruct Riemannian manifolds based on a finite sampling,
extended to the properties of statistical manifolds.

By performing dimensionality reduction on a family of PDFs,
we are better able to both visualize and classify data. To obtain
a lower-dimensional embedding, we calculate the pairwise KL
divergences within P. In problems of practical interest, how-
ever, the parameterization of the probability densities is usually
unknown. We are instead given a family of data sets X ¼
fX1, . . . ,XNg, in which we may assume that each data set X i is a
realization of some underlying probability distribution to which
we do not have knowledge of the parameters. As such, we rely on
nonparametric techniques to estimate both the probability
density and KL divergence. For the purpose of this article, we
implement kernel density estimation methods, although other
estimationmethods are also applicable.

In a previous work [6], we developed an algorithm for dimen-
sionality reduction in the density space that we called FINE. By
assuming that each data set is a realization of an underlying
PDF, and each of those distributions lie on a manifold with some
natural parameterization, then this embedding can be viewed as
an embedding of the actual manifold into Euclidean space. We
illustrate the FINE algorithm in Figure 4.

Through information geometry, FINE enables the joint em-
bedding of multiple data sets X i into a single low-dimensional
Euclidean space. By viewing each X i 2 X as a realization of
pi 2 P, we reduce the numerous samples in X i to a single point.
The dimensionality of the statistical manifold may be signifi-
cantly less than that of the Euclidean realization. MDS methods
reduce the dimensionality of pi from the Euclidean dimension to
the dimension of the statisticalmanifold onwhich it lies.

ADDING APPLICATION-SPECIFIC CONSTRAINTS
FINE was developed to be applied to the general case of dimen-
sionality reduction in the space of PDFs, making no assumptions
on the data distributions or the geometry of the underlying statis-
tical manifolds. However, there are several applications where
known intrinsic properties may be exploited when performing
information-geometric dimensionality reduction. By incorporat-
ing these properties into algorithm constraints, one may be able
to obtain improved performance.

Lee et al. [18] have demonstrated the use of IGDR for image seg-
mentation, usingmultinomial distributions as points that lie on an
n-simplex (or projected onto an (nþ 1)-dimensional sphere). By
framing their problem as such, they are able to exploit the proper-
ties of such a manifold, using the cosine distance as an exact com-
putation of the Fisher information distance and using linear
methods (PCA) of dimensionality reduction. They have shown
very promising results for the problem of image segmentation.

If there exists a priori knowledge that the geometry of the
underlyingmanifold is that of a (hyper)sphere, adding such a con-
straint results in an improved embedding. In [8], we presented a
special case of FINE, which we called spherical Laplacian informa-
tion maps (SLIM), which restricted the final embedding to con-
strain all points to lie on the surface of a sphere. SLIM is useful
when the user wants to preserve the spherical geometry of the
ambient space, for example, when the dimensionality reduction is
used to extract object pose trajectories from video. This is illus-
trated in Figure 5, where we embed the rotation of an object cap-
tured by a stationary camera with SLIM and PCA. Each of the 36
images was featured as a multinomial distribution over the pixel
space prior to embedding. While PCA discerns the order of the
change in angle, it does not properly identify the shape of the
trajectory (i.e., circular) as SLIM does.

DIMENSIONALITY REDUCTION IN THE SAMPLE SPACE
For many learning methods, it is often desirable to reduce the
dimensionality of X, finding a transformation A : X ! Y , where
Y ¼ ½y1, . . . , yn	 and each yi 2 Rm, m5d. Typically, each set

M

x2

x1

X1

X2

X3

p1

p1

p2

p2

p3

p3

[FIG4] FINE: first, a PDF pi is estimated for each data set Xi . Then, an information-geometric metric is used to learn the geometry
of the manifold of PDFs from pairwise distance measurements. Finally, a Euclidean embedding from themanifoldMx toRd is
obtained, associating each original data set Xi with its embedded point in Euclidean space xi .
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would be reduced in an individual manner; if there is a deemed
relationship between the sets, it has generally been approached as a
classification problem in which each signal X i is considered as a set
of points belonging to class i. An example of this situation would be
supervised dimensionality reduction with Fisher’s LDA [1].

Viewing this problem from an information-geometric perspec-
tive presents a different vantage point rather than considering
each X i to be a collection of points in a specific class; let us gener-
alize the relationship between sets X i and X j. Specifically, con-
sider the case for which each X i is a realization of some unknown
generating function pi , in which pi and pj may or may not be
equivalent. This agrees with the standard classification problem
in which each pi represents a class PDF, but it also allows for the
different relationships between PDFs. Specifically, rather than
having a number class equal to the number of data sets N , there
may be significantly fewer classes M � N , in which M is un-
known and no labels are available. In this generalized scenario,
dimensionality reduction is desirable for the purpose of classifica-
tion, feature extraction, and/or visualization.

Let us illustrate with a simple example. Every ten years, the
U.S. census is conducted, generating a collection of data about
U.S. residents, such as height, weight, income, ethnicity, and
education level. Let us now partition the data such that each
county within the same state is represented by its own set X.
Standard methods of feature extraction will find the features
that best describe each county on an individual level. We are
interested in determining the most important features when
comparing all counties at the same time. While median income
may not be a distinguishing characteristic within a single county

and may not be recognized as such when solely extracting fea-
tures from that individual county, it would be quite informative
when comparing all counties across the state.

The construct of comparison across data sets can be directly
abstracted to the biomedical field, where it is necessary to com-
pare patients who have been analyzed with the same set of fea-
tures and identify which of those features best distinguishes the
patient corpus. We have presented a method of IGDR, which we
refer to as IPCA, to solve this problem for flow cytometry data
[9]. IPCA aims to find the optimal transformation of PDFs
A : p(x) ! p(y). By preserving the KL divergence, the estimated
PDFs generating the data sets, IPCA ensures that the low-
dimensional representation maintains the similarities between
data sets that are contained in the full-dimensional data, mini-
mizing the loss of information.

With some abuse of notation, we will further refer to
DKL(pi, pj) as DKL(X i,X j), recalling that the KL divergence is cal-
culated with respect to PDFs and not realizations. We define the
IPCA projection matrix A 2 Rm3 d , in which A reduces the dimen-
sion ofX from d tom (m � d), such that

DKL(AX i , AX j) ¼ DKL(X i, X j), 8 i, j: (3)

This can be formulated as an optimization problem

A ¼ arg min
A: AAT¼I

J(A), (4)

where I is the identitymatrix and J(A) is some cost function designed
to implement (3). Note that we include the optimization constraint
AAT ¼ I to ensure that our projection is orthonormal, which keeps
the data from scaling or skewing, as that would undesirably distort

−1.5 −1 −0.5 0 0.5 1 1.5 2
−3.5

−3

−2.5

−2

−1.5

−1

−0.5
× 104

× 104X

Y

−1−0.50

(a) (b)

0.51
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Z

Y

[FIG5] The embedding of an object captured at various rotation points with SLIM and PCA. SLIM preserves the spherical nature of
the intrinsic manifold. (a) PCA. (b) SLIM.
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the data. Let D(X ) be a dissimilarity matrix such that
Dij(X ) ¼ DKL(X i,X j), and D(X ; A) is a similar matrix where the
elements are perturbed by A, i.e., Dij(X ;A) ¼ DF(AX i, AX j). This
formulation results in the following cost function:

J(A) ¼
X
i

X
j

Wij(Dij(X )� Dij(X ; A))2, (5)

whereWij is some weighting factor.
TheweightsWij can be selected based onDij(X ) to de-emphasize

the influence of certain pairs (i, j) on embedding. For example, the
nearest neighbor (NN) weights of Wij ¼ 1 for some k-NN and
Wij ¼ 0 will eliminate far-flung interactions for which KL diver-
gence is a poor approximation to the Fishermetric. The use of heat
kernel weights, similar to Laplacian eigenmaps [19], will have a
more gradual effect. These functions will ensure that more weight
is given to preserve the pairwise distances of close PDFs. Although
the choice of cost-weighting function is dependent on the prob-
lem, the overall projection method ensures that the similarity
between data sets ismaximally preserved in the desired low-dimen-
sional space, allowing for comparative learning between sets.

We illustrate the IPCA and IMCA (see the ‘‘Supervised Learn-
ing’’ section) in Figure 6. While we omit the details in this article
(see [9] and [17]), the cost function (5)may beminimized with vari-
ous convex optimization techniques; we utilize gradient descent
with random initializations for A. There are computational issues
with gradient methods, namely, local extrema. We find the global

minimum by computing IPCA over several random initializations
and taking the resultant A that minimizes the cost function. In
most applications we have tested, this method has been very effec-
tive, and we have found that most random initializations of A con-
verge to the sameminimum.

Recall that the information distance is entirely defined by
those areas of input space in which the PDFs differ. As the IPCA pre-
serves the information distance between probability distributions,
A is going to be highly weighted toward the variables that contrib-
ute the most to that distance. Hence, the loading vectors of A give
a ranking of the discriminative value of each variable in the full-
dimensional feature space. This form of variable selection is use-
ful in exploratory data analysis.

SUPERVISED LEARNING
As mentioned previously, when developing ICPA, we generalized
the relationship between PDFs such that they may or may not
represent unique classes in a classification task. We presented
an IPCA in the scenario for which sample classification is not
the desired task, but we now extend the methods to supervised
dimensionality reduction.

The Chernoff performance bound on classification error is
used to bound the probability of error based on the probabilistic
distance between classes. The Chernoff distance is a single-param-
eter class of probabilistic distances, and as the distance increases,
the probability of misclassification decreases. A special member of
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[FIG6] IPCA/IMCA: first, a PDF pi is estimated for each data set Xi . Simultaneously, a PDF qi is estimated for each data set Yi5AXi .
Then, an information-geometric metric is used to learn the geometry of the manifoldMx of PDFs pis andmanifoldMy from PDFs
qis from pairwise distance measurements. Finally, an objective is calculated to compare the geometry of the twomanifoldsMx
andMy . For IPCA, we consider the minimization of the sum of squared differences between each pairwise distance onMx and its
equivalent inMy . For IMCA, we consider the maximization of the sum of distances inMy .
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the class of Chernoff distances, known as the Bhattacharya dis-
tance between PDFs, converges to the Fisher information dis-
tance, similar to the KL divergence. It is therefore natural to find
a form of dimensionality reduction, which will maximize the
information distance between class PDFs, as this will enable
control of the error probability.

This information-geometric approach fits into the IPCA frame-
work. Consider the following theorem:

THEOREM 1
Let RVs X,X 0 2 Rd have PDFs fX and fX0 , respectively. Using
the m3 d matrix A satisfying AAT ¼ Im, construct RVs
Y , Y 0 2 Rm such that Y ¼ AX and Y 0 ¼ AX 0. The following
relation holds:

DKL(fX , fX0 )�DKL(fY , fY 0 ),

where fY and fY 0 are the PDFs of Y , Y 0, respectively.
The proof of this theorem may be found in [17] and states

that the KL divergence cannot be increased through an ortho-
normal transform of the input space. This is intuitive as an
orthonormal transform is simply a rotation that cannot increase
distance. As such, maximizing the information distance between
PDFs in a low-dimensional space is directly related to the pre-
serving said distance, albeit with a different formulation.

The first difference is in the setup of the data. We now specify
that X ¼ X1, . . . ,XNf g, where X i consists of all points x 2 Rd

in class Ci, estimating the PDF of X i as pi(x). Our objective func-
tion for the supervised scenario undergoes a slight modification
to become

A ¼ arg max
A: AAT¼ I

X
i

X
j

Wij Dij(X ;A)2: (6)

We refer to this modified algorithm as IMCA [12]. By maximizing
the information distance between class PDFs, we not only ensure
an optimal performance bound on classification error but also
preserve the natural information geometry between classes. This
fact is critical when class PDFs are not linearly separable (e.g.,
such is the assumption of standard LDA). Note that the optimiza-
tion of the IMCA cost function may be done in a similar fashion to
that of IPCA. In fact, for the two-class problem, IPCA and IMCA
are identical. For our purpose, we use gradient ascent, as the
objective is now a maximization, and the calculation/code is quite
similar. Note that we may still use the IMCA projection matrix for
variable selection, with the knowledge that the variables with the
highest weights are those that contain the most discriminative
value, which is critical for classification tasks.

It is explicitly worth pointing out that IMCA is similar to
LDA. In fact, if the classes are Gaussian, IMCA would result in an
orthogonal version of LDA. Recall that LDA assumes Gaussian
classes and maximizes the between-class covariance while mini-
mizing the within-class spread. This would maximize the infor-
mation distance between the classes. Hence, IMCA can be viewed
as a generalized and orthogonal version of LDA, which does not
make assumptions on the class distribution.

FLOW CYTOMETRY
In clinical flow cytometry, pathologists gather readings of fluo-
rescent markers and light scatter individual blood cells from a
patient sample, leading to a characteristic multidimensional
distribution that, depending on the panel of markers selected,
may be distinct for a specific disease entity. Clinical pathologists
generally interpret results in the form of two-dimensional scat-
ter plots in which the axes each represent one of the many cell
characteristics analyzed; the multidimensional nature of flow
cytometry is routinely underutilized in practice. Given the man-
ner in which analysis is performed on point clouds, pathologists
are actually performing a visual density analysis, as illustrated in
Figure 7. Here we demonstrate the similar marginal densities
(with respect to two biomarkers) of patients with differing progno-
sis. This enables the utilization of IGDR methods to provide a sin-
gle-analysis space for pathologists.

We present a study of chronic lymphocytic leukemia (CLL)
patients using IPCA to find a low-dimensional space that pre-
serves the differentiation between patients with good and poor
prognoses (i.e., favorable and unfavorable immunophenotypes).
Using a collection of 23 patients diagnosed with CLL (courtesy
of the Department of Pathology at the University of Michigan),
we define X ¼ X1, . . . ,X23f g, where each X i was analyzed with
by the series of markers in Table 1. We use IPCA to determine
the optimal information-preserving projection space and illus-
trate this projection in Figure 8. This image shows the three-
dimensional measurement space of markers CD5, CD38, and
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[FIG7] The point-cloud method of analyzing flow cytometry
data is parallel to the analysis of the marginal densities of the
data distributions.

[TABLE 1] CLL ANALYSIS MARKERS AND THEIR CORRE-
SPONDING IPCA LOADINGWEIGHTS.

MARKER LOADING

FORWARD LIGHT SCATTER 0.1843
SIDE LIGHT SCATTER 0.1044
CD5 0.6270
CD38 0.8420
CD45 0.7228
CD19 0.5750
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CD19, comparing two very similar patients with differing prog-
noses. It should be clear that IPCA provides a projection space
for which discerning prognosis is simplified.

In Table 1, we also display the loading weights of each of the
markers in the IPCA projection matrix. This is done by taking the
vector norm of each column in the 23 6 IPCA matrix. Note that
CD38 has the largest loading value; reference [20] has shown that
patients whose leukemic cells are strong expressers of CD38 have
significantly worse survival outcome. We also identify the possi-
bility that CD45 and CD19 expression are also areas that may help
prognostic ability, which is an area for further investigation.

Using FINE to embed the data (Figure 9) for comparative vis-
ualization, we see that the different prognosis groups are very
similar, although decent clusters are formed when labels are
applied. These clusters are not well separated, which further
illustrates the difficulties in forming an appropriate prognosis.
There are also issues of sample size as a larger database of
patients may lead to a more clear separation of clusters. None-
theless, IPCA and FINE were able to appropriately identify the
important markers for assigning prognosis and group patients
accordingly with respect to immunophenotype. For additional

details on this and other studies of FINE and IPCA with flow
cytometry, we refer the reader to [9] and [21].

CRIME IN THE 1990s
We next illustrate IDGR to the analysis of crime indicators from
the 1990 U.S. census data. This data will be used to illustrate
how information geometry can be used to discover which commu-
nity and law enforcement features may be indicative of the level of
crime seen in the said community. We obtained the data from the
University of California at Irvine (UCI) Machine Learning Reposi-
tory [22], which is described in an abbreviated fashion.

The data combines socioeconomic data from the 1990 U.S.
census, law enforcement data from the 1990 U.S. Law Enforce-
ment Management and Administrative Statistics (LEMAS) survey,
and crime data from the 1995 Federal Bureau of Investigations
Uniform Crime Reports (FBI UCR). Attributes were picked if there
was any plausible connection to crime (N ¼ 122), plus the attrib-
ute to be predicted [per capita violent crimes (PCVC)]. The varia-
bles included in the data set involve the community, such as the
percent of the population considered urban and the median
family income, and involving law enforcement, such as per capita
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[FIG8] Contour plots (i.e., PDFs) for three of the six analysis dimensions for CLL prognosis. The data for these patients are then
transformed by IPCA, yielding a simple and easily discernable two-dimensional analysis space. The patients chosen are the most
similar favorable and unfavorable prognosis CLL patients.
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number of police officers and percent of officers assigned to drug
units. The PCVC variable was calculated using population and the
sum of crime variables considered violent crimes in the United
States: murder, rape, robbery, and assault.

All numeric data were normalized in the decimal range [0.00–
1.00] using an unsupervised, equal-interval binning method.
Attributes retain their distribution and skew (hence, for example,
the population attribute has a mean value of 0.06, because most
communities are small). An attribute described as mean people per
household is actually the normalized (0–1) version of that value.

Since this data set was developed to identify potential crime
indicators, the natural partitioning comes by grouping com-
munities by the PCVC indicator variable. We note that while the
data set contains 122 features, 22 of those features were only
available for a small minority of communities, so we removed
them from the set. This left us with a data set consisting of 1,993
communities measured by 100 features. We omit the full feature
list, which can be found in [22]; however, we will make explicit
note of some selected features shortly.

A DISTINCT DIFFERENCE
Although it is intuitive to think that communities with high rates
of violent crime contain inherent differences than those on the
opposite end of the spectrum, it is worth noting that none of the
measured features are directly related to crime. Hence, it is worth-
while to first confirm our initial intuition. Additionally, if these fea-
tures are truly indicative of violent crime, it is reasonable to expect
a smooth gradient of change in the features from one end of the
spectrum to the other. For example, if a low-median family income
indicates the potential for a high amount of crime, and vice versa,
then it should be expected that a mid-range median family income
should correspond tomid-range crime rates.

We set up this study by grouping communities with respect to
their PCVC values. Recall that the range of PCVC is ½0:00, 1:00	,
with the distribution being illustrated in the histogram of
Figure 10. As this distribution is highly nonuniform, we use non-
uniform bin ranges to group the communities, intended to keep
each bin with roughly the same number of samples. This leaves
us with a set of 29 crime-based groupings X ¼ X1, . . . ,X29f g,
each consisting of between 50 and 122 sample points.

Using kernel density estimation to approximate group PDFs, we
embed each crime grouping into a two-dimensional spacewith FINE.
The embedding results can be seen in Figure 11, where each two-
dimensional sample point represents a collection of communities
whosemaximumPCVC value is identified by the plot color. It is clear
that our intuition was correct; there exists a smooth and continuous
gradient of increasing crime rate. This leads to the natural conclusion
that the collection ofmeasured features (or some subset thereof) does
indeed contain predictive indicators of violent crime rates.

PREDICTING CRIME AND DISCRIMINATING FEATURES
Given the confirmation that the chosen features do indeed contain
predictive value, we now test the classification capabilities when
using IGDR as a preprocessing step. Specifically, we look to find
the optimal subspace for classifying a community as having either

low or high rates of violent crime. This sets up as a two-class prob-
lem, and we determine the low-crime class as those communities
having a PCVC value of 0.03 or less, and the high-crime class con-
tains communities with a PCVC value greater than 0.53. These
thresholds were chosen such that each class roughly contained
the same number of samples (226 and 239, respectively).

Given that this is a classification problem, we use IMCA
to determine our optimal orthonormal projectionmatrix. Note that
we stress the orthonormality constraint here, as using Fisher’s
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[FIG9] Comparison of CLL patient embeddings, obtained with
FINE, using (a) the full-dimensional and (b) IPCA projection
matrix. The patients with a poor immunophenotype (CD38hi)
are generally well clustered against those with a favorable
immunophenotype (CD38lo) in both embedddings.
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[FIG10] Histogram of the PCVC statistic for the measured
communities.
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LDA, which does not result in orthogonality, may seem appropriate
for this task. If classification was the only desirable task, then LDA
would be sufficient. However, we also intend to analyze the projec-
tion matrix for variable selection, for which orthogonality becomes
a necessity. The LDA projection is useful, however, as it gives us a
means for initialization; we make the LDA matrix orthogonal with

the classical Gram-Schmidt orthogonalization algorithm and initi-
alize our IMCA gradientmethods with the resultantmatrix.

We choose to perform our analysis in an m ¼ 3-dimensional
projection space for two reasons—the ability to visualize the data
and the three-dimensional space optimized our objective, obtain-
ing the maximum separation between classes for m 2 2, 7½ 	.
After obtaining the 33 100 IMCA matrix A, we project the data
from each class into the same space and perform our classification
task. The projected data are shown in Figure 12. It is interesting
that the low-crime communities show much more variation than
the high-crime communities, which exhibit a tight cluster even
though the range of PCVC value was much larger.

To test classification performance, we use a simple linear classi-
fier and perform leave-one-out cross-validation over all samples in
the set. The results yield a 1.29% classification error: one low-
crime and five high-crime communities were misclassified. For
comparison sake, we note that PCA, an orthonormal unsupervised
method, results in a 3.44% error rate, and LDA yielded a 1.51%
error rate. Recall that LDA does not have the orthogonal constraint,
yet IMCA still results in (slightly) better classification performance.
In all cases, the projection data was projected to three dimensions.

We now use the IMCAmatrix A to identify themost discriminat-
ing features. To do so, we calculate the L2 norm of the vector of
weights for each of the 100 features (columns) of the 33 100 pro-
jection matrix A. After sorting in descending order, we plot these
ranks in Figure 13. This shows that there are several features that
offer some discriminative value andmanymore that offer very little.
In Table 2, we report the fivemost and least discriminating features.
We preface these results by recalling that this data was from a 1990
census and 1995 crime report. Obviously, much has changed since
this data was reported, but the results do appear logical.

CONCLUSIONS
In this article, we have presented IGDR, an information-geometric
framework for dimensionality reduction. In contrast to standard
Euclidean approaches to manifold learning, which aim to recon-
struct a Riemannian submanifold of Euclidean space, our objec-
tive is to learn statistical manifolds. We have shown that when the
data produces realizations of PDFs lying on a statistical manifold,
we can perform information-driven dimensionality reduction in
both density space and sample space. These techniques were
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[FIG11] Embedding the crime-based community groupings
with FINE. The color of each sample corresponds to the
maximum PCVC rate within the group.
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[TABLE 2] THE FIVE MOST AND LEAST DISCRIMINATING
FEATURES FOR PREDICTING HIGH OR LOW RATES OF
VIOLENT CRIME.

TOP FIVE VARIABLES
—POPULATION FOR COMMUNITY
—RENTAL HOUSING-MEDIAN RENT
—NUMBER OF PEOPLE LIVING IN AREAS CLASSIFIED AS URBAN
—PERCENTAGE OF POPULATION WHO ARE DIVORCED
—MEDIAN HOUSEHOLD INCOME

BOTTOM FIVE VARIABLES
—PER CAPITA INCOME FOR PEOPLE WITH HISPANIC HERITAGE
—PERCENT OF OFFICERS ASSIGNED TO DRUG UNITS
—PER CAPITA INCOME FOR PEOPLE WITH ASIAN HERITAGE
—LAND AREA IN SQUARE MILES
—MEDIAN YEAR HOUSING UNITS BUILT
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[FIG13] The rankings of the 100 variables in an IMCA
projection matrix.
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illustrated on the problem of flow cytometry analysis, showing
the ability to find a subspace in which a pathologist can better
diagnose CLL patients. We were also able to compare patients
one to another in a single low-dimensional embedding space.
We also applied IGDR to a crime and community data set, identi-
fying community indicators of violent crime and accurately clus-
tering and classifying communities with high or low crime rates.
The power of using information geometry for dimensionality
reduction has just begun to be explored, and we hope this article
will lead to further extensions and applications.
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Samuel Kaski and Jaakko Peltonen 

D
imensionality reduction is 
one of the basic operations 
in the toolbox of data ana-
lysts and designers of ma -
chine learning and pattern 

recognition systems. Given a large set of 
measured variables but few observations, 
an obvious idea is to reduce the degrees 
of freedom in the measurements by rep-
resenting them with a smaller set of more 
“condensed” variables. Another reason for 
reducing the dimensionality is to reduce 
computational load in further processing. 
A third reason is visualization. “Looking 
at the data” is a central ingredient of 
exploratory data analysis, the first stage of 
data analysis where the goal is to make 
sense of the data before proceeding with 
more goal-directed modeling and analy-
ses. It has turned out that although these 
different tasks seem alike, their solution 
requires different tools. In this article, we 
show that dimensionality reduction for 
data visualization can be represented as 
an information retrieval task, where the 
quality of visualization can be measured 
by precision and recall measures and 
their smoothed extensions. Furthermore, 
we show that visualization can be opti-
mized to directly maximize the quality for 
any desired tradeoff between precision 
and recall, yielding very well-performing 
visualization methods. 

HISTORY
Each mul t ivar ia te  observat ion 
xi 5 3xi1, cxin 4T is a point in an n-dim-
ensional space. A key idea in dimensionality 
reduction is that if the data lies in a 
d-dimensional 1d , n 2  subspace of the 
n-dimensional space, and if we can identify 
the subspace, then there exists a transfor-

mation that loses no information and 
allows the data to be represented in a 
d-dimensional space. If the data lies in a 
(linear) subspace, then the transformation 
is linear and more generally the data may 
lie in a d-dimensional (curved) manifold 
and the transformation is nonlinear. 

Among the earliest methods are so-
called multidimensional scaling (MDS) 
methods [1] that try to position data 
points into a d-dimensional space such 
that their pairwise distances are pre-
served as well as possible. If all pairwise 
distances are preserved, it can be argued 
that the data manifold has been identi-
fied (up to some transformations). In 
practice, data of course are noisy, and the 
solution is found by minimizing a cost 
function such as the squared loss 
between the pairwise distances, 
EMDS 5g i, j 1d 1xi, xj 22d 1xir, xjr2 2 2, where 
the d 1xi, xj 2  are the original distances 
between the points xi and xj, and the
d 1xir, xjr 2  are the distances between 
their representations xir and xjr in the 
d-dimensional space. 

MDS comes in several types that dif-
fer in the specific form of cost function 
and additional constraints on the 
 mapping, and some of the choices give 
familiar methods such as principal com -
ponents analysis or Sammon’s mapping 
as special cases. 

Neural computing methods are other 
widely used families of manifold embed-
ding methods. The so-called autoencoder 
networks (see, e.g., [2]) pass the data vec-
tor through a lower-dimensional bottle-
neck layer in a neural network that aims 
to reproduce the original vector. The 
activities of the neurons in the bottleneck 
layer give the coordinates on the data 
manifold. Self-organizing maps (see [3]), 
on the other hand, directly learn a dis-
crete representation of a low-dimensional 

manifold by positioning weight vectors of 
neurons along the manifold; the result is 
a discrete approximation to principal 
curves or manifolds, a nonlinear general-
ization of principal components [4]. 

In the year 2000, a new manifold learn-
ing boom began after the publication of 
two papers in Science showing how to 
learn nonlinear data manifolds. Locally 
linear embedding [5] made, as the name 
reveals, locally linear approximations to 
the nonlinear manifold. The other, called 
Isomap [6], is essentially MDS tuned to 
work along the data manifold. After the 
manifold has been learned, distances will 
be computed along the manifold. But 
plain MDS tries to approximate distances 
of the data space that do not follow the 
manifold, and hence plain MDS will not 
work in general. That is why Isomap starts 
by computing distances along the data 
manifold, approximated by a graph con-
necting neighbor points. Since only 
neighbors are connected, the connections 
are likely to be on the same part of the 
manifold instead of jumping across gaps 
to different branches; distances along the 
neighborhood graph are thus decent 
approximations of distances along the data 
manifold known as “geodesic distances.” 

A large number of other approaches 
have been introduced for the learning of 
manifolds during the past ten years, 
including methods based on spectral graph 
theory and on simultaneous variance 
 maximization and distance preservation. 

CONTROVERSY
Manifold learning research has been crit-
icized for lack of clear goals. Many papers 
introduce a new method and only show 
its performance by nice images of how it 
learns a toy manifold. A famous example 
is the “Swiss roll,” a two-dimensional 
data sheet curved in three  dimensions 
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into a Swiss roll shape. Many 
methods have been shown capable 
of unrolling the Swiss roll, but few 
have been shown to have real 
applications, success stories, or 
even to quantitatively outperform 
alternative methods. 

One reason why quantitative 
comparisons are rare is that the 
goal of manifold embedding has 
not always been clearly defined. In 
fact, manifold learning may have 
several alternative goals depending 
on how the learned manifold will 
be used. We focus on one specific 
goal, data visualization, intended 
for helping analysts to look at the 
data and find related observations 
during exploratory data analysis. 

Data visualization is traditionally not 
a well-defined task either. But it is easy 
to observe empirically [7] that many of 
the manifold learning methods are not 
good for data visualization. The reason is 
that they have been designed to find a 
d-dimensional manifold if the inherent 
dimensionality of data is d. For visualiza-
tion, the display needs to have d 5 2 or 
d 5 3; that is, the dimensionality may 
need to be reduced beyond the inherent 
dimensionality of data. 

NEW PRINCIPLE
It is well known that a high-dimensional 
data set cannot in general be faithfully 
represented in a lower-dimensional 
space, such as the plane with d 5 2. 
Hence a visualization method needs to 
choose what kinds of errors to make. The 
choice naturally should depend on the 
visualization goal; it turns out that 
under a specific but general goal the 
choice can be expressed as an interesting 
tradeoff, as we will describe below. 

When the task is to visualize which 
data points are similar, the visualization 
can have two kinds of errors (Figure 1): 
it can miss some similarities (i.e., it can 
place similar points far apart as false 
negatives) or it can bring dissimilar data 
points close together as false positives. If 
we know the cost of each type of error, 
the visualization can be optimized to 
minimize the total cost. Hence, once the 
user gives the relative cost of misses and 

false positives, it fixes visualization to be 
a well-defined optimization task. It turns 
out [8], [9] that under simplifying 
assumptions the two costs turn into pre-
cision and recall, standard measures 
between which a user-defined tradeoff is 
made in information retrieval. 

Hence, the task of visualizing which 
points are similar can be formalized as a 
task of visual information retrieval, that 
is, retrieval of similar points based on 
the visualization. The visualization can 
be optimized to maximize information 
retrieval performance, involving as an 
unavoidable element a tradeoff between 
precision and recall. In summary, visual-
ization can be made into a rigorous 
modeling task, under the assumption 
that the goal is to visualize which data 
points are similar. 

When the simplifying assumptions 
are removed, the neighborhoods are 
allowed to be continuous-valued proba-
bility distributions pij of point j being a 
neighbor of point i. Then it can be 
shown that suitable analogs of precision 
and recall are distances between the 
neighborhood distributions p in the 
input space and q on the display. More 
specifically, the Kullback-Leibler diver-
gence D 1pi, qi 2  reduces under simplify-
ing assumptions to recall and D 1qi, pi 2  
to precision. The total cost is then 

E 5 la
i

D 1pi, qi 21 11 2 l 2a
j

D 1qi, pi 2  , 
 (1)

where l is the relative cost of 
misses and false positives. The 
display coordinates of all data 
points are then optimized to min-
imize this total cost; several non-
linear optimization approaches 
could be used; we have simply 
used conjugate gradient descent. 
This method has been called 
NeRV for neighbor retrieval visu-
alizer [8], [9]. When l 5 1 the 
method reduces to stochastic 
neighbor embedding [10], an ear-
lier method that we now see max-
imizes recall. 

Visualization of a simple data 
distribution makes the meaning 
of the trade off between precision 
and recall more concrete. When 

visualizing the surface of a three-
dimensional sphere in two dimensions, 
maximizing recall squashes the sphere 
flat (Figure 2) whereas maximizing pre-
cision “peels” the surface open. Both 
solutions are good but have different 
kinds of errors. 

Both nonlinear and linear visualiza-
tions can be optimized by minimizing 
(1). The remaining problem is how to 
define the neighborhoods p; in the 
absence of more knowledge, symmetric 
Gaussians or more heavy-tailed distribu-
tions are justifiable choices. An even 
 better alternative is to derive the neigh-
borhood distributions from probabilistic 
models that encode our knowledge of 
the data, both prior knowledge and what 
was learned from data. 

Deriving input similarities from a 
probabilistic model has recently been 
done in Fisher information nonparamet-
ric embedding [11], where the similari-
ties (distances) approximate Fisher 
information distances (geodesic dis-
tances where the local metric is defined 
by a Fisher information matrix) derived 
from nonparametric  probabilistic mod-
els. In related earlier work [12], [13], 
approximated geodesic distances were 
computed in a “learning metric” derived 
using Fisher information matrices for a 
conditional class probability model. In 
all these works, though, the distances 
were given to standard visualization 
methods, which have not been designed 

False
Positives

Input Space

Miss

Output Space (Visualization)

Qi

Pi
xi

yi

[FIG1] A visualization can have two kinds of errors 
(from [9]). When a neighborhood Pi in the high-
dimensional input space is compared to a neighborhood 
Qi in the visualization, false positives are points that 
appear to be neighbors in the visualization but are not 
in the original space; misses (which could also be called 
false negatives) are points that are neighbors in the 
original space but not in the visualization. 
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for a clear task of visual information 
retrieval. In contrast, we will combine 
the model-based input similarities to the 
rigorous precision-recall approach to 
visualization. Then the whole procedure 
corresponds to a well-defined modeling 
task where the goal is to visualize which 
data points are similar. We will next dis-
cuss this in more detail in two concrete 
applications. 

APPLICATION 1: VISUALIZATION 
OF GENE EXPRESSION COMPENDIA 
FOR RETRIEVING RELEVANT 
EXPERIMENTS
In the study of molecular biological sys-
tems, behavior of the system can sel-
dom be inferred from first principles 
either because such principles are not 
known yet or because each system is 
different. The study must be data driv-
en. Moreover, to make research cumu-
lative, new experiments need to be 
placed in the context of earlier knowl-
edge. In the case of data-driven re -
search, a key part of that is retrieval of 
relevant experiments. An earlier experi-
ment, a set of measurements, is rele-
vant if some of the same biological 
processes are active in it, either inten-
tionally or as side effects. 

In molecular biology it has become 
standard practice to store experimental 
data in repositories such as ArrayExpress 
of the European Bioinformatics Institute 

(EBI). Traditionally, experiments are 
sought from the repository based on 
metadata annotations only, which works 
well when searching for experiments 
that involve well-annotated and well-
known biological phenomena. In the 
interesting case of studying and model-
ing new findings, more data-driven 
approaches are needed, and information 
retrieval and visualization based on 
latent variable models are promising 
tools [14]. 

Let’s assume that in experiment i 
data g i have been measured; in the 
concrete case below g i will be a differ-
ential gene expression vector, where gij 
is expression level of gene or gene set j
compared to a control measurement. 
Now if we fit to the compendium a 
model that generates a probability 
 distribution over the experiments, 
p 1gi, zi|u 2 , where the u are parameters 
of the model which we will omit below 
and z are latent variables, this model 
can be used for retrieval and visualiza-
tion as explained below. This modeling 
approach makes sense in particular if 
the model is constructed such that the 
latent variables have an interpretation 
as activities of latent or “underlying” 
biological processes which are mani-
fested indirectly as the differential 
gene expression. 

Given the model, relevance can be 
defined in a natural way as follows: The 

likelihood of experiment i being rele -
vant for an earlier experiment j is 
p 1gi|gj 2 5 ep 1gi|z 2p 1z|gj 2dz. That is, the 
experiment is relevant if it is likely that 
the measurements have arisen as prod-
ucts of the same unknown biological 
processes z. This definition of relevance 
can now be used for retrieving the most 
relevant experiments, and, moreover, the 
definition can be used as the natural 
probability distribution p in (1) to con-
struct a visual information retrieval 
interface (Figure 3); in this case the data 
are 105 microarray experiments from 
the ArrayExpress database, comparing 
pathological samples such as cancer tis-
sues to healthy samples. 

The above visual information 
retrieval idea was explained in abstract 
concepts, applicable to many data 
sources. In the gene expression retrieval 
case of Figure 3, the data were expres-
sions of a priori defined gene sets, quan-
tized into counts, and the probabilistic 
model was the discrete principal compo-
nent analysis model, also called latent 
Dirichlet allocation, and in the context of 
texts called a topic model. The resulting 
 relevances can directly be given as inputs 
to NeRV; in Figure 3 a slightly modified 
variant of the relevances was used, 
details in [14]. 

In summary, fitting a probabilistic 
latent variable model to the data pro-
duces a natural relevance measure that 
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[FIG2] Tradeoff between precision and recall in visualizing a sphere (from [9]). (a) The three-dimensional location of points on 
the three-dimensional sphere is encoded into colors and glyph shapes. (b) Two-dimensional visualization that maximizes recall 
by squashing the sphere flat. All original neighbors remain close-by but false positives (false neighbors) from opposite sides of 
the sphere also become close-by. (c) Visualization that maximizes precision by peeling the sphere surface open. No false 
positives are introduced but some original neighbors are missed across the edges of the tear. 
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can then be plugged as a similarity mea-
sure into the visualization framework. 
Everything from start to finish is then 
based on rigorous choices. 

APPLICATION 2: 
VISUALIZATION OF GRAPHS
Graphs are a natural representation of 
data in several fields where visualiza-
tions are helpful, such as social net-
works analysis, interaction networks in 
molecular biology, and citation net-
works. In a sense, graphs are high-
dimensional structured data where 
nodes are points and all other nodes are 
dimensions; the value of the dimension 
is the type or strength of the link. 

There exist many graph drawing 
algorithms, including string analogy-
based methods such as Walshaw’s algo-
rithm [15] and spectral methods [16]. 
Most of them focus explicitly or implic-

itly on local properties of graphs, draw-
ing nodes linked by an edge close 
together but avoiding overlap. That 
works well for simple graphs but for 
large and complicated ones additional 
principles are needed to avoid the 
famous “hairball” visualizations. 

A promising direction forward is to 
learn a probabilistic latent variable 
model of the graph, in the hope of cap-
turing its central properties, and then 
focus on visualizing those properties. In 
the case of graphs, the data to be mod-
eled are which other nodes a node links 
to. But as the observed links in a net-
work may be stochastic (noisy) measure-
ments such as gene interaction 
measurements, it makes sense to assume 
that the links are a sample from an 
underlying link distribution and learn a 
probabilistic latent variable model to 
model the distributions. The similarity of 

two nodes is then naturally evaluated as 
similarity of their link distributions. The 
rest of the visualization can proceed as in 
the previous section, with experiments 
replaced by graph nodes. 

Figure 4 shows sample graphs visual-
ized based on a variant of discrete princi-
pal components analysis or latent 
Dirichlet allocation suitable for graphs. 
With this link distribution-based 
approach, NeRV places nodes close-by on 
the display if they link to similar other 
nodes, with similarity defined as similar-
ity of link distributions. This has the nice 
side-result that links form bundles where 
all start nodes are similar and all end 
nodes are similar. 

In summary, the idea is to use any 
prior knowledge in choosing a suitable 
model for the graph, and after that all 
steps of the visualization follow naturally 
and rigorously from start to finish. In 
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[FIG3] A visual information retrieval interface to a collection of microarray experiments visualized as glyphs on a plane (from 
[14]). (a) Glyph locations have been optimized by NeRV so that relevant experiments are close by. For this experiment data, 
relevance is defined by the same data-driven biological processes being active, as modeled by a latent variable model 
(component model). (b) Enlarged view with annotations; each color bar corresponds to a biological component or process, and 
the width tells the activity of the component. These experiments are retrieved as relevant for the melanoma experiment 
shown in the center. (c) The biological components (nodes in the middle) link the experiments (left) to sets of genes (right) 
activated in them. 
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the absence of prior knowledge flexible 
machine learning models such as the 
discrete principal components analysis 
above can be learned from data. 

CONCLUSIONS
We have discussed dimensionality reduc-
tion for a specific goal, data visualiza-
tion, which has been so far defined 
heuristically. Recently it has been sug-
gested that a specific kind of data visual-
ization task, that is, visualization of 
similarities of data points, could be for-
mulated as a visual information retrieval 
task, with a well-defined cost function to 
be optimized. The information retrieval 
connection further reveals that a trad-
eoff between misses and false positives 
needs to be made in visualization as in 
al l  other information retrieval . 
Moreover, the visualization task can be 
turned into a well-defined modeling 
problem by inferring the similarities 
using probabilistic models that are 
learned to fit the data. 

A free software package that solves 
nonlinear dimensionality reduction as 
visual information retrieval, with a 
method called NeRV, is available at 
http://www.cis.hut.fi/projects/mi/soft-
ware/dredviz/. 
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(a) (b) (c)

[FIG4] Visualizations of graphs. (a) U.S. college football teams (nodes) and who they played against (edges). The visual groups 
of teams match the 12 conferences arranged for yearly play (shown with different colors). (b), (c) Word adjacencies in the works 
of Jane Austen. The nodes are words, and edges mean the words appeared next to each other in the text. NeRV visualization in 
(b) shows visual groups that reveal syntactic word categories: adjectives, nouns, and verbs shown in blue, red, and green. 
The edge bundles reveal disassortative structure that matches intuition, for example, verbs are adjacent in text to nouns or 
adjectives and not to other verbs. Earlier graph layout methods (Walshaw’s algorithm shown in (c) fails to reveal the structure.) 
(Figure from [17], © ACM, 2010, used with permission). 
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T
he discrete Fourier trans-
form (DFT) not only enables 
fast implementation of the 
discrete convolution opera-
tion, which is critical for 

the efficient processing of analog sig-
nals through digital means, but it also 
represents a rich and beautiful analyti-
cal structure that is interesting on its 
own. A typical senior-level digital signal 
processing (DSP) course involves a 
fairly detailed treatment of DFT and a 
list of related topics, such as circular 
shift, correlation, convolution opera-
tions, and the connection of circular 
operations with the linear operations 
[1]. Despite having detailed expositions 
on DFT, most DSP textbooks (including 
advanced ones) lack discussions on the 
eigenstructure of the DFT matrix. Here, 
we present a self-contained exposition 
on such. 

Our goals are to study the eigenval-
ues and eigenvectors of the DFT matrix, 
to determine the multiplicity of the 
eigenvalues, to define the invariant sub-
spaces under DFT mapping, to construct 
the projectors to the invariant subspaces 
and to underline some connections 
between invariant subspaces and other 
transforms. 

(We believe that this discussion can 
be followed by most of the signal pro-
cessing community, including advanced 
undergraduate students. The concepts 
used in this discussion are mostly ele-
mentary and available in standard linear 
algebra textbooks. A comprehensive 
knowledge of linear spaces is not 
required but would be highly beneficial 
to fully interpret some of the results. 
These notes have been prepared as an 

assignment for supplementary reading 
material on the DFT.) 

DESCRIPTION OF THE PROBLEM
Let F be a N 3 N  unitary DFT matrix: 3F 4 k,n 5

1"N
e2j 2p

N
n k  .

In the equation above, 3F 4k, n denotes the 
matrix entry in the kth row and nth 
column of the matrix F. We assume both 
k and n run from 0 to N 2 1, following 
the literature on the DFT. 

Different from the conventional 
definition given in [1], the definition 
above includes a scaling factor of 
1"N. This factor is required to make 
the matrix F  unitary.  From the 
theory of matrices, we know that the 
unitary matrices satisfy the relation 
FH F 5 I(another form of Parseval’s 
relation) and have unit norm eigen-
values and have a complete orthogo-
nal set of eigenvectors [2]. Our goal 
is to study the eigenstructure of F
matrices by finding the eigenvalues 
and their multiplicity, invariant sub-
spaces and projectors to the invariant 
subspaces. 

EIGENVALUES, EIGENSPACES AND 
PROJECTORS TO EIGENSPACES
The eigenvalues of a matrix are, by defi-
nition, the roots of its characteristic 
polynomial. Here we do not calculate 
the characteristic polynomial explicitly 

but relate the powers of F to the charac-
teristic polynomial. Let J denote the 
second power of the matrix F, that is 
J 5 F2. The entries of matrix J can be 
calculated as follows: 3J 4 k, n 5 a

N21

d50

3F 4 k, d 3F 4 d, n

5
1
N a

N21

d50
e2j 2p

N
1n1k2 d 5 d 3 1n 1 k 2N 4.

The notation of 1 # 2N  indicates the 
modulo N reduction of 1 # 2 , that is 1n 1 k 2N ; 1n 1 k 2  mod N. It can be 
seen that the J matrix is a permutation 
matrix that maps x 3n 4 S x 3 12n 2N 4. The 
J matrix is called a coordinate inversion 
or reflection matrix in the literature. 

Two coordinate inversion operations 
executed in a row can be denoted by J2

or F4. Since two coordinate inversions 
result in the identity mapping, F4 is 
equal to I. If ek is an eigenvector of the F
matrix with the eigenvalue lk, then the 
vector F4ek  should be equal  to 
F4ek 5 lk

4ek, by the eigenvector defini-
tion. Using the identity F4 5 I along 
with the last relation results in the con-
clusion that the possible values of l

must satisfy lk
4 5 1. Hence the list of 

possible eigenvalues for the DFT matrix 
is lk 5 51, 21,  j, 2j6.

Having established the list of possible 
eigenvalues, we construct a p1 1l 2  poly-
nomial having roots at 521, j, 2j6 and 
taking the value of 1 at l 5 1. Hence, 
this polynomial takes the value of zero 
for all except one of the eigenvalues of 
DFT matrix. This polynomial can be 
explicitly written as follows 

p1 1l 2 5
1
4
1l2 1 1 2 1l 1 1 2

5
1
4
1l3 1 l2 1 l 1 1 2 .
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When F is substituted for l in p1 1l 2 , we 
get the P1 matrix: 

 P1 5
1
4
1F3 1 F2 1 F 1 I 2 .

When the P1 matrix is multiplied from 
right with an eigenvector of the DFT 
matrix having eigenvalue lk, the resul-
tant vector is as given: 

 P1ek 5 e 0 lk 5 521,  j, 2j6
ek         lk 5 1

.

The last relation shows that the eigen-
vectors of DFT with the eigenvalue of 1 
pass through P1 without any change 
(mapped to itself) and the other eigen-
vectors are projected to the zero vector, 
i.e., elements of null space. Since the 
eigenvectors of DFT are complete, i.e., 
span N  dimensional space, ek vectors 
form a complete set of eigenvectors for 
the P1 matrix. From this information, we 
can deduce that the matrix P1 has only 
two eigenvalues that can be either 0 or 1. 
This leads to the conclusion that P1 is a 
projection matrix [2]. 

The projection matrices satisfy the 
relation P2 5 P. Among the projection 
matrices, the matrices with the prop-
erty PT 5 P are called the orthogonal 
projectors. With these facts, we can 
confirm that the matrix P1 is an orthog-
onal projector to the range space of DFT 
eigenvectors having the eigenvalue of 1. 

Following the same route, we can 
write the projectors to four eigenspaces 
as follows: 

 P1 5
1
4

 1F3 1 F2 1 F 1 I 2

 P21 5
1
4

 1 2 F3 1 F2 2 F 1 I 2
 Pj 5

1
4

 1 j F3 2 F2 2 j F 1 I 2
P2j 5

1
4

 1 2 j F3 2 F2 1 j F 1 I 2 .
Below we present a summary of our 
current findings along with some new, 
but easy to establish, results on Pk 
matrices: 

 ■ Pk matrices are orthogonal projec-
tors, i.e., Pk

2 5 Pk and Pk
T 5 Pk. 

 ■ The projection matrices are com-
plementary (PkPl 5 0,  k 2 l). 

 ■ The direct sum of the projection 
subspaces is RN. 

 ■ The projection subspaces are 
 invariant under DFT, that is, 
FPk 5 PkF 5 lkPk. 

 ■ P1 1 P21 is the projector to the 
space spanned by even vectors, that 
is, E 5 P1 1 P21 5 1/2 1I 1 J 2  and 
E5x 3n 4 6 5 1/2 1x 3n 41 x 3 12n 2N 4 2 . 

 ■ Pj 1 P2j is the projector to the 
space spanned by odd vectors, that is, 
O 5 Pj 1 P2j 5 1/2 1I 2 J 2  a n d 
O5x 3n 4 6 5 1/2 1x 3n 42 x 3 12n 2N 4 2 .
The results given above can be veri-

fied by algebraic multiplication and addi-
tion of Pk matrices. However, we would 
like to encourage readers not to inter-
pret these results algebraically, but 
through the concepts of linear spaces, 
e.g., subspace, range space, and null 
space. As an example, P1 is the projector 
to the space spanned by the eigenvectors 
with the eigenvalue of one, that is, 

 P1 5 a
m1

k51
ek

1 1ek
1 2T. (1)

Here m1 is the multiplicity of the eigen-
value and e1

k is the kth eigenvector with 
the eigenvalue of one. The first and 
second results given above immediately 
follow from the definition in (1) and the 
orthogonality of the eigenvectors with 
different eigenvalues. The third result is 
due to the completeness of the eigen-
vectors. The other results can be inter-
preted similarly with a little bit of effort. 

Up to this point we have studied how 
to construct the projection matrices for 
the invariant subspaces of the DFT 
matrix. It is well known that DFT maps 
even sequences to even sequences and 
odd sequences to odd sequences. Hence 
the subspace of even sequences and odd 
sequences are invariant under DFT. 
Here we generalize the invariance prop-
erty of even and odd subspaces. We 
show that a vector in Pk space is 
mapped to another vector in Pk space. 
With this interpretation we can say that 
Pk matrices partition even and odd sub-
spaces into two, as shown in Figure 1. 

THE MULTIPLICITY OF EIGENVALUES
The eigenvalue multiplicity problem of 
DFT matrices is known to be a difficult 
problem. We present a solution to the 
eigenvalue multiplicity problem using an 
equally difficult result known as the 
Gaussian sum. The Gaussian sum iden-
tity is given below: 

Guassian sum: 

1"N
 a
N21

n50
e j 2p

N
n2

5 μ 1 1 j N54m
1 N54m 1 1
0 N54m 1 2
j N54m 1 3

 .

The proof of this result took Gauss two 
years [3]. Since the original proof of 
Gauss, it is an ongoing challenge 
among mathematicians to present new, 
possibly better, proofs of this result. 
Interested readers can find four differ-
ent proofs of Mertens, Kronecker, 
Schur, and Gauss in [3]. In 1972, J. 
McClellan solved the eigenvalue multi-
plicity problem using elementary 
means [4]. McClellan’s solution can be 
considered as another proof of the 
Gaussian sum and resides at the 
 intersection of pure and applied 

[FIG1] Decomposition of N dimension space into even–odd sub-spaces.
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 mathematics as noted in [5]. McClellan 
is also known for an optimal filter 
design technique (Parks-McClellan 
algorithm) and a multidimensional 
filter design technique through map-
ping (McClellan transform) to the DSP 
community. Here we do not attempt to 
prove the Gaussian sum and but use the 
relation for the solution of the DFT 
eigenvalue multiplicity problem. 

It can be noted that the trace of the 
matrix Pk is equal to the multiplicity of 
the eigenvalue with value lk. This can 
be justified from equation (1) by using 
the identity trace 1AB 2 5 trace 1BA 2 .
Another justification can be given by 
noting that the projection matrices have 
eigenvalues either zero or one. Therefore 
the trace, which is the sum of the eigen-
values, is equal to the number of eigen-
values with value one. 

The trace of the projection matrices 
can be written as follows: 

trace5P1 6 5

1
4
e 2"N

a
N21

n50
cosa2p

N
n2b1trace5J61 N f

trace5P216 5

1
4
e2 2"N

a
N21

n50
cosa2p

N
n2b1trace5J61N f

trace5Pj 6 5

1
4
e 2"N

a
N21

n50
sina2p

N
n2b2 trace5J61 N f

trace5P2j 6 5

1
4
e 2"N

a
N21

n50
sina2p

N
n2b2 trace5J61N f .

Using the Gaussian summation, the 
trace of each matrix can be easily cal-
culated and the eigenvalue multiplicity 
of DFT matrices can be found as 
shown in Table 1 (we note that the 

trace of the N 3 N J matrix is equal to 
one and two for odd and even values of 
N, respectively).

EIGENVECTORS OF DFT MATRIX
The eigenvector set of DFT matrices for 
N $ 4 are not unique due to the eigen-
value multiplicity problem as shown in 
Table 1. The table indicates that there 
are infinitely many eigenvector sets of 
DFT matrix. 

An eigenvector set of DFT can be 
easily constructed using projection 
matrices. Since the projection spaces 
are invariant under DFT operation, that 
is, FPk 5 lkPk, the columns of projec-
tion matrix Pk are the eigenvectors of 
DFT. Unfortunately, this eigenvector set 
does have the orthogonality property. If 
the orthogonality of eigenvectors is 

desired, one can apply the Gram-
Schmidt  procedure over the columns of 
Pk. This operation can be done with a 
few lines of MATLAB code as shown 
below:

>> N=7; F = 1/

sqrt(N)*dftmtx(N);

>> P1 = 0.25 * (F^3 + F^2 + 

F + eye(N));

>> E1 = orth(P1);

To get a distinct set of orthogonal eigen-
vectors with eigenvalue of 1, we can 
modify the last line as follows: 

>> E1 =orth(P1*randn(N,N))

An alternative approach is to define a 
commuting matrix K through an arbi-
trary but a full-rank matrix M as 
shown below: 

K 5 M 1 FMF21 1 F2MF22 1 F3MF23.

It is easy to show that matrices K and F
commute; that is, FK 5 KF, therefore K
and F have a common eigenvector set, 
[7, p. 52]. In other words, by finding the 
eigenvectors of K matrix, we can also get 
the eigenvectors of the DFT matrix. This 
technique has been applied to derive the 
eigenvectors of the DFT with some desir-
able features. In [8] and [9], the discrete 
equivalents of Hermite-Gaussian func-
tions (which are the eigenfunctions of 
continuous Fourier transform) are 
defined by a proper choice of M matrix. 

EXTENSIONS
Up to this point we have presented 
results on a one-dimensional conven-
tional DFT matrix. In this section, we 
extend the earlier results to non-con-
v e n t i o n a l  D F T  m a t r i c e s  a n d 
 multidimensional DFT matrices, and 
establish some connections with other 
relatives of the Fourier transform. 

EIGENSTRUCTURE OF OFFSET DFT
The offset DFT is a generalization of the 
conventional DFT. Its definition is given 
as follows: 3Fa, b 4k, n 5 1"N

e2j 2p

N
1k2a21n2b2.

The offset DFT has two parameters (a
and b) that can be freely selected. It can 
be shown that the offset DFT matrix is 
unitary and reduces to the conventional 
DFT when a 5 b 5 0 [10]. The special 
case of a 5 b 5 1/2, is called an odd-
time odd-frequency DFT and was studied 
in [11]. The eigenstructure of the offset 
DFT has been shown to be closely related 
to ordinary DFT for the special case of 
a 5 b 5 1/2, [12]. The other cases are a 
little more complicated and studied 
under the categories of a 1 b 5 integer
and a 1 b 2 integer. Further details can 
be found in [13]. 

EIGENSTRUCTURE OF 
MULTIDIMENSIONAL DFT
By definition, the multidimensional 
DFT is a separable transformation. 
Hence a two-dimensional DFT opera-
tion can be interpreted as the cascade 

[TABLE I] EIGENVALUE MULTIPLICITY 
OF N 3 N DFT MATRIX.

N l 5 1 l 5 21 l 5 J l 5 2J

4M M11 M M21 M
4M11 M11 M M M
4M12 M11 M11 M M
4M13 M11 M11 M M11

WE HAVE EXAMINED 
THE STRUCTURE OF DFT 
EIGENSPACES AND USED 

THE PROJECTORS TO 
THE INVARIANT SPACES 

TO ESTABLISH SOME 
CONNECTIONS WITH THE 

RELATIVES OF THE FOURIER 
TRANSFORM.
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application of a one-dimensional DFT 
to the columns of the input (a matrix) 
followed by the application of DFT to 
the rows of the resultant matrix. The 
separability property aids in identifying 
the eigenstructure of multidimen-
sional DFT. 

It can be noted that the following 
M 3 N rank-1 matrix is an eigenmatrix 
of two dimensional DFT with the eigen-
value lxly:

E 5 exey
T. (2)

Here ex is an eigenvector of M 3 M
one-dimensional DFT matrix with the 
eigenvalue lx and ey is an eigenvector 
o f N 3 N  one-d imensional  DFT 
matrix with the eigenvalue ly. From 
this discussion, it can be noted that 
the set of eigenvalues of a two-dimen-
sional DFT is identical to the corre-
sponding set of a one-dimensional 
transform. The results on a two-
dimensional  DFT can be eas i ly 
extended to multidimensions. More 
details can be found in [14]. 

RELATIONS TO 
OTHER TRANSFORMS
The projectors to the invariant spaces of 
the DFT can be useful to characterize 
other relatives of the Fourier transform. 
The following lines show the relation 
between the pro jectors and DFT, 
Hartley transform, identity, and coordi-
nate inversion operations  respectively:

F 5 P12P211 jPj2jP2j

H 5 P12P212Pj 1 P2j

I 5 P1 1 P21 1 Pj 1 P2j

J 5 P1 1 P21 2 Pj 2 P2j.

It can be noted th at the projectors define 
an algebra for the relatives of the Fourier 
transform. As an illustrative example, 
the transformation formed by the cas-
cade application of a Har tley transform 
and a DFT transform, that is, an FH

matrix can be expressed in terms of pro-
jectors as follows: 

FH 5 1P1 2 P21 1 jPj2jP2j 2
3 1P1 2 P212Pj 1 P2j 2

5 P1 1 P21 2 jPj 2 jP2j

5
1
2
1I 1 J 2 2

j

2
1I 2 J 2

5 E 2 jO.

From this result, we can conclude that 
the cascade operation of Hartley and 
DFT is equivalent to expressing even and 
odd parts of the input and combining 
t hem together as the real and imaginary 
parts of the output. 

The fractional powers or any other 
function of F can also be defined 
th rough the projectors. We illustrate the 
idea on the square root of a DFT matrix. 
The square root or one half power of a 
DFT matrix can be defined as follows 
F

1

2 !"1P11"21P211"jPj1"2jP2j.
Since the square root operation is 
 one-to-many, that is "1 5 51, 2 16,
the proposed definition is not unique 
unless a branch-cut for every square root 
is specified. A possible definition is 
F

1

2 ! P11jP211
1 1 j

2 Pj1
12j

2 P2j.One can 
easily note that F

1
2 F

1
2 5 F as expected. 

More information on the fractional 
Fourier transform and the details of the 
definition multiplicity problem can be 
found in [15]. 

CONCLUSIONS
We have examined the structure of DFT 
eigenspaces and used the projectors to the 
invariant spaces to establish some connec-
tions with the relatives of the Fourier 

transform. The presented results are heav-
ily based on the properties of projectors 
that can also be of interest on their own 
due to their strong algebraic structure and 
important geometric interpretations. 
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David V. Anderson

Storytelling—The Missing Art in Engineering Presentations

I
t happened again. I had just finished 
sitting through the presentation and 
defense of a student’s Ph.D. proposal, 
and it simply couldn’t be described 
as a success. Why?! The student had 

prepared well, followed the basic rules 
for a good presentation, spoken clearly, 
and kept within the allotted time; yet 
something was missing. The fact that 
something was missing was even clearer 
as members of the committee struggled 
to find the significance of the completed 
and proposed work. Having first-hand 
knowledge of this student’s work, I knew 
that it was well done and that he had 
made useful contributions to his field. 
Plots and tables showing the effective-
ness of his approach were included in 
the presentation. One might expect him 
to have received congratulatory pats on 
the back instead of skepticism and doubt. 

This student fell victim to a common 
problem in engineering and perhaps in 
other disciplines as well. He forgot the 
story that made his research exciting, 
and in his desire to impress, turned the 
presentation into a series of plots, equa-
tions, and facts that left the audience 
nearly comatose. That “something miss-
ing” was the storytelling. 

WHY STORYTELLING?
The human brain is not a computer. 
Although it might simplify education if 
we could simply dump all necessary raw 
facts directly into a person’s brain, that 
is still the stuff of science fiction. 
Throughout the ages, people have 
taught their children and others using 
stories. Stories convey not only 
 information but experience and wisdom, 
and they excite sympathetic reactions 

within the listeners that enable them to 
apply the learned concepts to other situ-
ations. Our brains are simply better 
equipped to understand and retain nar-
rative and information in context than 
to retain bare facts. 

Technical topics, however, may seem 
to defy a narrative or “storytelling” 
approach. For example, precision is 
often paramount, and such precision 
may best be represented in terms of 
equations, plots, and tables of data. Do 
not despair, you too can enchant your 

audiences with gripping tales of multi-
dimensional analysis and measurement 
techniques.

STORYTELLING IN ENGINEERING?
“But I only have 20 minutes to present 
my paper! How can I fit in a plot, charac-
ter development, and a battle of good 
versus evil, and still have time to get to 
my results?” 

Let me assure you, it is possible. A 
good story must have plot, characters, 
and dramatic appeal; and this goes for 
stories in engineering as well. Instead of 
villains, we have problems—they could 
be noise, theoretical limits, or practical 
limitations. To set up the drama, we can 
relate failed attempts to solve a problem 
or potential benefits from being the first 

to find a solution. Acting the role of the 
protagonist is our newly developed 
method or mathematical approach. 
And, for a plot, we can relate the saga 
and suspense of seeking a solution 
through forests of data and impenetra-
ble mathematics. 

Now, before you simply turn all your 
presentations into fairy tales, let us look 
a little more into these concepts. First, 
when talking about presentations and 
storytelling in the same breath, most 
people think of stories that are included 
within a presentation. These stories can 
introduce, punctuate, clarify, or empha-
size points of a presentation or lecture. 
As an undergraduate student taking 
thermodynamics, I had resigned myself 
to a dreary semester of looking up ther-
modynamic properties of select sub-
stances in countless tables. Then one 
day, we had a guest lecturer who 
explained how a coal-fired power plant 
works—it essentially has a flame 12 sto-
ries high! Suddenly, heat transfer 
became much more interesting. 

This type of storytelling, also known 
as “sharing real-life experiences,” is 
extremely valuable, but it is not what we 
are talking about in this discussion on 
storytelling. So, let us go on to see how 
we can make a compelling story out of a 
simple technical presentation itself. 

HOW TO TURN 
PRESENTATIONS INTO STORIES
“Effective storytelling is a fine and beau-
tiful art. A well-developed and presented 
story can cut across age barriers and will 
hold the interest and reach its listeners. 
Stories will be remembered long after 
other orations” [1]. 

It is easier to be a comedian if you find 
humor in the vicissitudes of life. 
Likewise, stories spring up from a well of 
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[dsp EDUCATION] continued

fascinat ion with l i fe  and your 
 surroundings. The key is to convey that 
fascination to those around you. This 
takes practice and attention and you will 
need to develop your own style. But to get 
you started, here are eight suggestions to 
help you enliven your presentations and 
make them memorable and effective:

 ■ Share the love.
 ■ Know your audience.
 ■ Pay attention to the big picture.
 ■ Learn the history.
 ■ Try to explain it to a nontechnical 

friend.
 ■ Follow a pattern of tension and 

resolution.
 ■ Practice.
 ■ Don’t overdo it.

SHARE THE LOVE
This is all about conveying your “fascina-
tion” for your topic. Why are you 
involved in this work? What makes it 
interesting to you? I hope that answers 
to those questions spring readily to 
mind, otherwise you may have more 
problems than just making a good 
 presentation. If answers to these ques-
tions do not come easily, then you may 
need to think more about them as you 
are actually doing the work. It will make 
your work more rewarding and 
 productive. 

Now, once you remember why you 
love your topic, you are ready for the 
next step, which is to share your love of 
your topic or material with the audi-
ence. Ask yourself—what might other 
people find interesting? Give this some 
thought. I have endured more than one 
presentation in which I know the pre-
senter has a love for his or her topic but 
did not share that with the audience. 
Perhaps this was for one of several rea-
sons: one, they were afraid that others 
would not find it interesting and so did 
not even try; two, they were unaware 
that their audience wouldn’t automati-
cally feel the same way they did; or 
three, they were under the impression 
that technical presentations should be 
dry. Technical presentations should not 
be dry. They should be interesting and 
compelling, and the presenter should 
exhibit enthusiasm for the topic. It also 

helps substantially if you know how to 
connect with your audience. 

KNOW YOUR AUDIENCE
“Know your audience” is a proverb in 
public speaking. What does it mean to 
know your audience? To begin with, you 
should know what the audience wants 
from your presentation. Whether you 
give them what they want may be a dif-
ferent discussion (they may want free 
sports cars), but you should try to 
understand their expectations as a start-
ing point. Then, estimate their ability to 
understand your presentation, their 
level of endurance, and how your topic 
relates to their primary interests. The 
single thing that often sets apart an 
excellent teacher from a poor teacher is 
the ability to understand and connect 
with the audience. 

Before your presentation, learn what 
you can about your audience. Visit with 

audience members, if possible, before-
hand. During the presentation, observe 
what resonates with the audience and 
what does not, then adapt accordingly. 
This will take practice, but the effort 
made in learning these skills will pay off 
for the rest of your life. 

PAY ATTENTION 
TO THE BIG PICTURE
A good novel will have a main plot and 
it may have many subplots, but it will 
not have random unrelated points. 
Some things just do not contribute to 
good stories or good presentations. 
Isolated details fall into that category. 
When deciding if something should be 
included in a presentation, ask your-
self how it contributes to the overall 
story. If it is important, then it should 
be properly incorporated into your 
story. If it does not contribute, then 
leave it out. 

Consider, for example, how you 
might discuss a detail in the simplifica-
tion of a mathematical expression. When 
replacing ek with 1 1 k you probably had 
a good reason; but you must ask yourself 
how it contributes to the main message 
or big picture. We will assume that it is 
important and that it does contribute 
because if it was not important, then you 
would not have included it in your pre-
sentation. Since it is important, then it is 
worth presenting properly. 

How do you present details prop-
erly? You first explain the context or 
motivation that makes the detail rele-
vant to the rest of the story. Only 
after  presenting the motivat ion 
should you share the detail—it will 
then fit nicely into the narrative in 
the place prepared for it. Back to our 
ek  approximation, you might ask 
yourself why you made the approxi-
mation and why the audience would 
care. How did that change affect the 
larger system? You might explain that 
no closed-form solution to the origi-
nal equation is known but that by 
approximating ek < 1 1 k it is possi-
ble to generate a closed form solu-
tion. Then you could explain that the 
approximation is significant for them 
to remember because it limits the 
range over which the approximate 
solution is valid; thereby limiting the 
scope of the solution. 

A good rule of thumb for keeping the 
big picture in mind is to provide context 
or motivation before presenting details 
so that the audience can easily under-
stand the significance and relative 
importance of each point that you make. 
If a detail is not worth that effort, then it 
is likely not worthwhile including in 
your presentation. 

LEARN THE HISTORY
When looking at the “big picture,” it is 
often helpful to zoom out even further 
than just your own work. Are you the 
first person to look at this topic? If so, 
then either you are a genius of the first 
order or you picked a topic no one cares 
about. If you are not the first person to 
look at the topic (as is more common), 
then be prepared to set the background 

WHEN LOOKING AT THE 
“BIG PICTURE,” IT IS OFTEN 

HELPFUL TO ZOOM OUT 
EVEN FURTHER THAN JUST 

YOUR OWN WORK.
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for your work by discussing the suc-
cesses and shortcomings of those who 
went before. Build it up so that now you 
will be presenting the culminating chap-
ter in the great saga that began with 
those pioneers in your field. Your audi-
ence will naturally be more interested in 
your efforts, and it will make it that 
much easier for them to understand its 
significance. As any sports fan knows, a 
game is much more interesting to watch 
when you know the teams and players 
and their struggles and triumphs. 

TRY TO EXPLAIN IT 
TO A NONTECHNICAL FRIEND
Once you have the big picture and the 
backstory, it is time to test it out on a 
willing subject. This is not a practice 
run of your presentation but more like 
an elevator pitch. (An elevator pitch is a 
short but compelling overview on some 
topic that could presumably be given in 
the brief time during which two people 
are together in an elevator.) The goal is 
to explain your subject so that a non-
technically inclined friend finds it 
interesting and is not lost among 
details or esoteric terms. If you suc-
ceed, then you have likely established 
the overall story. If you did not suc-
ceed, it is time to reevaluate your 
approach and then try again (hopefully 
your friend is patient). 

FOLLOW A PATTERN 
OF TENSION AND RESOLUTION
A good comedian never reveals the 
punch line until the joke is set up. 
Similarly, do not show results until you 
have audience in a state of anticipation. 
(This is closely related to the method for 
including details discussed above.) In 
practice, this means that when giving a 
presentation, your audience should be 
eager for the next slide. Consider these 
two examples: 

1) “Next we used a nearest-neighbor 
approach to remove measurement 
noise on the critical axis. The plot is 
on the next slide.” 
2) “Now that we had discovered how 
to capture the data, we needed to find 

a way to minimize the error on the 
critical axis while leaving all other 
dimensions unchanged. However, no 
one has ever been able to do so. The 
difficulty is that . . . . After trying the 
usual approaches, we realized that by 
plotting the data versus the nearest-
neighbor density, it might be possible 
to remove the effects of most of the 
measurement error. The plot on the 
next slide shows the average error 
before and after processing using this 
approach. If we were successful, the 
plot would look like ….” 
This example is a bit long winded 

because it combines several examples 
of how to build anticipation. There are 
many variations on this theme. The 
main thing is to bring the listeners 
along with you as you recreate the 
tension and thrill associated with 
finding a new approach or uncovering 
new truths. I still remember clearly a 
concept taught in one of my graduate 
classes. Prof. Monty Hayes was dis-
cussing methods of estimating the 
spectrum of a signal. What made it 
memorable was the historical walk 
through the topic with enough discus-
sion of the advantages and disadvan-
tages  of  each newly discovered 
method that the students could make 
the intuitive leap to anticipate the 
next discovery. This recreated the 
thrill of discovery for each listener 
and created a deeper interest in and 
for the subject matter. 

PRACTICE
A good joke can be made or destroyed 
by the delivery—the timing, level of 
detail, and phrasing are essential. A 
presentation can also sink or swim on 
delivery. Practice is essential for iden-
tifying and correcting awkward parts 
of your presentation. Furthermore, 
to implement some of the sugges-
tions in this article, such as following 
a pattern of tension and release, you 
must know what slide comes next at 
each point. Without practice, it be-
comes much more difficult to have 
a smooth and natural  f low that 

 interweaves your story and the sup-
porting slides. 

DON’T OVERDO IT
Warning—As when using spices in 
cooking, these techniques should 
always be used with judgment and mod-
eration. Remember that the purpose of 
a technical presentation is to convey 
certain material, not to entertain. 
Although it may be possible to do both, 
care must be taken to avoid giving a 
presentation with plenty of style but 
insufficient  substance. The use of story-
telling  techniques as described in this 
article should be subtle tweaks to your 
 presentation style and may not be all 
used at once. 

These suggestions are likely to 
improve your technical presentations, 
but they cannot be used as a substitute 
for good basic skills. See, for example, 
“Effective Communication: Excellence in 
a Technical Presentation” by Wayne 
Padgett and Mark Yoder [2]. 

THE END OF THE STORY
Back to the student at the beginning of 
the story. (Sidenote: several of my stu-
dents have read this article, and they 
each think that the person at the 
beginning is them. Although the events 
are real, I am specifically not writing 
this with any one person in mind.) By 
the time of his next presentation he 
had learned the basic concepts of story-
telling, and his presentation was 
accompanied by congratulations and 
pats on the back. 

AUTHOR
David V. Anderson (anderson@gatech.
edu) is with the School of Electrical and 
Computer Engineering at the Georgia 
Institute of Technology.

REFERENCES
 [1] B. McWilliams. Effective storytelling: a manual 
for beginners [Online]. Available: http://www. 
eldrbarry.net/roos/eest.htm

[2] W. T. Padgett and M. A. Yoder, “Effective com-
munication: excellence in a technical presentation,” 
IEEE Signal Process. Mag., vol. 25, pp. 124–127, 
Mar. 2008. 

[SP]

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

____________

____

http://www.eldrbarry.net/roos/eest.htm
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com
mailto:anderson@gatech.edu


IEEE SIGNAL PROCESSING MAGAZINE   [112]   MARCH 2011 1053-5888/11/$26.00©2011IEEE

[dsp TIPS&TRICKS]
Richard Lyons

T
his article discusses the esti-
mation of time-domain sine-
wave peak amplitudes based 
on the fast Fourier trans-
form (FFT) data. Such an 

operation sounds simple, but the scallop-
ing loss characteristic of FFTs compli-
cates the procedure. Here we present 
novel multiplier-free methods to accu-
rately estimate sinewave amplitudes, 
based on FFT data, that greatly reduce 
scalloping loss problems.

FFT SCALLOPING LOSS REVISITED
There are many applications that require 
the estimation of a time-domain sine-
wave’s peak amplitude based on FFT 
data. Such applications include oscillator 
and analog-to-digital converter perfor-
mance measurements, as well as stan-
dard total harmonic distortion (THD) 
testing. However, the scalloping loss 
inherent in FFTs creates an uncertainty 
in such time-domain peak amplitude 
estimations. This section provides a brief 
review of FFT scalloping loss.

As most of you know, if we perform 
an N-point FFT on N real-valued time-
domain samples of a discrete sinewave, 
whose frequency is an integer multiple 
of f s/N  (f s is the sample rate in hertz), 

the peak magnitude of the sinewave’s 
 positive-frequency spectral component 
will be 

 M 5
A # N

2
, (1)

where A is the peak amplitude of the 
time-domain sinewave. That phrase 
“whose frequency is an integer multiple 
of f s/N” means that the sinewave’s fre-
quency is located exactly at one of the 
FFT’s bin centers.

Now, if an FFT’s input sinewave’s 
frequency is between two FFT bin 
centers (equal to a noninteger multi-
ple of f s/N ), the FFT magnitude of 
that spectral component will be less 
that the value of M in (1). Figure 1 
illustrates this behavior. Figure 1(a) 
shows the frequency responses of 
individual FFT bins where, for sim-
plicity, we show only the main lobes 
(no side lobes) of the FFT bins’ 

responses. What this means is that if 
we were to apply a sinewave to an FFT 
and scan the frequency of that sin-
ewave over multiple bins, the magni-
tude of the FFT’s largest normalized 
magnitude sample value will follow 
the curve in Figure 1(b). That curve 
describes what is called the “scallop-
ing loss” of an FFT [1]. 

(As an aside, the word scallop is not 
related to my favorite shellfish. As it 
turns out, some window drapery, and 
tablecloths, do not have linear borders. 
Rather they have a series of circular seg-
ments, or loops, of fabric defining their 
decorative borders. Those loops of fabric 
are called scallops.) 

What Figure 1(b) tells us is that if we 
examine the N -point FFT magnitude 
sample of an arbitrary-frequency, peak 
amplitude = A sinewave, that spectral 
component’s measured peak magnitude 
Mpeak can be in anywhere in the range of:

“DSP Tips and Tricks” introduces 
practical design and implementation 
signal processing algorithms that 
you may wish to incorporate into 
your designs. We welcome readers 
to submit their contributions. 
Contact Associate Editors Rick Lyons 
(R.Lyons@ieee.org) or Clay Turner 
(clay@claysturner.com).

Reducing FFT Scalloping Loss Errors Without Multiplication
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[FIG1] FFT frequency magnitude responses: (a) individual FFT bins and (b) overall 
FFT response. Date of publication: 17 February 2011
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0.637 # A # N

2
# Mpeak #

A # N
2

 (2)

depending on the frequency of that 
 sinewave. This is shown as the 
rectangular window  curve in Figure 2, 
where the maximum scalloping error 
occurs at a frequency midpoint between 
two FFT bins. The variable M in Figure 2 is 
the M from (1). So if we want to determine 
a sinewave’s time-domain peak ampli-
tude A, by measuring its maximum FFT 
spectral peak magnitude Mpeak, our esti-
mated value of A, from (1), using

 A 5
2Mpeak

N
 (3)

can have an error as great as 36.3%. In 
many spectrum analysis applications such 
a large potential error, equivalent to 3.9 
dB, is unacceptable. As shown by the mag-
nitude-normalized curves in Figure 2, 
Hanning and Hamming windowing of the 
FFT input data reduce the unpleasant fre-
quency-dependent fluctuations in a mea-
sured spectral Mpeak value but not nearly 
enough to satisfy many applications.

One solution to this frequency-
dependent, FFT-based, measured ampli-
tude uncertainty is to multiply the 
original N  time-domain samples by an 
N-sample flat-top window function and 
then perform a new FFT on the win-
dowed data. Flat-top window functions 
are designed to overcome the scallop loss 
inherent in rectangular-windowed FFTs. 
While such a flat-top-windowed FFT 
technique will work, there are more 
computationally efficient methods to 
solve our signal peak amplitude estima-
tion uncertainty problem.

FREQUENCY-DOMAIN 
CONVOLUTION 
Because multiplication in the time domain 
is equivalent to convolution in the fre-
quency domain, we can convert rectangu-
lar-windowed (no windowing) FFT samples 
to windowed-FFT samples by way of 
 convolution. For example, consider an 
N-point w 1n 2  window sequences whose 
time-domain samples are generated using

 w 1n 2 5 a
K21

k50

1 2 1 2 khkcos 12pkn/N 2 , (4)

where the w(n) sequence’s generating 
polynomial has an integer K number of 
hk coefficients.

Many window functions, including 
Hanning, Hamming, Blackman, and flat-
top, are generated using (4). One popular 
flat-top window sequence, generated using 
(4), is Matlab’s flattopwin 1N 2  routine 
where the hk polynomial coefficients are [2]

 h0  5 0.2156, h1  5 0.4160, 

 h2  5 0.2781, h3  5 0.0836, 

 h4  5 0.0069. (5)

(Very similar flat-top window generating 
coefficients are recommended in [3].) 
Thus in implementing frequency-domain 
convolution, to compute a single flat-top 
windowed Xft 1m 2  spectral sample from 
rectangular-windowed X(m) spectral 
samples, we would compute

Xft 1m 2 5
h4

2
X 1m 2 4 2 2

h3

2
X 1m 2 3 2

 1
h2

2
X 1m 2 2 2  2

h1

2
X 1m 2 1 2

 1 h0X 1m 2 2
h1

2
X 1m 1 1 2    

 1
h2

2
X 1m 1 2 2 2

h3

2
X 1m 1 3 2

 1
h4

2
X 1m 1 4 2 , (6)

where X (m) is the rectangular- 
windowed FFT sample having the largest 
magnitude,  and m is  the FFT’s 
 frequency-domain sample index.

If we apply (6) to rectangular-windowed 
X(m) FFT samples and compute the flat-
top windowed maximum FFT spectral peak 

magnitude Mpeak 5 |Xft1m 2|, the estimated 
value of A from (3) will have an error of no 
more than 0.0166 dB. Such a small error is 
represented by the very flat, nearly ideal, 
solid curve labeled as flat-top in Figure 2. 

That appealing flat-top curve in 
Figure 2 is the good news associated 
with the frequency-domain flat-top win-
dow convolution in (6). The bad news is 
that each computation of an Xft 1m 2 sam-
ple requires, assuming we combine 
terms having identical coefficients, 18 
real multiplies and 16 real additions. In 
what follows, we show how to drasti-
cally reduce the computational work-
load in computing an Xft 1m 2  sample. 

IMPROVED CONVOLUTION 
COEFFICIENTS
Reference [4], which discusses many differ-
ent sets of window generating- polynomial 
coefficients, presents the following useful 
set of flat-top window coefficients

 h0 = 0.26526, h1 = 0.5, h2 = 0.23474 (7)

collectively called the SFT3F coefficients. 
Thus to obtain a single flat-top windowed 
Xft(m) spectral sample from rectangular 
windowed X(m) samples, based on the 
SFT3F coefficients in (7), we compute

Xft 1m 2 5
h2

2
X 1m 2 2 2  2

h1

2
X 1m 2 1 2

 1 h0X 1m 2 2
h1

2
X 1m 1 1 2

 1
h2

2
X 1m 1 2 2 . (8)
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[FIG2] Windowed-FFT, bin-to-bin, frequency magnitude responses.
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[dsp TIPS&TRICKS] continued

The frequency-dependent scalloping 
loss of the floating-point SFT3F coeffi-
cients is shown as the black dotted 
curve in Figure 3. The variable M  in 
Figure 3 is the M from (1). The com-
putation of an X ft 1m 2  sample using (8) 
results in an estimated value of A, 
from (3), having a scalloping error in 
the range of –0.0082 dB to +0.0082 dB. 
We cal l  the coef f ic ients  in  (7) 
“improved” because the computation 
in (8) requires only ten real multiplies 
and eight real additions.

Notice that flat-top window coeffi-
cients, such as those (7), have the 
interesting characteristic that they 
have both a scalloping loss and a scal-
l op ing  ga in  ve r sus  f r equency. 

(Compare the black dotted curve in 
Figure 3 to the lossy Hanning, 
Hamming, and rectangular curves in 
Figure 2 whose Mpeak values are always 
less than M. 2  
FURTHER COMPUTATIONAL 
IMPROVEMENTS
We can take three steps to further reduce 
the computational workload of comput-
ing an Xft(m) sample using (8). 

FIRST STEP
If we divide the coefficients in (7) by the 
first coefficient, h0, we obtain the new 
coefficients

 h0 = 1.0, h1 = 1.88494, h2 = 0.88494. (9)

The coefficients in (9) eliminate the 
amplitude gain loss of the flat-top 
coefficients in (8) without changing 
their scalloping loss compensation 
performance. Given the flat-top win-
dow generating polynomial coeffi-
cients in (9), computing an X ft(m) 
sample proceeds as

Xft 1m 2 5 X 1m 2 2
1.88494

2

 3 3X 1m 2 1 2 1 X 1m 1 1 2 4
 1

0.88494
2

 3 3X 1m 2 2 2 1 X 1m 1 2 2 4.
 (10)

The coefficients in the convolution 
expression in (10) are 

 g0 5 1.0,

 g1 5 2
1.88494

2
5 2 0.94247,

 g2 5
0.88494

2
5 0.44247.  (11)

SECOND STEP
Next, we convert the coefficients in (11) 
to binary representation to simplify our 
processing by replacing the multiplica-
tions in (10) by arithmetic right-shifts. 
Doing so, the nonunity coefficients in 
(11) become

 g1 5 –0.94247

 5 –0.1111 0001 0100 0101…

 g2 5 0.44247

 5 0.0111 0001 0100 0101… . (12)

The le f tmost  sequence of  three 
 consecutive zeros in coefficients g1 
and g2 suggest that we can represent 
those coefficients with four fractional 
bits without inducing too much trun-
cation error.

To simplify our equations, let’s repre-
sent our five unwindowed frequency-
domain samples in (10) with

 c 5 X 1m 2
 p 5 X 1m 2 1 2  + X 1m 1 1 2
 q 5 X 1m 2 2 2  + X 1m 1 1 2
 r 5 q 2 p.

0.997 M
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[FIG3] Bin-to-bin frequency magnitude response of SFT3F coefficients.
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[FIG4] Multiplier-free scalloping loss compensation using 4-b coefficients in (14).

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE   [115]   MARCH 2011

Those assignments convert (10), using 
the first four fractional bits for g1 and g2 
in (12), to

Xft 1m 2 5 c 2
1
2

 p 1
1
4

 r 1
1
8

 r 1
1

16
 r, (13)

allowing us to replace the multiplica-
tions in (10) with binary right-shifts. 
However, rather than implement the 
four separate binary right-shifts in (13), 
we can use canonical signed digit (CSD) 
notation to further streamline our com-
putations. Using CSD, (13) becomes

 Xft 1m 2 5 c 2 p 1
1
2

 q 2
1

16
 r, (14)

which is equivalent to, but simpler to 
compute than, (13). The signal flow 
implementation of (14) is given in 
Figure 4, and its performance is shown 
as the red dashed curve in Figure 3.

Finally, we compute Mpeak, using 
(14), as

 Mpeak = |Xft 1m 2 | (15)

and use that Mpeak value in (3) to com-
pute our desired A, the peak amplitude 
of the FFT’s time-domain sinewave 
input. The computation of an Mpeak value 
using (14) and (15) results in an estimat-
ed value of A, from (3), having a scallop-
ing error in the range of –0.0229 dB to 
+0.003 dB.

We can achieve 8-b accuracy of our 
binary coefficients in (12) by adding one 
more term to the approximation in (14) as

 Xft 1m 2 5 c 2 p 1
1
2

 q 2
1

16
 r 1

1
256

 r.

 (16)

The signal flow implementation of 
(16) is given in Figure 5(a), and its 
performance is shown as the solid 
blue curve in Figure 3. The computa-
tion of an X ft(m) sample using (16) 
results in an estimated value of A , 
from (15) and (3), having a scalloping 
error in the range of –0.0113 dB to 
+0.0069 dB. That’s almost worth writ-
ing home about because the perfor-

mance of the multiplier-free (16) is 
superior to the multiply-intensive 
computation in (6). 

THIRD STEP 
In our relentless pursuit of accuracy, 
we employ one last binary arithmetic 
trick to reduce right-shift truncation 
error. Notice in Figure 5(a) that one of 
our complex data samples experiences 
a right-shift by 8 b. To reduce the trun-
cation error of an 8-b right shift, we 
use Horner’s rule to convert (16) to

 Xft 1m 2 5 c 2 p 1
1
2
aq 2

1
8
ar 2

1
16

 rbb.

 (17)

This way, no data sample experiences a 
truncation error greater than a 4-b 
right-shift. The signal flow implementa-
tion of (17) is given in Figure 5(b) and 
its performance is equal to that of (16).

To consolidate what we’ve covered so 
far, Table 1 shows the computational 

[FIG5] Scalloping loss compensation using 8-b coefficients: (a) initial implementation and (b) reduced truncation error implementation.
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[dsp TIPS&TRICKS] continued

 workload, and error performance in esti-
mating a sinewave amplitude A, of the var-
ious scalloping loss compensation 
methods.

IMPLEMENTATION CONSIDERATIONS
There are two issues to keep in mind 
when using the above scalloping loss 
compensation methods.

 ■ The flat-top window frequency-
domain convolutions are most useful 
in accurately measuring the time-
domain amplitude of a sinusoidal sig-
nal when that signal’s spectral 
component is not contaminated by 
side lobe leakage from a nearby spec-
tral component. For example, if a pos-
itive-frequency spectral component is 
low in frequency, i.e., located in the 
first few FFT bins, leakage from the 
spectral component’s corresponding 
negative-frequency spectral compo-
nent will contaminate that positive-
frequency spectral component. As 
such, empirical testing indicates that 
the convolutions in Figures 4 and 5 
should not be used for frequencies 
below the sixth FFT bin or above the 1N /2–5)th FFT bin. 

 ■ The flat-top window frequency-
domain convolutions discussed 
above are most useful when the FFT 
spectral component being measured 
is well above the background spec-
tral noise floor.

CONCLUSION
We discussed the inherent scalloping 
loss uncertainty (potential error) of esti-
mating sinewave peak amplitudes based 
on FFT spectral data. Then we briefly 
discussed the performance, and compu-
tational workload, of frequency-domain 
convolution using traditional five-term 
flat-top window coefficients to drastically 
reduce sinusoidal peak amplitude 
 measurement uncertainty. Next we 
 demonstrated a little-known three-term 
 flat-top window polynomial that has very 
good scalloping loss compensation and a 
reduced computational workload. 
Finally, we presented a series of binary 
arithmetic tricks yielding a high- 
performance,  efficient, multiplier-free 
implementation of scalloping loss com-
pensation. Matlab and C-code implemen-
tations of this material are available at: 
http://www. signalprocessingsociety.org/

publications/periodicals/spm/ columns-
resources/#tips.
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[TABLE 1] COMPUTATIONAL WORKLOAD PER Xft(m) SAMPLE AND PERFORMANCE.

SINGLE COMPUTATION
EQUATION REAL MULTS REAL ADDS

BINARY 
RIGHT-SHIFTS

MAX. SCALLOPING 
ERROR (DB)

(6) 18 16 — 0.0166
(8) 10 8 — 0.0082
(10) 4 6 — 0.0082
(14) — 12 4 0.0228

(16) AND (17) — 14 6 0.0113
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Alexander Todorov and   
Nikolaas N. Oosterhof

Modeling Social Perception of Faces

I
n Baboon Metaphysics, a detailed 
investigation of the complexities of 
baboon life, primatologists Dorothy 
Cheney and Robert Seyfarth write, 
“Any way you look at it, most of the 

problems facing baboons can be 
expressed in two words: other baboons.” 
This statement applies with even greater 
force to humans. Navigating the social 
world requires many cognitive feats, 
including keeping the identities of 
countless people straight, as well as the 
dynamics of their relationships. Our 
inferences about the social status, 
beliefs, desires, and intentions of other 
people determine whether we decide to 
approach or avoid them, what to say to 
them, and how to say it. Social complex-
ity is one of the key factors driving brain 
evolution. Across primates, the size of 
the neocortex increases with the size of 
the group, and there is recent evidence 
that the quality of one’s relationships 
has direct evolutionary benefits [1]. 
Maintaining suitable relationships 
requires sophisticated social cognition. 
At the basis of social cognition are the 
abilities to represent conspecifics as 
unique individuals and to perceive their 
intentions. In light of this, it should not 
come as a surprise that primates have 
specialized brain regions for the pro-
cessing of faces and (in the case of 
humans) information about others’ 
mental attributes [2]. 

SOCIAL PERCEPTION OF FACES
The face is our primary source of visual 
information for identifying people and 
reading their emotional and mental 
states. With the exception of prosopag-
nosics (who are unable to recognize 

faces) and those suffering from such 
disorders of social cognition as autism, 
people are extremely adept at these two 
tasks. However, our cognitive powers in 
this regard come at the price of reading 
too much into the human face. The face 
is often treated as a window into a per-
son’s true nature. References to this 
belief can be found in all ancient cul-
tures, and the belief has persisted into 

modern times. The Swiss pastor Johann 
Kaspar Lavater, who pioneered the 
pseudoscience  o f  phys iognomy, 
described in detail how to read the true, 
inner nature of a person from facial fea-
tures (e.g., “The nearer the eyebrows 
are to the eyes, the more earnest, deep, 
and firm the character” [3, p. 59]). 
Although attempts to characterize per-
sonality based on external appearance 
have largely fallen out of favor in sci-
ence, the ideas continue to appeal at an 
intuitive, implicit level. Lavater was 
probably wrong about most of his spe-
cific claims, but research strongly sup-
ports his contention that: “Whether 
they are or are not sensible of it, all 
men are daily influenced by physiogno-
my.” [3, p. 9]. First, people tend to 
agree in their social judgments based 
on faces, indicating that faces provide 
information that is consistently inter-
preted [4], [5]. Second, such judgments 
are made rapidly, without much mental 
effort: as little as 33 ms exposure to a 

face is sufficient for people to decide 
whether a face looks trustworthy or not 
[6]. Third, recent functional magnetic 
resonance imaging (fMRI) studies have 
shown that regions in the brain critical 
for emotion and decision making are 
activated when participants look at neg-
atively perceived faces (untrustworthy  
and aggressive looking) even when the 
participants have not been asked to 
evaluate these faces [7]. Thus it appears 
that our brains automatically categorize 
faces. Finally, many studies have shown 
that social judgments based on faces 
predict important social outcomes, 
ranging from sentencing decisions to 
electoral success [8]. 

STATISTICAL MODELS 
FOR FACE REPRESENTATION
Given the agreement in social perception 
of faces (see Table 1), it should be possi-
ble to model this perception. What dif-
ferences in facial structure lead to 
appearance-based social inferences? For 
example, based on what perceptual infor-
mation do people decide that a face looks 
trustworthy or untrustworthy? Human 
faces share the same spatial layout and 
differences between faces are subtle, 
making it difficult to characterize what 
differences trigger specific social infer-
ences. In this respect, data-driven 
approaches that do not impose any  a pri-
ori constraints on face perception can be 
particularly useful for modeling social 
perception. There are two basic tasks in 
these approaches: creating a statistical 
model of face representation and using 
this model to derive the changes in facial 
features that lead to corresponding 
changes in social judgments. There are 
several statistical approaches for charac-
terizing the commonalities and differ-
ences among individual faces. They all 
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[social SCIENCES] continued

attempt to reduce high-dimensional face 
representations [e.g., pixel values of pho-
tographs, or three-dimensional (3-D)
points that define the skin surface] to a 
lower-dimensional “face space.” The 
dimensions of the face space define 
abstract, global properties of faces that 
are not reducible to single features. Here 
we use the face space model implement-
ed in Facegen (www.facegen.com), a 
derivative of Blanz and Vetter’s work [9]. 
This model uses 50 dimensions to repre-
sent face shape and 50  dimensions to 
represent face reflectance (brightness, 
color, and texture variations on the sur-
face map of the face). The face model in  
Facegen is based on a database of 
N 5 271 faces laser-scanned in 3-D and 
subsequently aligned so that all faces 
share the same skin surface mesh topol-
ogy (for details, see [9]). The ith face is 
represented by a shape vector 

s
S

i 5 3x1, y1, z1, . . . , xNs
, yNs

, zNs
4T

with coordinates for Ns vertices, and a 
reflectance vector 

t
S

i 5 3r1, g1, b1, . . . , rNt
, gNt

, bNt
4T

with red, green, and blue color values of 
the Nt pixels in the color bitmap that is 
projected on the skin surface (in Facegen, 
Ns 5 2,043 and Nt 5 256 3 256 2 .

The face vectors are submitted to a 
principal component analysis (PCA), a 
data-driven dimensionality reduction 
technique that allows for characterizing 
the most common variations in face 
shape and face reflectance. In this 
approach, shape variations are represent-

ed by an average face s
S

5 1/N #gm
S
sm

and a set of k 5 50 orthogonal principal 
components  (shape  e igenfaces) 
v
S

1, . . . , v
S

k that have the greatest eigen-
values of the covariance matrix of the 
face coordinates. The shape of a face can 
then be approximated by a k dimensional 
weight vector p

S
i ,  yielding shape 

 coordinates 

s
Sr5 s

S
1 a

j
v
S

j
# p
S

ij 5 s
S

1
S
V # pi

S,

where s
S

 is the average shape and 
V 5 3v1

cvk 4 the matrix with principal 
components. Variations in reflectance are 
treated similarly, also with 50 components. 

Thus, faces are represented as an average 
face plus a weighted sum of the principal 
components (eigenfaces). This gives rise 
to the concept of face space, which is the 
space containing the faces that can 
be represented. 

Assuming that shape and reflectance 
are approximately multinormally dis-
tributed, new faces that are plausible in 
the population can be generated in face 
space by constructing new weight 
 vectors with random Gaussian values. A 

practical implication is that a virtually 
unlimited amount of faces can be gener-
ated using this approach, which makes 
it an attractive alternative to using a 
da tabase  o f  f ace  photographs . 
Furthermore, as described in detail 
below, face properties related to shape 
and reflectance (the surface map of the 
face) can be independently manipulated. 
These qualities of the models allow for 
the constructions of vectors in face 
space that approximate specific social 
judgments and for tests of psychological 
hypotheses.

MODELING SOCIAL 
JUDGMENTS OF FACES
With the aid of a statistical face model, it 
is relatively straightforward to uncover 
the variations in the structure of faces 
that lead to specific social judgments [4], 
[10], [11]. Here, we describe models of 
nine different social judgments. The first 
task is to collect judgments of faces ran-
domly generated by the statistical model 
and to show that these judgments are 
reliable. If the judgments are unreli-
able—there is a low or no agreement 
among judges—it is futile to try to 
model these judgments. As a rule of 
thumb, the reliability of the judgments 
sets the ceiling of their predictability. 
The second task is to test whether the 
statistical model of face representation 
can account for a meaningful proportion 
of the variance of these judgments. 
Assuming that this is the case, the third 
task is to construct new dimensions in 
face space that account for the maxi-
mum variability in the judgments. These 
dimensions then can be used to visualize 
the differences in facial structure that 
lead to specific judgments (Figures 1–3) 
and to manipulate faces along these 
dimensions [10], [11]. Table 1 lists nine 
different social judgments of 300 faces 
randomly generated by the statistical 
model described in the previous section. 
The most common measure of reliability 
used in psychological testing is 
Cronbach’s alpha (a). This measure indi-
cates the expected correlation between 
the ratings of the faces averaged across 
raters and the ratings of a new sample 
with the same number of raters. All 

[TABLE 1] INTERRATER AGREEMENT AND RELIABILITY OF NINE SOCIAL 
JUDGMENTS OF EMOTIONALLY NEUTRAL FACES.

JUDGMENT 
NUMBER OF 
RATERS (n)

INTERRATER 
AGREEMENT (r) RELIABILITY (a)

DOMINANT 23 .36 .92 
THREATENING 21 .26 .87 
ATTRACTIVE 35 .23 .91 
FRIGHTENING 28 .17 .84 
MEAN 27 .17 .83 
TRUSTWORTHY 29 .15 .81 
EXTROVERTED 33 . 14 .84 
COMPETENT 44 .11 .84 
LIKEABLE 31 .10 .76 

RATERS (n) WERE ASKED TO MAKE JUDGMENTS OF 300 RANDOMLY GENERATED FACES ON A SCALE FROM 1 (NOT AT 
ALL [TRAIT TERM]) TO 9 (EXTREMELY [TRAIT TERM]).

WITH THE AID OF A 
STATISTICAL FACE 

MODEL, IT IS RELATIVELY 
STRAIGHTFORWARD TO 

UNCOVER THE VARIATIONS 
IN THE STRUCTURE 

OF FACES THAT LEAD 
TO SPECIFIC SOCIAL 

JUDGMENTS.
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judgments show sufficiently high 
 reliability, ranging from .76 to .92. 
Because Cronbach’s a is a function of 
the sample size of raters and the inter-
rater agreement, it could be a misleading 
measure of the actual rater agreement 
(e.g., a large sample of raters with a low 
agreement will result in reliable judg-
ments). As shown in the third column of 
Table 1, the interrater agreement varies 
as a function of the specific judgment. 
Whereas for some judgments, the agree-
ment is relatively high (e.g., dominance), 
for others it is relatively low (e.g., like-
ability). As we show below, this agree-
ment is an important constraint on the 
ability of statistical models to explain 
social judgments. 

Table 2 lists the proportion of vari-
ance of the social judgments accounted 
for by the shape and reflectance compo-
nents of the statistical model. Four 
things should be noted about these data. 
First, the model does a good job of 
explaining the variance of judgments. In 
all cases, the amount of explained vari-
ance is statistically significant. Second, 
there is a high correlation between the 
amount of variance accounted for by 
shape components and the amount of 
variance accounted for by reflectance 
components (r 5 .86). Third, the vari-
ance accounted for by the model that 
includes both shape and reflectance com-
ponents is substantially smaller than the 
sum of the variances accounted for by 
shape components alone and reflectance 
components alone. This finding suggests 
that there is redundancy in shape and 
reflectance information. For example, a 
face with a dominant shape is likely to 
have dominant reflectance. Finally, there 
is a strong relationship between the 
inter-rater agreement in judgments 
(Table 1) and the amount of variance 
accounted for by shape and reflectance 
components (r 5 .61 and r 5 .82, respec-
tively). That is, the statistical model bet-
ter explains judgments for which there is 
a high interrater agreement. Although 
this is not surprising, it indicates a sensi-
ble behavior of the model. 

Before we describe the construction 
of new social dimensions in face space, 
we note that introducing nonlinear, 

quadratic predictors in the statistical 
models can improve the predictability 
of social judgments. The quadratic 
models capture the intuition that 
extreme faces can be evaluated nega-
tively. In fact, for seven out of nine 
judgments, the quadratic shape model 
accounted for significantly more vari-
ance than the linear model (Table 3). In 
contrast to shape, the quadratic reflec-
tance model accounted for significantly 
more variance only for two judgments 

(Table 4). This finding is consistent 
with prior findings on attractiveness 
showing that averageness is more 
important for shape than reflectance 
information [12]. 

COMPUTING SOCIAL 
VECTORS IN FACE SPACE
Having shown that the statistical model 
of face representation accounts for 
meaningful variance of social judg-
ments, we now describe the construction 

[TABLE 2] PROPORTION OF VARIANCE OF SOCIAL JUDGMENTS OF FACES 
ACCOUNTED FOR BY SHAPE COMPONENTS, REFLECTANCE COMPONENTS, 
AND SHAPE AND REFLECTANCE COMPONENTS OF STATISTICAL MODEL OF 
FACE  REPRESENTATION.

JUDGMENT SHAPE REFLECTANCE SHAPE AND REFLECTANCE 

DOMINANT .751 .810 .906 
THREATENING .729 .691 .8 46
ATTRACTIVE .393 .395 .603 
FRIGHTENING .498 .523 .730 
MEAN .696 .562 .811 
TRUSTWORTHY .486 .381 .640 
EXTROVERTED .692 .524 .800 
COMPETENT .355 .4 37 .623 
LIKEABLE .358 .329 .559 

[TABLE 3] PROPORTION OF VARIANCE OF SOCIAL JUDGMENTS OF FACES 
ACCOUNTED FOR BY LINEAR AND QUADRATIC SHAPE COMPONENTS OF 
STATISTICAL MODEL OF FACE REPRESENTATION.

JUDGMENT NONLINEAR MODEL 

CHANGE IN 
ACCOUNTED 
VARIANCE 

SIGNIFICANCE 
OF CHANGE 

DOMINANT .824 .073 p , .008
THREATENING .784 .055 p 5 .46
ATTRACTIVE .632 .239 p , .0001
FRIGHTENING .654 .156 p , .003
MEAN .758 .062 p 5 .45
TRUSTWORTHY .674 .188 p , .0001
EXTROVERTED .802 .110 p , .0001
COMPETENT .612 .257 p , .0001
LIKEABLE .578 .220 p , .0002
THE CHANGE IN ACCOUNTED VARIANCE SHOWS THE DIFFERENCE BETWEEN THE VARIANCE ACCOUNTED FOR BY THE 
QUADRATIC MODEL AND THE VARIANCE ACCOUNTED FOR BY THE LINEAR MODEL.

[TABLE 4] PROPORTION OF VARIANCE OF SOCIAL JUDGMENTS OF FACES 
ACCOUNTED FOR BY LINEAR AND QUADRATIC REFLECTANCE COMPONENTS 
OF STATISTICAL MODEL OF FACE REPRESENTATION.

JUDGMENT NONLINEAR MODEL 
CHANGE IN 
ACCOUNTED VARIANCE 

SIGNIFICANCE 
OF CHANGE 

DOMINANT .855 .045 P = .16
THREATENING .739 .048 P = .90
ATTRACTIVE .530 .135 P = .26
FRIGHTENING .627 .104 P = .30
MEAN .646 .084 P = .58
TRUSTWORTHY .502 .121 P = .54
EXTROVERTED .638 .114 P = .14
COMPETENT .597 .160 P 6 .015
LIKEABLE .524 .195 P , .010
THE CHANGE IN ACCOUNTED VARIANCE SHOWS THE DIFFERENCE BETWEEN THE VARIANCE ACCOUNTED FOR BY THE 
QUADRATIC MODEL AND THE VARIANCE ACCOUNTED FOR BY THE LINEAR MODEL. 
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[social SCIENCES] continued

of new dimensions in face space that 
account for the maximum  variability in 
the judgments. 

Consider a set of randomly generated 
faces that have been judged on some 
characteristic [for example, trustworthi-
ness rated on a scale from 1 (untrust-
worthy) to 9 (trustworthy) averaged over 
a group of participants]. A normalized 
linear face control D

S
r to manipulate this 

characteristic is constructed by 

D
S

5 P # r
S

, D
S
r5 D

S
/||D

S
||,

where Pij is the weight of component j
for face i and r

S
the ratings vector where 

the mean has been subtracted. 
Intuitively, D r

S
 can be considered as a 

normalized vector of correlations 
between the weights of each face compo-
nent and the ratings. To justify this 
approach, consider that the face dimen-
sions are, by construction, independent, 
and thus the obtained value for D r

S
 is 

optimal in the least square sense. 
Using the face control D

S
r, an individ-

ual face with component weights p
S

can 
be manipulated by a units by 

p
S r5 pS 1 a # DS r.

With the average shape s
S

 and principal 
component matrix V  described earlier, 
this changes the coordinates of the shape 
vertex components from 

sS 5 s
S

1 a # D
S
r

to 

s
Sr5 s

S
1 V # p

S r

5 s
S

1V # 1Sp1a # D
S
r2

5 sS1a # V #D r
S

,

i.e., coordinates change linearly with 
changes in a. Reflectance is manipulat-
ed similarly. Face controls can be con-
structed for any face characteristic as 
long as a rating is associated with each 
face. Examples of face controls include 
hooked versus flat nose, masculine ver-
sus feminine [9], and the traits present-
ed in this article [10], [11]. These 
methods uncover structural differences 
in appearance that predict differences in 

Shape

Dominant

Attractive

Trustworthy

Extroverted

[FIG1] Variations of face shape on four social dimensions derived from 
judgments of dominance, attractiveness, trustworthiness, and extroversion. 
The perceived value of the faces on the respective dimensions increases from 
left to right.

Reflectance

Dominant

Attractive

Trustworthy

Extroverted

[FIG2] Variations of face reflectance on four social dimensions derived from judgments 
of dominance, attractiveness, trustworthiness, and extroversion. The perceived value of 
the faces on the respective dimensions increases from left to right. 
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social perception. Figure 1 shows shape 
variations on four dimensions derived 
from judgments of dominance, attrac-
tiveness, trustworthiness, and extrover-
sion, respectively. For each dimension, 
five versions of a face are shown, manip-
ulated to decrease or increase its value 
on the respective dimension. For exam-
ple, as the dominance of the face 
increases, the face becomes more mas-
culine and mature. As the attractiveness 
increases, the face becomes thinner 
with higher cheekbones. As the trust-
worthiness increases, the face appears 
to express more positive emotions. As 
extroversion increases,  the face 
becomes wider and happier. Figure 2 
shows reflectance variations on the four 
dimensions. For example, as the domi-
nance increases, the face becomes dark-
er and more masculine. Similar 
darkness changes are also detectable for 
the other social dimensions. Figure 3 
shows both shape and reflectance varia-
tions on the dimensions. 

IMPLICATIONS OF FINDINGS
These models of social dimensions can 
be used to reveal the facial cues that 
lead to specific social judgments. For 
example, exaggerating the features that 
contribute to judgments of emotionally 
neutral faces reveals the underlying 
variations that account for these judg-
ments. In the case of trustworthiness, 
although faces are perceived as emo-
tionally neutral within the range shown 
in Figure 1, they are perceived as emo-
tionally expressive outside this range 
[10]. Whereas faces at the extreme neg-
ative end of the dimension appear to 
express anger, faces at the extreme posi-
tive end appear to express happiness. In 
terms of social perception, these mod-
els provide clues about the basis of 
social  inferences. Social inferences 
from facial appearance are based on 
resemblance to features that have adap-
tive significance—that is, to successful-
ly navigate the social world, we need to 
be able to infer the emotional states, 
gender, and age of others [4], [5]. For 
example, facial expressions of emotion 
indicate a person’s mental state and 
provide signals for appropriate behav-

iors. As a result, people with faces 
 resembling specific emotional expres-
sions, anger, for example, can be mis-
takenly judged as aggressive. When 
more sophisticated computer graphics 
and experimental methods are devel-
oped, we will have models that can be 
used not only to better understand 

social perception but also to manipulate 
images and create increasingly complex 
and lifelike avatars—knowledge that 
could be used for good or bad purposes. 
Such models can be used to manipulate 
images (not only of avatars but also of 
real people [11]) to induce specific 
 perceptions that could influence poten-

tial important decisions ranging from 
consumer to voting behavior. 

CHALLENGES AND 
FUTURE DIRECTIONS
One potential issue with the methods for 
modeling social perception of faces is 
overfitting. For example, here we used 
judgments of 300 faces to fit 50 shape 
and 50 reflectance parameters. Such 
models can perform well on the  modeled 
set of faces but may fail to generalize to 
novel faces. In principle, larger training 
data sets should alleviate such problems. 

Another potential approach is to use 
fewer parameters or face components. 
As described above, the face compo-
nents were derived from a PCA, and, 
hence, each additional component 
accounts for less and less variance of 
facial appearance. This suggests that the 
first few components could capture 
most of the variance of social judg-
ments. As shown in Figure 4, this is 
clearly the case. For example, for the 
shape model, the first ten components 

Shape and Reflectance

Dominant

Attractive

Trustworthy

Extroverted

[FIG3] Variations of face shape and face reflectance on four social dimensions 
derived from judgments of dominance, attractiveness, trustworthiness, and 
extroversion. The perceived value of the faces on the respective dimensions 
increases from left to right.

THESE MODELS OF 
SOCIAL DIMENSIONS 

CAN BE USED TO 
REVEAL THE FACIAL 

CUES THAT LEAD 
TO SPECIFIC SOCIAL 

JUDGMENTS.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page B
A

M SaGEF

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE   [122]   MARCH 2011

[social SCIENCES] continued

account for more than half of the 
explained variance of the judgments. 
For the reflectance model, for many of 
the judgments, the first five compo-
nents account for more than half of the 
explained variance. 

Finally, the current models seem to 
perform rather well. First, judgments of 
faces manipulated by the models of 
these judgments agree with the models 
[10]. Second, the models predict judg-
ments of novel faces. For an unrelated 
study, we generated another set of 300 
faces that varied randomly on shape and 
were judged on trustworthiness and 

dominance. The correlations between 
the predicted trustworthiness and domi-
nance scores and the judgments of these 
novel faces were .51 and .39 for trust-
worthiness and dominance, respectively, 
using a linear shape model, and .67 and 
.55, respectively, using a quadratic shape 
model. In principle, the models of social 
perception could be further improved. 
In addition to using larger face data sets 
and relying on the most informative 
face components, approaches that 
reduce the dimensionality of social 
judgments [10] and nonlinear approach-
es could be particularly fruitful. 

ACKNOWLEDGMENTS
This work was supported by the U.S. 
National Science Foundation (0823749) 
and the Russell Sage Foundation. We 
would like to thank Jörn Diedrichsen for 
helpful comments on an earlier draft and 
Whitney Shapiro and Sara Verosky for 
their help. 

AUTHORS
Alexander Todorov (atodorov@princeton.
edu) is with the Department of Psychology, 
Princeton University, New Jersey. 

Nikolaas N. Oosterhof (n.oosterhof@
bangor.ac.uk) is with the Department of 
Psychology, Bangor University, United 
Kingdom. 

REFERENCES
[1]  J. B. Silk, “Social components of fitness in pri-
mate groups,” Science, vol. 317, no. 5843, pp. 1347–
1351, 2007. 

[2]  R. Adolphs, “The social brain: Neural basis of 
social knowledge,” Annu. Rev. Psychol., vol. 60, pp. 
693–716, 2009.

[3]  J. C. Lavater, Essays on Physiognomy; for the 
Promotion of the Knowledge and the Love of 
Mankind. London: Gale Group, 1772 /1880. 
Eighteenth Century Collections Online. Abridged 
from Mr. Holcrofts translation. 

[4]  A. Todorov, C. P. Said, A. D. Engell, and N. N. 
Oosterhof, “Understanding evaluation of faces on so-
cial dimensions,” Trends Cogn. Sci., vol. 12, no. 12, 
pp. 455–460, 2008.

[5]  L. A. Zebrowitz and J. M. Montepare, “Social psy-
chological face perception: Why appearance matters,” 
Social Personal. Psychol. Compass, vol. 2, no. 3, pp. 
1497–1517, 2008.

[6]  A. Todorov, M. Pakrashi, and N. N. Oosterhof, 
“Evaluating faces on trustworthiness after minimal 
time exposure,” Social Cogn., vol. 27, no. 6, pp. 
813–833, 2009.

[7]  A. Todorov and A. Engell, “The role of the amyg-
dala in implicit evaluation of emotionally neutral 
faces,” Social Cogn. Affect. Neurosci., vol. 3, no. 4, 
pp. 303–312, 2008.

[8]  C. Y. Olivola and A. Todorov, “Elected in 100 mil-
liseconds: Appearance-based trait inferences and vot-
ing,” J. Nonverb. Behav., vol. 34, no. 2, pp. 83–110, 
2010.

[9]  V. Blanz and T. Vetter, “A morphable model for 
the synthesis of 3D faces,” in Proc. 26th Annu. Conf. 
Computer Graphics and Interactive Techniques, 
1999, pp. 187–194.

[10]  N. N. Oosterhof and A. Todorov, “The functional 
basis of face evaluation,” Proc. Nat. Acad. Sci. USA, 
vol. 105, pp. 11087–11092, 2008.

[11]  M. Walker and T. Vetter, “Portraits made to mea-
sure: Manipulating social judgments about individu-
als with a statistical face model,” J. Vis., vol. 9, no. 11, 
pp. 1–13, 2009. 

[12]  A. J. O’Toole, T. Price, T. Vetter, J. C. Bartlett, 
and V. Blanz, “3D shape and 2D surface textures of 
human faces: The role of ‘averages’ in attractiveness 
and age,” Image Vis. Comput., vol. 18, no. 1, pp. 
9–19, 1999. 

 [SP]

[FIG4] Explained variance of nine social judgments of faces as a function of the number 
of (a) shape and (b) reflectance components in the regression model.
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[in the SPOTLIGHT] continued from 128

ash clouds feature fragmentation and 
aggregation processes and cause back-
scattering and  absorption of incident 
radiation, transmitted by the radar. 

The measured weather radar back-
scattered power is proportional to the 
copolar horizontally polarized reflectivity 
factor ZH. Microwave scattering from ash 
particles and from cloud water and ice 
droplets satisfies the Rayleigh approxi-
mation for frequencies up to X band. 
Under this condition, the simulated 
radar reflectivity factor ZH, expressed in 
mm6·m23, due to an ensemble of parti-
cles p is expressed as the sixth moment 
of particle size distribution (PSD) Np as 
follows [5]:

ZH 5 hH
l4

p5|Kp|
2 5 3

`

0

D6Np 1D2 dD 5 m6 ,

 (1)

where hH is the radar volumetric reflec-
tivity, l the wavelength, and Kp the 
dielectric factor of the particle ensem-
ble of category p. It is noted that, keep-
ing constant the ash particle amount, 
the reflectivity factor is higher for big-
ger particles. From (1), the variability of 
ash PSD modulates the radar reflectiv-
ity response.

The volcanic ash radar retrieval 
(VARR) methodology, devoted to quanti-
tative remote sensing of ash cloud prop-
erties [4]–[6], includes two steps: i) ash 
classification and ii) ash estimation. 
Both steps, applied after an ash cloud 
detection procedure, are numerical 
algorithms trained by a physical-electro-
magnetic forward model, where the 
main PSD parameters are supposed to 
be constrained random variables. This is 
the reason why VARR is sometimes 
called a model-based supervised tech-
nique, whereas the generation of a sim-
ulated ash-reflectivity data set by letting 
PSD parameters vary in a random way 
can be framed within the so-called 
Monte Carlo techniques. The input 
information to current VARR algorithm 
is the measured reflectivity factor ZHm

available at each radar range bin for a 
given elevation and azimuth angle. It is 
worth noting that the measured reflec-
tivity factor ZHm differs from the simu-

lated (intrinsic) reflectivity factor ZH due 
to instrumental noise and calibration, 
propagation effects, and backscattering 
modeling errors. 

For what concerns the classification 
step, its aim is related to the possibil-
ity to automatically discriminate be-
tween ash categories that were defined 
as fine, coarse, and large sizes. In the 
overall retrieval scheme, classification 
may represent a first qualitative out-
put before performing parameter esti-
mation. Maximum a posteriori prob-
ability (MAP) criterion can be used to 
carry out cloud classification in a mod-
el-based supervised context. If c is the 
ash class, then, by using the condition-
al probability density function (PDF) of 
a class c and given a measurement of 
the reflectivity factor ZHm, the MAP rule 
is expressed by [4]

ĉ 5 Mode 3 p 1c 0 ZHm 24, (2)

where Mode is the modal value of the 
posterior PDF p 1c 0 ZHm 2 . Assuming a 
Gaussian probability framework to 
describe p 1c 0 ZHm 2  and exploiting the 
Bayes theorem, then (2) can be trans-
formed into the following expression [4]:

ĉ 5Maxc c2 1ZHm2m1c2
Z 2 21s1c2

Z 2 2
2 ln 1s1c2

Z2 212 ln p 1c2R , (3)

where Maxc is the maximum value with 
respect to c. Computing (3) means to 
know the reflectivity factor mean m1c2

Z

(also called class centroid) and standard 
deviation s1c2

Z  [dBZ] of ZHm for each ash 
class c. The prior PDF p(c) can be used 
to subjectively weight each class as a 
function of other available information. 
Ash class perturbations are usually 
assumed uncorrelated. The statistical 
characterization of each cloud class can 
be derived from a simulated synthetic 
data set where PSD may be either arbi-
trarily defined or experimentally mea-
sured [5], [6]. 

Within the VARR technique, ash esti-
mation is carried out by means of a 
regressive approximation of the training 
data set, as a function of the ash size and 
concentration class. A way to approach 

the quantitative retrieval problem is to 
adopt a statistical parametric model to 
describe the relation X-ZHm where X
stands for either ash concentration Ca or 
ash fall-rate Ra [4]–[6]. Assuming a pow-
er-law model, we can write the estimated 
quantity for each class c as

e Ĉ 1c2
a 5 a 3ZHm 4b

R̂ 1c2
a 5 g 3ZHm 4d , (4)

where “^” indicates estimated quantity, 
whereas a, b, g, and d are the class-
dependent regression coefficients. The 
latter are space-time variant (because 
they are related to ash cloud micro-
structure), whereas the synthetic mea-
sured reflectivity is simulated by 
assuming a zero-mean random noise 
due to instrumental and forward model-
ing uncertainties. Besides ash concen-
tration, VARR can also provide for each 
range bin the ash fallout rate (where 
the terminal ash fall velocity and air 
updraft are needed).

APPLICATIONS TO 
VOLCANIC ASH MONITORING
The potential of VARR data processing in 
observing volcanic ash clouds has been 
analyzed using some case studies where 
volcano eruptions happened near an 
available weather radar: 

 ■ the Grímsvötn volcano eruption in 
2004, analyzed together with the 
Icelandic Met Office (IMO), using a 
C-band weather radar (for details, see 
[3] and [4])

 ■ the Augustine volcano eruption in 
2006, analyzed together with the U.S. 
Geological Survey Alaska Volcano 
Observatory, using an S-band weath-
er radar (for details, see [6]).
The recent explosive eruption of the 

Eyjafjalla Icelandic volcano started on 14 
April 2010 and ended on 23 May 2010 is 
under evaluation, together with IMO, 
using an improved VARR technique.

The Icelandic case study in 2004 
may be of particular interest. Grímsvötn 
is one of the most active volcanoes in 
Iceland, with a ,62 km2 caldera cov-
ered by 150–250-m-thick ice. Its high-
est peak, Grímsfjall, on the southern 
caldera rim, reaches an elevation of 
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1722 m. Volcanic eruptions, numbering 
several per century, are water rich 
because of the ice cover, and they usual-
ly persist for days to weeks. The 
Grímsvötn eruption started in the eve-
ning of 1 November 2004 and was 
observed by a C-band weather radar 
located in Keflavik, Iceland [3], [4]. The 
first ash plume detected by the Keflavik 
radar was at 23:05 UTC (universal time 
coordinate) on 1 November 2004. 

The eruption on the night of 2 
November was followed by frequent ash 
plumes and the last one, detected by 
the weather radar, was at 08:30 UTC on 
3 November. After this time, the ash 
plume was too low to be detected by 
the radar (reaching 6 km height or 
less). Radar volume scans were contin-
uously acquired and data have been 
made available from 23:00 on 1 
November 2004 till 06:00 UTC on 2 
November 2004 every half an hour. 
Reflectivity data were radially averaged 
to 2 km to increase the  measurement 
sensitivity (equal to about –5 dBZ 
around 260-km range). Considering 
the distance of about 260 km between 
the Keflavik radar and the Grímsvötn 
volcano, volcanic ash clouds can be 
detected at heights higher than 6 km 
using the minimum elevation of 0.5°. 
This means that the volcanic eruption 
cloud cannot be detected between the 
Grímsvötn summit at 1,725 m and 
6,000 m altitude.

An example of C-band radar imagery 
can be easily pictured by plotting the so-
called range-height indicator (RHI) dia-
gram, illustrated in Figure 1. This figure 
stresses the fact that volcanic ash clouds 
can be detected from Keflavik only at 
heights higher than about 6 km using 
the minimum elevation of 0.5°. The sig-
nal of volcanic cloud is quite evident 
from the RHI signature with values up to 
20 dBZ. If the classification algorithm is 
applied to radar RHI data, we can detect 
the ash class distribution displayed in 
Figure 2. The RHI maps strictly reflect 
the bimodal spatial structure of reflectiv-
ity measurements in Figure 1. Coarse 
ash particles are dominant in the lower 
part of volcanic plume, already moved 
toward northwest.

CONCLUSIONS
The possibility of monitoring 24 hours a 
day, in all weather conditions, at a fairly 
high spatial resolution and every few 
minutes after the eruption is the major 
advantage to using ground-based micro-
wave radar systems. The latter can be 
crucial systems to monitor the volcanic 
eruption from its eruption early-stage 
near the volcano vent, dominated by 
coarse ash and blocks, to ash-dispersion 

stage up to few hundreds of kilometers, 
dominated by transport and evolution of 
coarse and fine ash particles. Of course, 
the sensitivity of the ground-based radar 
measurements will decrease as the ash 
cloud will be farther so that for distances 
greater than about 50 km fine ash might 
become “invisible” to the radar; but, in 
this respect, radar observations can be 
complementary to satellite, LIDAR, 
and aircraft observations. Moreover, 

[FIG1] RHI of the measured horizontally polarized reflectivity (in dBZ) along the radar-
vent cross section during the Grímsvötn volcano eruption on 2 November 2004 at 0300 
UTC. The measured sector is visualized as a function of distance between the Keflavik 
radar (64°01’ N, 22°38’ W) and Grímsvötn volcano (64°42’ N, 17°33’ W, schematically 
indicated by a filled triangle) with elevation angles between 0.5° and 3.5°.
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[FIG2] The same as in Figure 1, but for estimated ash class, named as fine-L (fine ash 
with light concentration), fine-M (fine ash with moderate concentration), fine-I (fine  
ash with intense concentration), coarse-L (coarse ash with light concentration), and 
coarse-M (fine ash with moderate concentration). The triangle schematically indicates 
the volcano vent.
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 radar-based products such as real-time 
erupted volcanic ash concentration, 
height, mass, and volume can be used to 
initialize dispersion model inputs.

Due to logistics and space-time vari-
ability of the volcanic eruptions, a sug-
gested optimal radar system to detect 
ash cloud could be a portable X-band 
weather Doppler polarimetric radar. This 
radar system may satisfy technological, 
economical, and new scientific require-
ments to detect ash cloud. The sitting of 
the observation system, is a problematic 
tradeoff for a fixed radar system (as the 
volcano itself may cause a beam obstruc-
tion and the ash plume may move in 
unknown directions), can be easily 
solved by resorting to portable systems.

Further work is needed to assess the 
VARR potential using experimental cam-
paign data. Future investigations should 
be devoted to the analysis of the impact of 
ash aggregates on microwave radar reflec-
tivity and on the validation of radar esti-

mates of ash amount with ground 
measurements where available. The last 
task is not an easy one as the ash fall is 
dominated by wind advection and by sev-
eral complicate microphysical processes. 
This means that what is retrieved within 
an ash cloud may be not representative of 
what was collected at ground level in a 
given area. Spatial integration of ground-
collected and radar-retrieved ash amounts 
may be con  sidered to carry out a mean-
ingful comparison. Preliminary results for 
the Grímsvötn case study show that the 
radar-based ash mass retrievals compare 
well with the deposited ash estimated 
from in situ ground sampling within the 
volcanic surrounding area.
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various machine learning and signal 
processing problems involving NMF, 
sparse PCA, LARS, OMP, and SOMP: 
http://www.di.ens.fr/willow/SPAMS/ 

 ■ Bayesian compressive sensing: 
http://people.ee.duke.edu/~lcarin/
BCS.html 

 ■ Orthogonal matching pursuit and 
KSVD: http://www.cs.technion.ac.
il/~ronrubin/software.html 

 ■ Low-rank matrix recovery and com-
pletion (RPCA): http://perception.csl.
uiuc.edu/matrix-rank/home.html 

OTHER REFERENCES 
AND APPLICATIONS

 ■ Compressive Sensing Repository: 
http://dsp.rice.edu/cs 

 ■ Robust Face recognition and oth-
ers: http://perception.csl.uiuc.edu/
recognition/Home.html 
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T
he ash ejected into the 
atmosphere by the Eyjafjalla 
Icelandic volcano during its 
recent eruption posed such 
a threat to flights over 

much of Europe that the ensuing can-
cellations resulted in an unprecedented 
disruption of the European commercial 
air transportation system [1]. Volcanic 
ash is not only a significant hazard to 
aircraft operations but also to public 
safety from volcanic ash fall at the sur-
face (e.g., [2] and [3]). Given the signifi-
cance of the hazards posed by volcanic 
ash, timely detection and tracking of the 
erupted ash cloud is essential to a suc-
cessful warning process, particularly 
during and immediately following an 
eruptive event. In this article, we will 
discuss ground-based radar (radio detec-
tion and ranging) data processing for 
ash cloud remote sensing pointing to 
the physical basis of retrieval algorithms 
and an example of their application. 

MONITORING VOLCANIC 
ASH CLOUDS
As pointed out by the Volcanic Ash 
Advisory Centers (VAACs), the largest 
uncertainty in the ability of numerical 
models to predict the spread of volcanic 
ash, and hence to advise aviation regu-
lators, is in observations of the eruption 
itself: i) knowing how high the ash is 
being expelled and ii) what concentra-
tion of ash is being expelled. Current 
observations come from a range of 
sources: satellite (height and spatial dis-
tribution of the dispersed ash plume), 
cloud ceilometers and light detection 
and ranging (LIDAR) systems (ash 
cloud height and depth), seismic (volca-

no activity), and human (ash plume 
height and shape). Within this list, it 
should be added the use of ground-
based meteorological microwave radars 
whose new role, within the volcanic ash 
monitoring network, is the goal of this 
short contribution. 

Real-time and aerial monitoring of a 
volcano eruption, in terms of its intensi-
ty and dynamics, is not always possible 
by conventional visual inspections. A 
variety of satellite techniques have been 
successfully used to track volcanic ash 
clouds; however, these techniques have 
certain limitations [2]. As known, these 
data are subject to limitations in both 
spatial and temporal resolution. Issues 
involving the detection of ash clouds 
using infrared brightness temperature 
differencing, a commonly used method, 
have been addressed suggesting several 
scenarios where effective infrared satel-
lite detection of volcanic ash clouds may 
be compromised. Ground microwave 
instrumentation, such as global posi-
tioning system (GPS) receivers and wind 
profiler radars, may play a complementa-
ry role, even though their operational 
utility is limited by the relatively small 
spatial coverage. On the other hand, 
ground-based LIDAR optical systems 
may show a higher sensitivity to ash 
contents with respect to microwave 
instruments but counterbalanced by 
stronger path attenuation effects. 

Ground-based microwave radar sys-
tems can have a valuable role in volcanic 
ash cloud monitoring as evidenced by 
available radar imagery [3], [4]. These 
systems represent one of the best meth-
ods for real-time and areal monitoring of 
a volcano eruption, in terms of its inten-
sity and dynamics. The possibility of 
monitoring 24 hours a day, in all weath-
er conditions, at a fairly high spatial res-

olution (less than few hundreds of 
meters), and every few minutes after and 
during the eruption is the major advan-
tage of using ground-based microwave 
radar systems. They can provide data for 
determining the ash volume, total mass, 
and height of eruption clouds. 

There are still several open issues 
about microwave weather radar capabil-
ities to detect and quantitatively 
retrieve ash cloud parameters [4], [5]. 
Exploitation of microwave weather 
radars for volcanic eruption monitoring 
is fairly limited due to their exclusive 
use for water clouds and precipitation 
observations. Several unknowns may 
also condition the accuracy of radar-
derived geophysical products, most of 
them related to microphysical variabili-
ty of ash clouds due to particle size dis-
tribution,  shape,  and dielectric 
composition. Moreover, the aggregation 
of volcanic ash particles within the 
eruption column of explosive eruptions 
may influence the residence time of ash 
in the atmosphere and the radiative 
properties of the ash cloud. Numerical 
experiments are helpful to explore pro-
cesses occurring in the eruption col-
umn. Some advanced ash plume models 
can simulate the interactions of hydro-
meteors and volcanic ash and the radar 
response, including particle formation 
within a rising eruption column [6].

RADAR DATA PROCESSING
Weather radar systems, typically operat-
ed at S and C bands, can be used to 
monitor and measure volcanic eruption 
parameters,  although they were 
designed to study hydrometeors and 
rain clouds. Both targets have the same 
measure principle: both rain clouds and 

Remote Sensing of Volcanic Ash Cloud During Explosive Eruptions 
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