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Call for Papers  
Signal Processing Magazine Special Issue on 
Explainability in Data Science:  
Interpretability, Reproducibility, and Replicability 

 
The growing importance of the closely-related fields of data science, machine learning, and signal processing highlights the fact 
that data-driven solutions are playing an increasing role in practical problems across many domains. With the shift away from 
traditional and model-driven approaches, we start to recognize the importance of explainability of our solutions. Explainability is 
critical not only for the simple reason that one would like to have confidence over the solutions, but also because one would like 
to produce further insights from the solutions.  This includes interpretability and completeness so that one can not only “audit” 
them, but also ask appropriate questions to probe for insights beyond the initial solution.  
 
Interpretability, i.e., ability to attach a physical meaning to the solution, along with reproducibility, and replicability are three key 
aspects of explainability. Following the definitions by the National Academies of Sciences, Engineering, and Medicine, 
reproducibility refers to obtaining consistent results using the same data and code—i.e., method,—as the original study, and 
replicability is obtaining consistent results across studies aimed at answering the same scientific question using new data or other 
computational methods. 
 
This special issue emphasizes 

• the broad view of explainability in data science, which not only addresses neural networks but also many other data-
driven solutions including, but not limited to, graphical and kernel methods, matrix and tensor factorizations, learning 
models and methods for multiple application domains; 

• the relationship of these methods and their varying degrees of explainability within and across application domains;  
• all three topics under the broad umbrella of explainability: interpretability, (computational) reproducibility, and replicability; 
• the need to respect history as the discussions on explainability, reproducibility, replicability, validation, and generalization 

are closely related and are not new but have been explored before.  
 
We invite overviews in explainability that address multiple aspects of interpretability, reproducibility, and replicability including the 
closely-related concepts of robustness, validation and generalization across  

• an array of data-driven methods in machine learning and signal processing, and  
• application areas including audio, speech, and language processing, multi-sensor processing and data fusion, image and 

video processing, computer vision, computational imaging, communications, medical image analysis, bio-imaging, 
biomedical signal processing, autonomous systems, smart cities, and natural sciences among others.  

Papers that provide comparative studies, best practices to obtain insights through explainability, and a critical view of the state-of-
the-art are especially welcome.  
 
White papers are required, and full articles will be invited based on the review of white papers. The white paper format is up to 4 
pages in length, including the proposed title, motivation and significance of the topic, an outline of the proposed paper, and 
representative references. An author list with contact information and short bios should also be included. 
 
Submitted articles must be of tutorial/overview/survey nature, written in an accessible style to a broad audience, and have a 
significant relevance to the scope of the Special Issue. Submissions must not have been published or be under review 
elsewhere, and must be made online through https://mc.manuscriptcentral.com/sps-ieee.  
For submission guidelines, please see the IEEE Signal Processing Magazine Information for Authors page.  
  
Schedule  
White paper due: March 22, 2021 
Invitation notification: April 26, 2021  
Manuscript due: July 5, 2021 
First review to authors: September 6, 2021  
Revision due: November 8, 2021 
Acceptance notification: January 11, 2022 
Final package due: February 1, 2022 
 
Guest Editors  
Tülay Adalı, University of Maryland, Baltimore County, Baltimore, MD, USA 
Rodrigo Capobianco Guido, São Paulo State University, SP, Brazil  
Tin Kam Ho, IBM Watson Health, Yorktown Heights, NY, USA  
Klaus-Robert Müller, TU Berlin, Germany and Korea University, Seoul, South Korea 
Stephen Strother, Baycrest Hospital and University of Toronto, ON, Canada 
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FROM THE EDITOR
Christian Jutten  |  Editor-in-Chief  |  Christian.Jutten@grenoble-inp.fr 

F irst, I would like to wish you a happy 
New Year and, especially, health for you 
and your families. I am very honored to 

be the new editor-in-chief (EIC) of IEEE 
Signal Processing Magazine (SPM) for the 
next three years. It is a great challenge for 
me, as it was probably for its previous EICs 
since SPM is not an ordinary magazine.

Let me introduce myself. My teenage 
dreams were driven by a few scientific 
and technological  events. In particular, I 
remembered the first heart transplant by 
Barnard in 1967 and then Armstrong’s 
first steps on the moon in 1969, the mis-
sions of the rockets Soyuz and the be-
ginning of Ariane in Europe, and the 
first prototype of the fast train  (TGV) in 
France. I was also passionate about elec-
tronics and built simple devices for fun. 
Naturally, I decided to follow scientific 
studies. But I hesitated between various 
topics that were all equally appealing to 
me: medicine, astronomy, physics, and 
electronics. Finally, I graduated from a 
higher school of electrical engineering 
in Grenoble. And I discovered there, 
in 1976, the basics of signal process-
ing and digital signal processing (with 
Oppenheim’s book, just published in 
1975): it was love at first sight. In fact, 
very quickly, I  understood, with my 
 professors, the  magic—although usu-
ally hidden—position of signal process-
ing in many scientific and technological 
domains. I enjoyed the virtuous circle of 

the signal processing approach: starting 
from an actual problem, propose a math-
ematical model, design an algorithm, 
and validate the algorithm on the actual 
problem. Then, refine the model and the 
algorithm, and so on, if the results are 
not good enough. For me, signal pro-
cessing was the opportunity to address 
problems in different 
domains, of course, 
while working with 
experts of these do-
mains. So during my 
career, I have had the 
chance to work on 
very exciting prob-
lems related to multi-
ple disciplines, including neuroscience, 
medicine, astrophysics, and chemi-
cal engineering. 

During my Ph.D. studies, I worked 
under the supervision of Prof. Jeanny 
Hérault on artificial neural networks, 
which were actually based on electronic 
neurons. At that time, computers were in-
deed not powerful enough for doing large 
simulations. To give you an idea, in the 
early 1980s, I had access for about 2 h/
day to a 16-bit computer, but the random-
access memory was limited to 24 kilo-
bytes, and that is both for algorithms and 
data! Artificial neural networks were at 
their infancy, especially given the lim-
ited computational power. Moreover, 
at that time, presenting a paper on this 
subject in signal processing conferences 
or journals was quite challenging since 
you passed for an alien! Hence, in 1982, 

with Prof. Hérault, we created a French 
interdisciplinary working group, called 
Neurosciences and Engineering Sci-
ences, in which neuroscientists, biologists, 
physicists, mathematicians, and engineers 
met every other year during one week to 
discuss their works. Interestingly, some 
very famous scientists in machine learn-

ing, e.g., Yann Le Cun, 
Isabelle Guyon, and 
Léon Bottou, partici-
pated in some of these 
meetings. It was dur-
ing one of these meet-
ings that we met and 
discussed with neu-
roscientists working 

on vertebrate motion decoding. And 
these discussions were the starting point 
of blind source separation and indepen-
dent component analysis, which domi-
nated my scientific life. When I think of 
these discussions, I realize how some 
face-to-face encounters may have a 
strong impact on one’s life, although it 
is usually much later we realize those 
impacts. Currently, with the COVID-19 
pandemic, even if virtual conferences 
may offer some advantages, like reach-
ing a larger audience, I believe that they 
cannot replace face-to-face discus-
sions, with eyes that meet and friend-
ly moments.

Now, machine learning is “in fash-
ion” in signal and image processing as 
it is in many other fields. Besides other 
machine learning concepts, deep neu-
ral networks have been attracting much 
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attention as they, quite often, produce 
impressive results given large amounts 
of data and in a more or less blind fash-
ion. But blindly following trends in re-
search is dangerous [1]. So although 
usually powerful, results obtained by 
deep learning methods for solving dif-
ficult problems also raise many rel-
evant and fundamental issues for being 
smartly used. First, we have the output 
uncertainty and robustness with respect 
to small input changes. Second, we have 
the role of the different layers and rela-
tionships among parameters. Third, we 
have bias provided by the data them-
selves since networks consider mainly 
what is statistically relevant and ignore 
rare data. You are able to see a yellow 
sailboat in the middle of the blue ocean, 
but for a machine learning algorithm, ev-
erything is blue. Such topics on explain-
ability in data science will be the core 
of a special issue in SPM; see the inside 
cover of this issue. In addition to these 
problems, there is a social and envi-
ronmental issue with machine learning 
approaches: Can we promote methods 
based on huge data and running greedy 
algorithms on exascale supercomputers 
including millions of CPU/GPU cores? 
What is the ecological cost of all ma-
chine learning studies? I believe that a 
very interesting issue for many scien-
tists, and especially scientists in signal 
and image processing, is to wonder how 
we can reuse previous learning results 
and extrapolate them on new data: the 
problem of transfer learning is actually 
a very hot and promising direction of 
research. More generally, I believe that 
the question of the computational cost—
and thus the ecological impact—of algo-
rithms deserves to be taken into account 
at the design level, especially for heavily 
used algorithms.

During IEEE ICIP 2020, I attended 
an exciting workshop called Promot-
ing Diversity in Signal Processing (also 
known as PROGRESS). In addition to 
gender diversity, other diversities were 
addressed during this workshop. One 
talk was about diversity in teaching and 
textbook design. The pandemic has also 
imposed the opportunity to do and test 
other ways of teaching. Concerning the 
low percentage of females in our domain 

in most universities, it seems that a solu-
tion could be to raise the interest of girls 
in high school and perhaps earlier: expe-
riences in such scientific mediation activ-
ities at different levels could be imitated 
in other places to increase the percentage 
of female researchers and educators in 
signal processing. Since many of us are 
both researchers and professors, I believe 
it is interesting to share experiences and 
advice. Such articles have a place in the 
columns of SPM.

During the PROGRESS workshop, 
the questions of ethical research and 
scientific integrity were also addressed. 
During the recent months of the pandem-
ic, we have observed some examples of 
researcher behaviors, mainly in medical 
research, concerning questionable exper-
iments and publications about some of 
the effects of drugs against COVID-19. I 
believe that promoting and doing ethical 
and honest research is essential for three 
reasons. First, science is focused on im-
proving knowledge, and there is no room 
for cheaters and liars in science. Second, 
it is thus very important to show our stu-
dents the right way. Third, misconduct 
in science—even of only a few scien-
tists—leads to mistrust from people, in-
stitutions, and governments of the whole 
scientific world. Discussing such issues 
is thus important and can be presented in 
SPM columns and forums.

Signal processing and image pro-
cessing are relatively new domains in 
the sciences, even if some methods were 
proposed a long time ago, sometimes a 
few centuries, by visionary scientists. It 
has also been developed according to 
advances in numerical technologies, es-
pecially electronics, sensors, communi-
cations, and computer sciences. I believe 
that it is very instructive to recall the 
role of pioneers, to explain the context in 
which some discoveries have been done, 
and, more generally, to celebrate the out-
standing scientists who contributed to 
our domain. Again, I believe that articles 
on such pioneers—like Fourier, Cooley 
and Tukey, or Widrow, to cite only a 
few—have their place in SPM.

SPM is very different from the transac-
tions, which are focused on the latest ad-
vances in very accurate areas of research. 
Conversely, SPM presents review articles 

and special issues on mature domains 
and other topics, including columns and 
forums that are of interest to many read-
ers. SPM articles are written for a large 
audience, including IEEE Signal Pro-
cessing Society (SPS) members, but also 
for students and industrial practitioners. 
Outgoing EIC Prof. Robert Heath and his 
team of area editors, the editorial board, 
and associate editors were working hard 
to produce high-quality content in vari-
ous areas, and the next issues will also 
be the result of their tremendous work. 
In his editorial in the November 2020 
issue, Prof. Heath [2] explained how the 
roles of area editors, senior editorial board 
members, and associate editors are impor-
tant. During his last few months as EIC, 
he, as well as SPM’s Managing Editor 
Jessica Welsh and SPS Publications Ad-
ministrator Rebecca Wollman, also spent 
time explaining to me how SPM works, 
and I thank them for their kind help. I am 
confident that I can also count on them 
and their advice in the future. Thus, it is 
challenging for me to propose, with a new 
team of area editors that I am currently 
constituting, content of the same high 
quality and diversity, especially in special 
issues and features. As I explained, I also 
would like to stimulate other kinds of ar-
ticles, e.g., sharing teaching experiences, 
recalling historical milestones achieved 
by some pioneers in our domain, and 
discussing the human values concerning 
scientific integrity and ethics that are de-
fended by the SPS. Quoting Prof. Heath’s 
[3] first editorial in January 2018: “SPM 
is a magazine for all of us. I look forward 
to your feedback and ideas.” I also look 
forward to your contributions.

References
[1] T. Adali, J. Trussell, L. K. Hansen, and V. D. 
Calhoun, “The dangers of following trends in 
research: Sparsity and other examples of hammers in 
search of nails,” Proc. IEEE, vol. 106, no. 6, pp. 
1014–1018, June 2018. doi: 10.1109/JPROC.
2018.2823428.

[2] R. W. Heath, “Signing off as editor-in-chief,” 
IEEE Signal Process. Mag., vol. 37, no. 6, pp. 3–4, 
Nov. 2020. doi: 10.1109/MSP.2020.3019614.

[3] R. W. Heath, “Taking the next step for IEEE Signal 
Processing Magazine,” IEEE Signal Process. Mag., vol. 35, 
no. 1, p. 4, Jan. 2018. doi: 10.1109/MSP.2017.2770481.
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Il N’y a ni Mauvaises Herbes ni Mauvais Hommes

little over a century and a half ago, 
Victor Hugo wrote “Il n’y a ni mau-
vaises herbes ni mauvais hommes. 

Il n’y a que de mauvais cultivateurs,” 
which translates to “there are no weeds 
and no bad men. There are only bad cul-
tivators.” These two sentences provide 
a stark reminder of the heavy responsi-
bility we all bear, as parents, educators, 
mentors, members of professional soci-
eties, and citizens of states, nations, and 
earth. Indeed, arguably our main goal as 
a professional society is to help develop 
our human capital. Everything else flows 
from there. As we empower our mem-
bers and help them innovate and flour-
ish, we advance the state of the art and 
make our world a better place for all of 
its inhabitants. This also underlines the 
importance of careful strategic planning 
and execution.

By the time you read this “Presi-
dent’s Message,” the IEEE Signal 
Processing Society (SPS) will have 
completed the first phase of its stra-
tegic planning. That first phase was led 
by several ad hoc committees made up 
of volunteer members of the Society 
and members of its Executive Com-
mittee and Board of Governors. In the 
second phase, the SPS will engage 
with all of you in a series of interac-
tive webinars, centered on finances, 
conferences, innovations, publications, 
 membership, and education, to finalize 

its plans by the end of the first quarter 
of 2021.

The operations of the SPS—includ-
ing, publications, conferences, technical 
initiatives, committee support, and staff 
and member services—are supported 
essentially by income it derives from 
IEEE Xplore subscriptions and confer-
ences. Because of the peculiarities of 
IEEE accounting and finance rules, the 
Society has consistently run a surplus, 
which at times has been substantial due 
to favorable IEEE investment returns. 
However, the changing publications and 
conference models are raising concerns 
about the sustainability of our current 
revenue streams. As such, it behooves 
us to carefully consider the financial 
implications of these changes and begin 
to invest in new revenue sources. These 
new revenue sources will also force the 
Society to make sure that it offers ser-
vices that industry and society at large 
value and are willing to pay for through 
new channels, such as grants and funds 
designated to support specific or gen-
eral Society activities and initiatives.

As I noted in one of my columns last 
year, publications are clearly moving 
to an open access model. While this 
model is beneficial to humanity at large 
and increases the visibility and impact 
of our authors, it raises questions about 
the ability of authors to pay to have their 
articles published and the larger eco-
nomics of publishing articles. Our goal 
is to understand how we can offer eco-
nomical open-access publications while 

subsidizing authors’ publications fees 
with industry and government grants or 
income derived by new revenue sources. 
In addition, the ArXiv preprint model is 
upending the current peer-review publi-
cation model. Reimagining peer review 
to embrace preprints and accelerate the 
review and publication processes is a 
challenge that our strategic planning 
exercise also aims to address. Cutting-
edge innovations are happening at the 
intersection of disciplines, bolstering 
our commitment to high-quality tech-
nical publications and conferences co-
sponsored with sister IEEE Societies. 
Finally, we clearly learned this year that 
we are not serving the needs of many of 
our members through our conferences 
and publications. There is no question 
that we must develop new publications 
that specifically address the needs of 
our practitioners and uphold our com-
mitment to quality and excellence.

Our flagship conferences, ICASSP 
and ICIP, this year established that all 
of our future meetings will have a vir-
tual component. Effective virtual com-
ponents that deliver real value to virtual 
presenters and attendees and enrich 
the experience of physical attendees 
are challenging us on multiple fronts: 
technology; conference formats that 
support multiple time zones, network-
ing, and productive random productive 
exchanges; and conference registration 
fees that democratize participation in 
our conferences. Keeping and expand-
ing the large number of ICASSP and 
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ICIP first-time attendees and offering 
new conference experiences that attract 
the vast majority of Society members 
who do not attend our meetings should 
be central to our thinking and execu-
tion. Despite the continued COVID-19 
uncertainty in 2021, we will need to 
move forward with our plans to create 
a new conference format that makes us 
the preferred meeting spot for an inno-
vation ecosystem that brings together 
start-ups, venture capital, government, 
industry, and academia.

Our education and membership ini-
tiative planning are focusing on bulking 
up our diversity, inclusion, and outreach 
initiatives that are meant to address sys-
temic inequities within our workplaces, 
professional societies, and throughout 
the globe. Another goal is identifying the 
education niche that the Society should 
serve, complementing the offerings from 
the academic institutions to which many 
our members belong. The challenges in 
these two areas are perhaps more formi-
dable than in other areas, as few of us 

have developed a clear understanding of 
how we can implement our vision and 
how we can measure progress.

I have no doubt that, together, we will 
come up with compelling initiatives. 
In deciding what to pursue, we should 
focus on a careful examination of the 
potential reach, impact, confidence in 
our ability to deliver and resource the 
requirements of each initiative. Please 
allow me to reiterate what I wrote last 
year: this is your Society; let us all par-
ticipate in its governance.

Let me close by expressing my 
sincere gratitude to two of our vice 
presidents who stepped down on 31 
December 2020: Fernando Pereira 
and Sergios Theodoridis. Fernando 
devoted considerable efforts to rei-
magining our conference model and 
converting our conferences to be fully 
virtual in 2020. No words can express 
the magnitude of the debt we owe Fer-
nando as a society. Sergios led our ef-
forts regarding open access with the 
launch of our first open access jour-

nal. He spearheaded our partnerships 
with other Societies in launching new 
interdisciplinary journals on artifi-
cial intelligence and machine learning 
on communications. Both helped us 
navigate the real challenges we faced in 
2020. We are glad that they both have 
agreed to continue to serve on our ad 
hoc strategic planning committees. On 
1 January 2021, Fernando was suc-
ceeded by Ana Pérez-Neira and Sergios 
by Marc Moonen. The Society remains 
in good hands: Ana worked closely 
with Fernando on moving ICASSP 
2020 to a fully virtual format and Marc 
led the efforts of EURASIP in open ac-
cess. Tremendous thanks are given to 
you for your service, Sergios and Fer-
nando, and welcome Ana and Marc.

 SP
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READER’S CHOICE

Top Downloads on IEEE Xplore

E ach “Reader’s Choice” column focus-
es on a different publication of the 
IEEE Signal Processing Society. In 

this issue, we highlight articles in IEEE 
Signal Processing Magazine (SPM).

SPM publishes tutorial-style articles 
on signal processing research and appli-
cations as well as columns and forums 
on issues of interest. Its coverage ranges 
from fundamental principles to practical 
implementation, reflecting the multidi-
mensional facets of interests and concerns 
of the community. Its mission is to bring 
up-to-date, emerging, and active techni-
cal developments, issues, and events to 
the research, educational, and profession-
al communities. It is also the main Soci-
ety communication platform addressing 
important issues concerning all members.

This issue’s “Reader’s Choice” col-
umn lists the top 15 SPM articles most 
downloaded from January 2018 to Sep-
tember 2020. Your suggestions and 
comments are welcome and should be 
sent to Associate Editor H. Vicky Zhao 
(vzhao@tsinghua.edu.cn).

Deep Reinforcement Learning: 
A Brief Survey
Arulkumaran, K.; Deisenroth, M.P.; 
Brundage, M.; Bharath, A.A.
This article reviews the recent progress 
in deep reinforcement learning (RL).  
The survey begins with an introduction 
to RL’s general field and then progresses 
to the main streams of value- and policy-

based methods. Important algorithms in 
deep RL are explored, including the deep 
Q-network, trust region policy optimiza-
tion, and asynchronous advantage actor 
critic. The unique advantages of deep 
neural networks (DNNs) are also sur-
veyed, focusing on visual understand-
ing via RL.

2017

An Introduction to 
Compressive Sampling
Candes, E.J.; Wakin, M.B.
This article surveys the compressive 
sampling theory, also known as com-
pressed sensing (CS), a novel sensing/
sampling paradigm that goes against the 
common wisdom in data acquisition. 

The CS theory asserts that one can 
recover certain signals and images from 
far fewer samples or measurements than 
traditional methods use. The article 
highlights that randomness can lead to 
very effective sensing mechanisms, 
explains why compressive sensing is a 
concrete protocol for sensing and com-
pressing data simultaneously, and evalu-
ates important applications.

2008

Deep Neural Networks for Acoustic 
Modeling in Speech Recognition: 
The Shared Views of Four 
Research Groups
Hinton, G.; Deng, L; Yu, D.; Dahl, G.E.; 
Mohamed, A..; Jaitly, N.; Senior, A.; 

Digital Object Identifier 10.1109/MSP.2020.3032087
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Vanhoucke V.; Nguyen, P.; Sainath, T.N.; 
Kingsbury B. 
This article explores recent progress in 
using DNNs for acoustic modeling in 
speech recognition. It starts with the 
two-stage training procedure used for fit-
ting the DNNs. In the first stage, layers 
of feature detectors are initialized by fit-
ting a stack of generative models. In the 
second stage, each generative model is 
used to initialize one layer of hidden 
units in a DNN, and the whole network 
is fine-tuned to predict the target hidden 
Markov model states. Exploratory exper-
iments on the TIMIT database demon-
strate the power of the DNNs for 
acoustic modeling.

2012

Geometric Deep Learning: Going 
Beyond Euclidean Data
Bronstein, M.M.; Bruna, J.; LeCun, Y.; 
Szlam, A.; Vandergheynst, P.
Geometric deep learning refers to the 
emerging techniques attempting to gen-
eralize (structured) deep neural models 
to non-Euclidean domains, such as 
graphs and manifolds. The non-Euclid-
ean nature of such data implies that 
there are no such familiar properties as 
global parameterization, a common sys-
tem of coordinates, vector space struc-
ture, or shift invariance. Consequently, 
basic operations like convolution are 
not well defined in non-Euclidean 
domains. This article studies different 
methods to translate the key ingredients 
of successful deep learning methods to 
non-Euclidean data and presents avail-
able solutions, difficulties, applications, 
and future research directions in this 
nascent field.

2017

Automotive Radars: A Review of 
Signal Processing Techniques
Patole, S.M.; Torlak, M.; Wang, D.; 
Ali, M.
Various signal processing techniques 
have been developed to provide better 
resolution and estimation performance 
for automotive radar systems. This article 
summarizes various aspects of automo-
tive-radar signal processing techniques, 
including waveform design, possible 
radar architectures, estimation algo-

rithms, complexity-resolution tradeoff, 
adaptive processing for complex environ-
ments, and unique problems associated 
with automotive radars, such as pedestri-
an detection.

2017

Scaling Up MIMO: Opportunities 
and Challenges With Very Large 
Arrays
Rusek, F.; Persson, D.; Lau, B.K.; 
Larsson, E.G.; Marzetta, T.L.; 
Edfors, O.; Tufvesson, F.
The application of very large multiple-
input, multiple-output (MIMO) arrays 
is a new research field in communica-
tion theory, propagation, and elec-
tronics, motivating the entirely new 
theoretical research of signal process-
ing, coding, and network design. This 
article surveys some of the challenges 
with very large arrays. It discusses ulti-
mate information–theoretic perfor-
mance limits, practical algorithms, the 
influence of channel properties on the 
system, and practical constraints on the 
antenna arrangements.

2013

The Emerging Field of Signal 
Processing on Graphs: Extending 
High-Dimensional Data Analysis to 
Networks and Other Irregular 
Domains
Shuman, D.I.; Narang, S.K.; Frossard, P.; 
Ortega, A.; Vandergheynst, P.
The emerging field of signal processing 
on graphs merges algebraic and spectral 
graph theoretic concepts with computa-

tional harmonic analysis. This tutorial 
outlines the main challenges of the area, 
discusses different ways to define graph 
spectral domains, and highlights the 
importance of incorporating the irregular 
structures of graph data domains when 
processing signals on graphs. It then dis-
cusses methods to generalize funda-
mental operations, such as filtering, 
translation, and modulation to the graph 
setting. It surveys the localized, multi-
scale transforms to extract information 
from high-dimensional data on graphs. 
Open issues and possible extensions are 
also discussed.

2013

Compressive Sensing 
[Lecture Notes]
Baraniuk, R.G.
Addressing the Nyquist–Shannon 
sampling theory’s limitations in real 
applications, this lecture note presents 
a new method to capture and represent 
compressible signals at a rate signifi-
cantly below the Nyquist one. This 
method, called compressive sensing, 
employs nonadaptive linear projec-
tions that preserve the structure of the 
signal, which is then reconstructed 
from these projections using an opti-
mization process. The ideas presented 
illustrate the links among data acquisi-
tion, compression, dimensionality 
reduction, and optimization in under-
graduate and graduate digital signal 
processing, statistics, and applied math-
ematics courses.

2007
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Deep Multimodal Learning: A 
Survey on Recent Advances 
and Trends
Ramachandram, D.; Taylor, G.W.
The success of deep learning has been a 
catalyst for solving increasingly com-
plex machine learning (ML) problems, 
which often involve multiple data 
modalities. This article reviews recent 
advances in deep multimodal learning, 
highlights the state-of-the-art works, 
and presents the gaps and challenges in 
this active research field. It first classi-
fies deep multimodal learning architec-
tures and then discusses methods to 
fuse learned multimodal representations 
in deep learning architectures. Two 
research topics are highlighted as excit-
ing areas for future work: regularization 
strategies and methods that learn or 
optimize multimodal fusion structures.

2017

IoT Security Techniques Based on 
Machine Learning: How Do IoT 
Devices Use AI to Enhance 
Security?
Xiao, L.; Wan, X.; Lu, X.; 
Zhang, Y.; Wu, D.
The Internet of Things (IoT) integrates a 
variety of devices into networks to pro-
vide advanced and intelligent services. It 
has to protect user privacy and address 
attacks, such as spoofing and denial-of-
service attacks, jamming, and eavesdrop-
ping. The attack model for IoT systems 
is investigated, and the ML-based IoT 
security solutions are accessed, includ-
ing ML-based IoT authentication, access 
control, secure offloading, and malware-
detection schemes to protect data priva-
cy. The article then discusses the 
challenges that need to be addressed to 
implement these ML-based security 
schemes in practical IoT systems.

2018

MIMO Radar for Advanced 
Driver-Assistance Systems and 
Autonomous Driving: Advantages 
and Challenges
Sun, S.; Petropulu, A.P.; Poor, H.V.
MIMO radar technology has been used 
in the current-generation automotive 
radar for advanced driver-assistance 

systems and in the next-generation, 
high-resolution imaging radar for 
autonomous driving. This article 
examines MIMO radar basics, high-
lighting the features that make this 
technology a good fit for automotive 
radar, and surveys important theoreti-
cal results for increasing the angular 
resolution. It also describes the chal-
lenges that arise when applying exist-
ing MIMO radar theory to automotive 
radar, providing interesting problems 
for signal processing researchers. 

2020

Understanding the Basis of 
the Kalman Filter Via a Simple 
and Intuitive Derivation 
[Lecture Notes]
Faragher, R.
Named after Rudolf E. Kálmán, the 
Kalman filter’s great success is due to 
its small computational requirement, 
elegant recursive properties, and its 
status as the optimal estimator for 1D 
linear systems with Gaussian error 
statistics. Typical uses of the Kalman 
filter include smoothing noisy data 
and providing estimates of parameters 
of interest. This article provides a 
simple and intuitive derivation of the 
Kalman filter, aiming to teach this 
useful tool to students from disci-
plines that do not require a strong 
mathematical background.

2012

Semidefinite Relaxation of 
Quadratic Optimization Problems
Luo, Z.; Ma, W.; So, A.M.; Ye, Y.; 
Zhang, S.
Semidefinite relaxation (SDR) is a 
powerful and computationally effi-
cient approximation technique for a 
host of challenging optimization prob-
lems. In particular, it can be applied to 
many nonconvex, quadratically con-
strained quadratic programs. This arti-
cle provides general, comprehensive 
coverage of the SDR technique, from 
its practical deployments and scope of 
applicability to key theoretical results. 
It also showcases several represen-
tative applications, namely MIMO 
detection, B1 shimming in magnetic 

resonance imaging, and sensor net-
work localization.

2010

Generative Adversarial Networks: 
An Overview
Creswell, A.; White, T.; Dumoulin, V.; 
Arulkumaran, K.; Sengupta, B.; 
Bharath, A.A.
Generative adversarial networks 
(GANs) provide a way to learn deep 
representations without extensively 
annotated training data. They achieve 
this by deriving backpropagation sig-
nals through a competitive process 
involving a pair of networks. The repre-
sentations that can be learned by GANs 
may be used in a variety of applica-
tions, including image synthesis, 
semantic image editing, style transfer, 
image superresolution, and classifica-
tion. This article provides an overview 
of GANs for the signal processing com-
munity, drawing on familiar analogies 
and concepts where possible. In addi-
tion to identifying different methods to 
train and construct GANs, it also points 
to remaining challenges in their theory 
and application.

2018

Convolutional Neural Networks 
for Inverse Problems in Imaging: 
A Review
McCann, M.T.; Jin, K.H.; Unser, M.
This article discusses recent uses of 
convolutional NNs (CNNs) to solve 
inverse problems in imaging, such as 
denoising, deconvolution, superresolu-
tion, and medical image reconstruction. 
It evaluates the recent experimental 
works in these areas, focusing on the 
critical design decisions: From where 
do the training data come? What is the 
architecture of the CNN? How is the 
learning problem formulated and 
solved? It also mentions a few key theo-
retical articles that offer perspectives on 
why CNNs are appropriate for inverse 
problems and points to some next steps 
in the field.

2017

SP
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SPECIAL REPORTS
John Edwards
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Signal Processing Advances the Quest for  
Better and Safer Medical Imaging

Imaging breakthroughs are saving lives by giving radiologists and  
physicians sharper and safer views inside the human body

Medical imaging has progressed in 
impressive ways since the discovery 
of X-rays more than a century ago. 

Modern radiologists can now visualize 
body parts and organs to help physicians 
diagnose, treat, and monitor disease and/
or injury in intricate detail, using tech-
niques such as computed tomography 
(CT), positron emission tomography, and 
various other modalities.

The downside to many current 
imaging approaches is that they expose 
patients to ionizing radiation, which 
potentially increases their risk of eventu-
ally developing cancer. Signal process-
ing is now helping researchers develop 
new medical imaging technologies that 
are not only noninvasive but also virtu-
ally risk-free.

A smart brain biopsy needle
Researchers and clinicians at the Uni-
versity of Adelaide and the University 
of Western Australia have developed 
a “smart brain biopsy needle” that’s 
designed to reduce the risk of danger-
ous brain bleeds in patients undergoing 
brain biopsies.

A needle biopsy is currently a com-
mon way to identify the exact type of 
brain tumor under investigation. The 
process involves inserting a large nee-
dle into the patient’s brain and snipping 
out a tissue sample. A neurosurgeon 

will typically take anywhere from six 
to 10 samples.

“When they take the tissue sample, 
there’s a risk they will also cut any 
blood vessels next to the needle,” says 
project leader Prof. 
Robert McLaughlin, 
chair of Biophoton-
ics at the University 
of Adelaide’s Medi-
cal School. The sur-
geon has to be very 
careful to avoid an 
intracranial bleed. 
“Approximately 1% of patients having a 
brain biopsy will die from intracranial 
bleeds, and 2–3% will be left perma-
nently disabled,” he observes.

Developed jointly by the Univer-
sity of Adelaide and the University 
of Western Australia, the new smart 
needle (Figure 1) contains an optical 
fiber probe that’s capable of detecting 

when the needle is 
next to a blood ves-
sel and automati-
cally aler ting the 
neurosurgeon to the 
fact. The approach 
takes advantage of 
optical coherence 
tomography (OCT), 

a technology already commonly used in 
ophthalmology and cardiology. “We’re 
adapting it for use in neurosurgery,” 
McLaughlin says.

Digital Object Identifier 10.1109/MSP.2020.3032349
Date of current version: 24 December 2020

FIGURE 1. A 3D rendering of the smart brain biopsy needle, developed at the University of Adelaide 
and the University of Western Australia, in operation. (Source: Miniprobes Pty. Ltd.; used with 
permission.) 

Signal processing is 
now helping researchers 
develop new medical 
imaging technologies that 
are not only noninvasive 
but also virtually risk-free.
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The researchers created a miniatur-
ized OCT imaging probe and placed 
it inside a brain biopsy needle. “We 
did this by fabricating a tiny lens on 
the end of an opti-
cal fiber the thick-
ness of a human hair 
(0.2 mm),” McLaugh-
lin explains. “We then 
shine light through 
the optical fiber and 
out of a tiny hole near 
the tip of the needle.” 
The process allows 
the probe to take an 
OCT scan of the tissue that’s immediately 
next to the tip to determine if a blood ves-
sel is present.

OCT is analogous to ultrasound 
(US). “In US, the scanner sends sound 
waves into the tissue, and by analyz-
ing the echoes that are detected, it’s able 
to build up an image of the inside of the 
body,” McLaughlin says. OCT performs 
the same task but substitutes near-infrared 
light waves for sound waves. “Light waves 
are much smaller than sound waves, so 
we can see much smaller things,” he 
notes. The probe’s imaging resolution is 
approximately 5–20 μm, creating a single 
pixel. “However, light doesn’t penetrate 
very far into the body, so we can only see 
1–2 mm below the surface,” McLaugh-
lin notes. “This means that OCT is 
capable of seeing very small things but 
needs to be very close to them.”

US and OCT both excel at blood 
vessel detection and share a unique 
characteristic. “If you look closely 
at an US or OCT image, you will see 

that it’s completely 
covered in a type 
of  sa lt  a nd pep -
per noise—speckle 
noise,” McLaughlin 
says. While speckle 
noise is little more 
than obstructive clut-
ter to an US probe 
user, it’s a treasure 
trove of vital infor-

mation to an OCT probe operator. The 
researchers took advantage of this capa-
bility by developing signal processing 
algorithms that analyze and differentiate 
the speckle patterns generated by moving 
blood as opposed to the speckling gener-
ated by stationary tissue.

Speckle noise is simply a random col-
lection of bright and dark spots that don’t 
change over time. “If I take an OCT scan 
of an area of tissue, and if I don’t move 
and the tissue doesn’t move, then all the 
bright and dark spots stay in the same 
location,” McLaughlin explains. 
The trick to detecting blood vessels 
lies in using OCT to image the tissue 
as the needle moves incrementally. “As 
we pass through stationary tissue, the 
speckle will change very slowly,” he 
says. “If we suddenly reach a point where 
the speckle is changing quickly, we 

know that something else must be mov-
ing.” In a clinical situation, it’s a strong 
indication that blood is flowing through 
a vessel.

The signal processing algorithm is 
designed to measure changes in the 
speckle noise intensity. “We can’t pre-
dict the change in an individual pixel, 
but we can calculate the statistics 
of the intensity change over a small 
region of pixels,” McLaughlin notes. 
“We can then relate the rate of intensi-
ty change to the speed at which things 
are moving.” If the speckle intensity is 
changing very slowly, it’s a sign that 
the needle is next to stationary tissue. 
If the speckle is changing somewhat 
faster, it’s likely near a slow-flowing 
blood vessel. “If the speckle is chang-
ing very quickly, then we must be 
imaging a fast-flowing blood vessel,” 
he explains.

The imaging needle project recently 
completed a successful initial valida-
tion with 11 patients at Sir Charles 
Gairdner Hospital in Western Australia. 
Prof. Christopher Lind, a consultant 
neurosurgeon at Sir Charles Gairdner 
Hospital and the University of Western 
Australia, led the clinical trial.

McLaughlin says that working on 
the project was personally satis-
fying. “What makes this work so fun 
is the way it combines signal process-
ing, physics, hardware design, and a 
really compelling medical need,” he 
notes. “As an electronic engineer who 
started his research career in signal 
processing, I love the way that this 
project allows me to work in so many 
different areas of engineering at the 
same time.”

Superresolution US
Heriot-Watt University scientists have 
developed a superresolution US tech-
nology that promises a 5–10× resolu-
tion improvement over standard US 
images. The system allows entire 
organs to be scanned in superresolution 
for the first time, potentially leading to 
earlier cancer diagnoses and allowing 
medical staff to create better targeted 
treatment strategies.

With its impressive image resolu-
tion leap, superresolution promises to 

FIGURE 2. A prostate scanned by the superresolution US technology developed by Heriot-Watt 
University researchers. The technology promises a 5–10× resolution improvement over standard US 
images. (Source: Heriot-Watt University; used with permission.)

The new smart needle 
contains an optical fiber 
probe that’s capable of 
detecting when the needle 
is next to a blood vessel 
and automatically alerting 
the neurosurgeon to  
the fact.
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revolutionize medical diagnosis, says 
research team leader Vassilis Sboros, 
a Heriot-Watt associate professor. “It’s 
literally like looking into the human 
body with a microscope,” he observes 
(Figure 2). “As such, we expect to 
visualize processes that have not been 
seen before.”

A number of groups are involved in 
the research, Sboros notes. “Our main 
contribution is that we demonstrated 
that it’s possible to achieve strong super-
resolution results with existing clini-
cal equipment and within reasonable 
patient examination times,” he says.

The methodology borrows from 
algorithms used in astronomy and 
light microscopy that employ micro-
bubble suspensions. “This research 
effort started with basic physics—both 
experimental and theoretical—[and] 
investigations on the nonlinear scatter 
properties of US microbubbles,” Sboros 
says. “This knowledge was then inject-
ed into signal processing and, eventu-
ally, into image formation.”

The researchers initially devel-
oped a methodology that used several 
well-known signal processing tools, 
such as Kalman filters and spectral 
methods, yet changes are planned. “I 
feel that there are a number of excit-
ing new methods already implement-
ed in other fields of sensing that we 
have not been able to use to date,” 
Sboros says.

The researchers haven’t yet decided 
on a final signal processing method to 
replace the current set of conventional 
signal processing approaches. “It’s a 
very big challenge … in clinical equip-
ment,” Sboros notes. “We do not feel at 
this stage that there is one signal pro-
cessing method that is better than all 
the others.”

Given the complexities inher-
ent in US imaging, the vascular sys-
tem, and microbubble nonlinearity, the 
team prefers that any new methodology 
selected is well understood and tested 
prior to inclusion. “Having said that, we 
have evidence to suggest that methods 
like minimum variance and sharp-
ness-based beamforming can adapt to 
single-particle imaging and provide 
viable solutions,” Sboros says.

One possible option is spectral anal-
ysis, which uses a Bayesian approach 
to provide superresolved spectral 
information. “It appears that we can 
identify and tag individual particles 
by means of spec-
tral identification,” 
Sboros states. “This 
is exciting, and we 
haven’t yet had the 
chance to implement 
it in real imaging.” 
He reports that the 
researchers have 
also used minimum 
variance—via a Capon filter—to cre-
ate high-resolution particle images. 
“The challenge is to do this in the 
clinical setting and for live imaging,” 
he observes.

Besides an array of cancers, super-
resolution US also has the potential to 
be applied to any noncommunicable 
disease that can currently be investigat-
ed with US imaging. “It could be used 
to diagnose and target treatment for 
a number of vascular-related diseases 
such as diabetes, liver disease, trans-
plant rejection, stroke, and Alzheim-
er’s, to name a few,” Sboros predicts.

Photoacoustic imaging
A Ryerson University-led research team, 
working out of the Institute for Biomedical 
Engineering, Science and Technology 
at Toronto’s St. Michael’s Hospital, is hop-

ing to raise photoacoustic (PA) imaging 
to an entirely new level.

Like US imaging, PA imaging cre-
ates a visual image of biological struc-
tures by collecting soundwaves. While 

US imaging trans-
mits soundwaves 
into biological struc-
tures, PA imaging 
utilizes light.

PA imaging proj-
ects light into bio-
logical structures, 
such as blood ves-
sels, that can absorb 

the energy. Light waves generate 
a tiny amount of heat inside the target 
structure, which tr iggers an almost 
imperceptible expansion in volume, 
generating sound.

Using a technique they call F-Mode, 
the researchers were able to subdivide PA 
signals into different frequency bands. 
They then successfully demonstrated 
the selective enhancement of features 
in samples ranging from biological 
cells to live zebrafish larvae without rely-
ing on the contrast dyes typically required 
by other imaging techniques (Figure 3).

One of the best things about the 
technique is that it can, in principle, 
be applied to data acquired from 
any conventional US or PA system, 
provided that the user has access to 
unprocessed digitized signal data and 
doesn’t require any special hardware, 

FIGURE 3. A close-up image of the PA microscope used for acquiring F-Mode images. A 532-nm 
laser is focused through a 10× optical objective (bottom of figure) into a petri dish containing the 
sample to be imaged. A 200-MHz US transducer, immersed in the dish, records the resultant PA 
signals. (Source: Ryerson University; used with permission.)

While speckle noise 
is little more than 
obstructive clutter to  
an US probe user, it’s  
a treasure trove of  
vital information to an  
OCT probe operator.
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microbubbles,” Sboros team member 
Michael Moore, currently a medical 
physics resident at Grand River Hos-
pital in Ontario, Canada. 

Moore believes that the technique 
is optimal for zeroing in on objects of 
specific sizes. For example, when 
imaging blood ves-
sels, vessel sizes 
with in a specif ic 
area can vary by sev-
eral orders of mag-
nitude, only some 
of which would be 
of interest in a given 
clinical situation. 
“The idea is that by 
using F-Mode, the 
user would be able to hone in on the 
size of the object that they’re interested 
in, removing some of the objects that 
would otherwise clutter the image,” 
he explains.

F-Mode also opens the way to size-
specific contrast levels in PA imaging. 
“Usually in PA, contrast comes from 
the relative optical absorption proper-
ties of the sample that you’re analyzing,” 
Moore states. “In F-Mode, you can have 
two objects with the exact same opti-
cal absorption characteristics but make 
either one of those objects completely 
disappear just by changing the frequen-
cy band used to construct the image.”

One of the main reasons F-Mode 
works so well for PA imaging is that 
the PA signals produced are inher-
ently broadband, akin to the acoustic 
signal that’s generated by a popping 
balloon. Most current PA imaging 
techniques simply measure ampli-
tude, d isplaying areas emitting 
louder sounds with brighter pixels. 
F-Mode, on the other hand, uses the 
frequency content of sounds emitted 
from biological structures to deter-
mine pixel brightness.

Just as with the human voice, the 
frequency content of any given signal 
is unique. In PA, the content is dictated 
by both the object’s size and its shape. 
Smaller objects produce signals with 
more high-frequency content than large 
objects. “Interestingly, within the broad-

band power spectrum 
of the signal, there are 
some ‘null’ frequen-
cies, or frequency 
bands that contribute 
very little to the over-
all signal energy,” 
Moore says.

Null frequencies 
vary depending on 
the size and shape 

of the object producing the sound. 
One object may have a maximum 
frequency in one band, while another 
might have a minimum. By appropri-
ately subdividing the power spectra 
of the radio-frequency (RF) data into 
bands, we can choose to reconstruct an 
image from only a single frequency 
band,” Moore says. “If we choose one 
of the special bands where the contri-
bution of one object is high while the 
contribution of the other object is at 
a minimum, one object will appear 
much brighter than the other in the 
resultant image.”

F-Mode is heavily reliant on sig-
nal processing. “Without it, we would 
never be able to access the size-specific 
data encoded in our time-domain sig-
nals,” Moore says. “We first acquire 
PA signals from objects of different 
size using either a PA microscope or 
PA CT system,” he says. This typically 
involves standard techniques, such as 
signal averaging, and the application of 
a Tukey or Hamming filter to remove 
some of the high-frequency noise from 
outside the transducer bandwidth, 
Moore notes.

In conventional image formation, the 
maximum amplitude of the PA signal 
at each spatial location within the scan 
region is used to determine the intensity 
of the corresponding pixel in the result-
ing image—a technique known as max-
imum amplitude projection imaging. 
“In F-Mode, we take those PA signals 
and apply the fast Fourier transform to 
them and compute their power spec-
trum,” Moore says. “By appropriately 
subdividing the power spectra of the 
RF data into bands, spectral features, 
such as nulls within the divisions, can 
be isolated and used as a mechanism for 
generating image contrast,” he explains. 
Displaying the contents of one such 
band at each location in the scan data 
set results in images that are highly sen-
sitive to small deviations in object size 
and shape.

The research team, including Ryer-
son biomedical physics doctoral candi-
dates Eno Hysi and Muhannad Fadhel, 
was led by PA imaging pioneer Michael 
Kolios, a professor in Ryerson’s Physics 
Department and an associate dean of 
science for research and graduate stud-
ies. The work was funded by the Natu-
ral Sciences and Engineering Research 
Council of Canada, the Canadian Can-
cer Society, and the Canadian Founda-
tion for Innovation.

The researchers next hope to inves-
tigate additional in vivo PA applications 
in small animals, such as mice. Their 
ultimate goal is to use the technique to 
selectively enhance human blood ves-
sels of various sizes for improved dis-
ease detection.

Author
John Edwards (edwards@johned
wardsmedia.com) is a technology 
writer based in the Phoenix, Arizona, 
USA, area. Follow him on Twitter @
TechJohn Edwards. SP

Besides an array of 
cancers, superresolution 
US also has the potential 
to be applied to any 
noncommunicable disease 
that can currently  
be investigated with  
US imaging.
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SOCIETY NEWS

SPS Announces the 2021 Class of Distinguished Lecturers 
and Distinguished Industry Speakers

The IEEE Signal Processing Society 
(SPS) Distinguished Lecturer (DL) 
Program provides a means for Chap-

ters to have access to well-known educa-
tors and authors in the fields of signal 
processing to lecture at Chapter meetings. 
While many IEEE Societies have similar 
programs, the SPS provides a substantial 
amount of financial support for the Chap-
ters to take advantage of this service.

The Distinguished Industry Speaker 
(DIS) Program provides a means for 
Chapters to have access to individuals 
who are recognized experts with a back-
ground in industrial applications in the 
signal processing area and are well 
versed in the ongoing issues/activities in 
industry to lecture at Chapter meetings. 
The main difference and goal of the DIS 
Program is to educate and interact with 
Society members about topics that are of 
primary importance to industry and the 
signal processing community at large. 
The DIS Program will supplement and 
closely mirror the regular DL Program.

Five colleagues were honored with 
the appointment of DL: Pier Luigi 
Dragotti (Imperial College London), 
Karen Livescu (Toyota Technological 
Institute at Chicago), Venkatesh 
Saligrama (Boston University), Dimitri 
Van De Ville (École polytechnique 
fédérale de Lausanne), and Dong Xu 
(University of Sydney, Australia).

Five colleagues were honored with the 
appointment of DIS: Achintya K. (Achin) 

Bhowmik (Starkey Hearing Technolo-
gies), Chienchung Chang (Qualcomm 
Technologies), Mérouane Debbah 
(Huawei France Research Center), 
Dilek Hakkani-Tür (Amazon Alexa AI), 
and Xiaodong He (JD.COM Inc.).

Chapters interested in arranging lec-
tures by a DL or a DIS can visit the fol-
lowing websites: 

• DL Program: http://signalprocess
ingsociety.org/professional-devel
opment/distinguished-lecturer
-program

• DIS Program: https://signalprocessing
society.org/professional-develop
ment/dist inguished-industry
-speaker-program. 

Lectures can also be arranged by 
sending an e-mail to sp.info@ieee.org. 

Achintya K. Bhowmik
Achintya K. (Achin) 
Bhowmik is the chief 
technology officer and 
executive vice president 
of engineering at Star-
key Hearing Technolo-

gies, a privately held medical devices 
business with more than 5,000 employees 
and operations in more than 100 countries 
worldwide. In this role, he is responsible 
for the company’s technology strategy, 
global research, product development, and 
engineering departments. He is also 
responsible for leading the drive to trans-
form hearing aids into multifunction wear-
able health and communication devices 
with advanced sensors and artificial 
intelligence (AI) technologies.

Prior to joining Starkey, Dr. Bhowmik 
was the vice president and general man-
ager of the Perceptual Computing Group 
at Intel Corporation. There, he was 
responsible for the R&D, engineering, 
operations, and businesses in the areas of 
3D sensing and interactive computing, 
computer vision (CV) and AI, autono-
mous robots and drones, and immersive 
virtual and merged reality devices.

Dr. Bhowmik is an adjunct professor 
at the Stanford University School of 
Medicine, where he advises research and 
lectures in the areas of multisensory cog-
nition, perceptual augmentation, and 
intelligent systems. He has also held 
adjunct and guest professor positions at 
the University of California, Berkeley; the 
Liquid Crystal Institute of the Kent State 
University; the Kyung Hee University, 
Seoul; and the Indian Institute of Technol-
ogy, Gandhinagar. He received his B.Tech. 
degree (1996) from the Indian Institute of 
Technology, Kanpur and his Ph.D. degree 
(2000) from Auburn University. He has 
authored more than 200 publications, 
including two books and 38 issued patents.

Dr. Bhowmik serves on the board of 
trustees for the National Captioning 
Institute, the board of directors for 
OpenCV, the executive board for the 
Society for Information Display (SID) 
as the president-elect, and the board of 
advisors for the Fung Institute for Engi-
neering Leadership at University of 
California, Berkeley. He is on the board 
of directors and advisors for several 
technology start-up companies. His awards 
and honors include Time’s Best 
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Inventions, the Artificial Intelligence 
Breakthrough Award, the Red Dot Design 
Award, the Industrial Distinguished 
Leader Award from the Asia-Pacific 
Signal and Information Processing 
Association, and the Fellow of the SID.

Dr. Bhowmik’s lecture topics include 
transforming hearing aids into multipur-
pose devices as a gateway to health and 
information; enhancing and augmenting 
human perception with sensors and AI; 
evolving medtech in the era of digitaliza-
tion and AI; AI: from pixels and phonemes 
to semantic understanding and interac-
tions; virtual and augmented reality (VR 
and AR): toward life-like immersive expe-
riences; cognitive neuroscience: how do 
we sense and understand the world?; and 
perceptual computing: enabling machines 
to sense and understand the world.

Chienchung Chang
Chienchung Chang 
received his B.S. degree 
from National Tsing 
Hua University, Hsin-
chu, Taiwan (1982) and 
his M.S. and Ph.D. 

degrees from the University of California, 
San Diego, La Jolla, (1987 and 1991, 
respectively), all in electrical and comput-
er engineering. Dr. Chang has worked 
with Qualcomm since 1991. Currently, 
Dr. Chang is the vice president of engi-
neering at Qualcomm Technologies, 
where he serves as the department head 
of the Multimedia R&D and Standards 
group, with a major focus in forward-
looking research in the fields of speech, 
video, imaging, CV, and AI and extended 
reality (XR) (VR/AR) technologies.

Dr. Chang pioneered to introduce 
video, camera, and display technologies 
into Qualcomm Snapdragon products. In 
2005, he successfully led Qualcomm 
Code-Division Multiple Access (CDMA) 
Technologies Segment’s first multimedia-
centric chipset, MSM6550, from design to 
commercialization. MPEG-4/H.263 video 
codecs, the 4MP CMOS image sensor, and 
GPU were introduced into CDMA/
WCDMA handsets for the first time. 
MSM6550 became the best-selling chip-
sets in the company’s history then. The 
chipsets not only created a watershed 
moment for wireless smartphone booming, 

but also laid a solid foundation to foster 
multimedia technology innovation within 
Snapdragon platforms up to today.

Dr. Chang was commissioned to start 
the Multimedia R&D and Standards 
Group focusing on forward-looking 
multimedia research in speech, video, 
imaging, CV and XR. Under his leader-
ship, Qualcomm won the ITU-T/MPEG 
H.265/HEVC, SVC, H.266/VVC, EVC 
video codec and 3rd Generation Partner-
ship Project EVS speech codec standard 
competitions. These codec standards are 
expected to benefit smartphone, automo-
tive, XR, and Internet of Things (IoT) 
applications for years to come.

In 2017, Dr. Chang helped Qualcomm 
published 3D depth sensor technology, 
based on structured lights (3DSL), and its 
own programmable hardware, RICA. 
Together with 3D face authentication and 
relevant CV technologies, he proactively 
helped Qualcomm deliver the most com-
petitive biometric solutions for Android 
handsets to counter iPhone FaceID. Lately, 
Dr. Chang has led XR research, augment-
ed by CV and machine learning research, 
in rolling out leading-edge perception tech-
nologies, such as six degrees of freedom, 
3D reconstruction, hand/object detection 
and tracking, and digital human and split 
XR. These technologies enhance Qual-
comm technology leadership and has 
helped it become the world’s largest VR/
AR chipset vendor today.

Dr. Chang’s research interests 
include speech compression, speech 
recognition, imaging and video pro-
cessing, CV, pattern recognition, and 
machine learning. He was recognized 
as the Distinguished Alumni of the Col-
lege of Electrical Engineering and 
Computer Science, National Tsing Hua 
University, Taiwan, in April 2018.

Dr. Chang’s lecture topics include 
unleashing multimedia technologies on 
smartphones, automotive, XR, and IoT; 
boundless XR; and disruptive 3D sensing.

Mérouane Debbah
Mérouane Debbah 
received his M.Sc. and 
Ph.D. degrees from the 
Ecole Normale Su -
périeure Paris-Saclay, 
France. He was with 

Motorola Labs, Saclay, France, from 
1999 to 2002, and also with the Vienna 
Research Center for Telecommunica-
tions, Vienna, Austria, until 2003. From 
2003 to 2007, he was an assistant profes-
sor with the Mobile Communications 
Department, Institut Eurecom, Sophia 
Antipolis, France. In 2007, he was 
appointed full professor at CentraleSu-
pelec, Gif-sur-Yvette, France. From 2007 
to 2014, he was the director of the Alca-
tel-Lucent Chair on Flexible Radio. 
Since 2014, he has been vice president of 
the Huawei France Research Center. He 
is jointly the director of the Mathematical 
and Algorithmic Sciences Lab as well as 
the director of the Lagrange Mathemati-
cal and Computing Research Center.

Dr. Debbah is an IEEE Fellow, a 
WWRF fellow, and a membre émérite of 
SEE. He was a recipient of the European 
Research Council (ERC) Grant, MORE 
(Advanced Mathematical Tools for Com-
plex Network Engineering) (2012–2017); 
Mario Boella Award (2005); IEEE Gla-
vieux Prize Award (2011); Qualcomm 
Innovation Prize Award (2012); and IEEE 
Radio Communications Committee Tech-
nical Recognition Award (2019). He 
received more than 20 best paper awards, 
among which include the 2007 IEEE 
GLOBECOM Best Paper Award, Wi-Opt 
2009 Best Paper Award, 2010 New-
com++ Best Paper Award, WUN Cog-
Com Best Paper 2012 and 2013 Award, 
2014 IEEE WCNC Best Paper Award, 
2015 ICC Best Paper Award, 2015 IEEE 
Communications Society Leonard G. 
Abraham Prize, 2015 IEEE Communica-
tions Society Fred W. Ellersick Prize, 
2016 IEEE Communications Society Best 
Tutorial Paper Award, 2016 European 
Wireless Best Paper Award, 2017 EURA-
SIP Best Paper Award, 2018 IEEE Marconi 
Prize Paper Award, 2019 IEEE Communi-
cations Society Young Author Best Paper 
Award, and the Valuetools 2007, Valuetools 
2008, CrownCom 2009, Valuetools 2012, 
SAM 2014, and 2017 IEEE Sweden VT-
COM-IT Joint Chapter Best Student Paper 
Awards. He was an associate editor-in-
chief of Journal Random Matrix: Theory 
and Applications and an associate area edi-
tor and senior area editor of IEEE Transac-
tions on Signal Processing, from 2011 to 
2013 and from 2013 to 2014, respectively.
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Dr. Debbah’s research interests lie in 
fundamental mathematics, algorithms, 
statistics, information, and communica-
tion sciences research.

Dr. Debbah’s lecture topics include 
wireless AI: from cloud AI to on-device 
AI; rebuilding the theoretical founda-
tions of communication and computing; 
the fundamentals of 5G; random matrix 
theory/theory and applications; and an 
outlook on beyond 5G.

Pier Luigi Dragotti
Pier Luigi Dragotti is a 
professor of signal pro-
cessing in the Electrical 
and electronic engineer-
ing Department at the 
Imperial College Lon-

don, U.K. He received the laurea degree 
(summa cum laude) in electronic engi-
neering from the University Federico II, 
Naples, Italy (1997); a master’s degree in 
communications systems from the Swiss 
Federal Institute of Technology of Laus-
anne, EPFL, Switzerland (1998); and a 
Ph.D. degree from EPFL, Switzerland 
(April 2002). Before joining the Imperial 
College in November 2002, he was a 
senior researcher at EPFL working on 
distributed signal processing for the 
Swiss National Competence Center in 
Research on Mobile Information and 
Communication Systems.

Prof. Dragotti has also held several vis-
iting positions. He was a visiting student at 
Stanford University (1996); summer 
researcher at the Mathematics of Commu-
nications Department at Bell Labs, Lucent 
Technologies, Murray Hill, New Jersey 
(2000); and visiting scientist at Massachu-
setts Institute of Technology (MIT) (2011).

Prof. Dragotti is an IEEE Fellow 
(2017). He was the editor-in-chief of 
IEEE Transactions on Signal Processing
(2018–2020); member of the IEEE SPS 
Fellow Evaluation Committee (2020); 
associate editor of IEEE Transactions on 
Image Processing (2006–2009); elected 
member of the IEEE Image, Video, and 
Multidimensional Signal Processing 
Technical Committee (2008–2013), 
where he acted as the chair of the award 
subcommittee (2011–2013); member of 
the IEEE Signal Processing Theory 
and Methods Technical Committee 

(2013–2018); member of the Computa-
tional Imaging Technical Committee 
(2015–2020); and technical cochair of 
the European Signal Processing Confer-
ence (2012). Prof. Dragotti is also the 
recipient of an ERC Investigator Award, 
which is awarded to “exceptional 
research leaders to pursue ground-break-
ing, high-risk projects” (2011–2016).

Prof. Dragotti’s lecture topics in -
clude new sampling methods: sparse 
sampling based on timing information 
and sampling along trajectories; deep 
dictionary learning approaches for 
image superresolution; and computa-
tional imaging for art investigation and 
for neuroscience.

Dilek Hakkani-Tür 
Dilek Hakkani-Tür is a 
senior principal scien-
tist at Amazon Alexa 
AI and a visiting dis-
t inguished profes-
sor  a t  University of 

California, Santa Cruz, USA, focusing on 
enabling natural dialogues with machines. 
Prior to joining Amazon, she was leading 
the dialogue research group at Google 
(2016–2018) and a principal researcher at 
Microsoft Research (2010–2016), the 
International Computer Science Institute 
(2006–2010), and the AT&T Labs-
Research (2001–2005). She received her 
B.Sc. degree from the Middle East Tech-
nical University in 1994 and her M.Sc. 
and Ph.D. degrees from Bilkent Universi-
ty, Department of Computer Engineering 
in 1996 and 2000, respectively.

Dr. Hakkani-Tür is the recipient of 
three best paper awards for her work on 
active learning for dialog systems, from 
the ISPS (2008), the International Sym-
posium on Computer Architecture 
(ISCA) (2007), and EURASIP (2007). 
She served as the associate editor of 
IEEE Transactions on Audio, Speech, 
and Language Processing (2005–2008); 
as a member of the IEEE Speech and 
Language Processing Technical Commit-
tee (2009–2014); as an area editor for 
speech and language processing for Else-
vier’s Digital Signal Processing Journal
and IEEE Signal Processing Letters
(2011–2013); and served on the ISCA 
Advisory Council (2015–2018). She is 

the editor-in-chief of IEEE/ACM Trans-
actions on Audio, Speech and Language 
Processing (2019–2021) and a Fellow of 
IEEE (2014) and ISCA (2014).

Dr. Hakkani-Tür’s research interests 
include conversational AI, natural lan-
guage and speech processing, spoken 
dialogue systems, and machine learning 
for language processing.

Dr. Hakkani-Tür’s lecture topics 
include conversational machines: toward 
bridging the chasm between task-orient-
ed and social conversations; deep learn-
ing for task-oriented dialogue systems; 
and neural network-based response gen-
eration in social conversational systems.

Xiaodong He 
Xiaodong He is the 
vice president of tech-
nology of JD.COM 
Inc., deputy managing 
director of JD AI 
Research, and the head 

of the Deep Learning, NLP, and Speech 
Lab. He is also an affiliate professor at the 
Electrical and Computer Engineering 
Department of the University of Washing-
ton (Seattle). Dr. He joined JD.COM, the 
largest online retailer in China, in 2018. 
Prior to that, he was the principal 
researcher and research manager of the 
Deep Learning Technology Center at 
Microsoft Research, Redmond, Washing-
ton. He holds a bachelor’s degree from 
Tsing Hua University, Beijing, an M.S. 
degree from the Chinese Academy of Sci-
ences, Beijing, and a Ph.D. degree from 
the University of Missouri, Columbia.

Dr. He is an IEEE Fellow “for contri-
butions to multimodal signal processing 
in human language and vision technolo-
gies,” and a fellow of the China Associa-
tion of Artificial Intelligence. He has held 
editorial positions in Transactions of the 
Association for Computational Linguis-
tics and multiple IEEE journals, includ-
ing IEEE Signal Processing Magazine
and IEEE Signal Processing Letters
(2017–2018), and he has served on the 
organizing committees/program commit-
tees of major AI conferences. He was the 
chair on the IEEE Seattle Section (2016–
2017) and served on the IEEE Speech 
and Language Processing Technical 
Committee (2015–2017).
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Dr. He’s work—including deep 
structured semantic models, hierarchi-
cal attention networks, bottom-up and 
top-down attention models, stacked 
attention networks, MS-Celeb-1M, 
AttnGAN, CaptionBot, DistMult, 
STAGG-QA, and RNN-SLU—is wide-
ly applied to important scenarios in nat-
ural language processing, CV, dialogue 
systems, multimodal human–machine 
interaction, IR, and knowledge graphs. 
He also led the development of the 
industry-first, emotion-aware conversa-
tional system that provides large-scale 
smart customer services to more than 
300 million users of JD.COM.

Dr. He has received multiple best 
paper awards: ICASSP (2011); ACL 
(2015); and IEEE/ACM Transactions on 
Audio, Speech, and Language Processing 
(2018). Dr. He won the following major 
AI challenges: NIST Machine Transla-
tion Evaluation (2008), International 
Conference on Spoken Language Trans-
lation (2011), COCO Captioning Chal-
lenge (2015), Visual Question Answering 
(2017), and WikiHop-QA (2019).

Dr. He’s research interests are mainly 
in natural language, vision, and multi-
modal intelligence, which is connected 
to deep learning, natural language pro-
cessing, speech recognition, information 
retrieval, CV, and other relevant fields.

Dr. He’s lecture topics include the 
progress in vision-and-language multi-
modal intelligence; language understand-
ing, question answering, and dialogue—
the evolving of language intelligence; and 
multimodal conversational AI for smart 
customer service systems.

Karen Livescu
Karen Livescu is an 
associate professor at 
Toyota Technological 
Institute at Chicago. 
She received her bach-
elor’s degree in phys-

ics from Princeton University in 1996 
and her Ph.D. degree in electrical engi-
neering and computer science from 
MIT in 2005.

Dr. Livescu is an associate editor of 
IEEE Open Journal of Signal Processing
(present); associate editor of IEEE/ACM 
Transactions on Audio, Speech, and 

Language Processing (2014–2017); a 
member of the IEEE Speech and Lan-
guage Processing Technical Committee 
(2012–2017); and a technical cochair of 
the IEEE Workshop on Automatic 
Speech Recognition and Understanding 
(2015, 2017, and 2019). Outside of 
IEEE, she has served as a program 
cochair of the International Conference 
on Learning Representations (2019); a 
subject editor of Speech Communication
journal; and an area chair for a number of 
speech processing, machine learning, and 
natural language processing conferences. 
She has won best paper awards at the 
ACL Workshop on Representation 
Learning for NLP in 2016 and 2017 and 
a Best Student Paper Award at Inter-
speech (2012). Her work has been 
acknowledged with an Amazon AWS 
Machine Learning Research Award 
(2020) and Google Research Awards 
(2014, 2015), and she was awarded a 
Clare Boothe Luce Post-Doctoral Fel-
lowship (2005–2007) and an NSF Grad-
uate Research Fellowship (1997–2000).

Dr. Livescu’s main research interests 
are in speech and language processing 
and machine learning.

Dr. Livescu’s lecture topics include 
embeddings for spoken language and 
automatic recognition of sign language 
in video.

Venkatesh Saligrama 
Venkatesh Saligrama is 
a professor in the 
Departments of Electri-
cal and Computer Engi-
neering, Computer 
Science (by courtesy), 

and Systems Engineering at Boston Uni-
versity, Massachusetts, USA. He is a 
founding faculty member of Computing 
and Data Sciences at Boston University. 
He received his Ph.D. degree from MIT.

Dr. Saligrama is an IEEE Fellow; 
recipient of several awards, including 
the Presidential Early Career Award, 
ONR Young Investigator Award, and 
the NSF Career Award; and he has 
received best paper awards at several 
conferences. He has served as an asso-
ciate editor of IEEE Transactions on 
Signal Processing (2005–2007) and 
IEEE Transactions on Information 

Theory; has edited special issues of 
IEEE Journal of Selected Topics in Sig-
nal Processing and IEEE Transactions 
on Signal Information Processing Over 
Networks; has been chair of the Big 
Data Special Interest Group (2020); and 
has served on Technical Program Com-
mittees of several IEEE conferences.

Dr. Saligrama’s current research 
interests are in machine learning, with 
particular emphasis on resource-effi-
cient learning and zero-shot and limit-
ed-shot learning; statistical testing of 
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FROM THE GUEST EDITORS
Lina J. Karam, Jay Katupitiya, Vicente Milanés, Ioannis Pitas, and Jieping Ye

Autonomous Driving: Part 2—Learning and Cognition

This special issue covering autono-
mous driving is presented in two 
parts: Part 1—Sensing and Percep-

tion was published in the July 2020 issue 
of IEEE Signal Processing Magazine
(SPM) [1], and this issue, Part 2—Learn-
ing and Cognition. Learning and cog-
nition models and, in particular, deep 
learning-based models are at the core 
of autonomous vehicles and automated 
driving. Autonomous driving and, more 
generally, automated driving are receiv-
ing increasing attention, and significant 
resources are being deployed to enable 
safe, reliable, and efficient automated 
mobility in real-world environments. 
Some of the needed enabling technolo-
gies include affordable sensing plat-
forms, reliable simultaneous localization 
and mapping, machine learning that 
can effectively handle varying condi-
tions and unforeseen events, “machine 
learning-friendly” signal processing, 
hardware and software co-design for ef-
ficient real-time performance, robust 
platforms that can withstand adversarial 
attacks and failures, and frameworks that 
can enable effective testing of emerging 
autonomous driving advances.

In this issue
The aim of this special issue is to pro-
vide researchers and professionals with 
tutorial-style articles covering the state 

of the art as well as emerging trends 
in the development and deployment of 
learning and cognition technologies for 
autonomous and automated driving. In 
particular, deep neural networks have 
been widely adopted and integrated as 
part of these technologies. Part 2 de-
scribes key concepts and the latest ad-
vances underlying the operation of such 
learning and cognition approaches. It 
also sheds light on remaining challeng-
es that need to be addressed to enable 
reliable and safe operation in autono-
mous driving.

Overview
This issue contains eight articles. Four of 
them deal with the robustness of learn-
ing and perception models under adverse 
conditions and/or adversarial attacks. The 
others cover various aspects of learning 
and cognition for autonomous driving. 
The first article, “Deep Neural Network 
Perception Models and Robust Autono-
mous Driving Systems,” by Shafiee et al., is 
concerned with perception models and 
robustness in autonomous driving, with 
a focus on adversarial attacks. In “Self-
Supervised Learning for Autonomous 
Vehicles Perception,” Chiaroni et al. ad-
dress self-supervised learning and the ap-
plications that the technology enables for 
autonomous driving. “The Vulnerability 
of Semantic Segmentation Networks to 
Adversarial Attacks in Autonomous Driv-
ing,” by Bär et al., discusses the suscep-
tibility of convolutional neural networks 

(CNNs) to adversarial attacks when these 
CNNs are deployed for semantic seg-
mentation in the context of autonomous 
driving. The authors also review existing 
adversarial defense strategies. The fourth 
article, “Object Detection Under Rainy 
Conditions for Autonomous Vehicles,” by 
Hnewa and Radha, is concerned with au-
tonomous driving under adverse weather 
conditions, with a focus on rainy condi-
tions. The authors review object detection 
methods that are being considered for in-
tegration into autonomous vehicles. They 
also survey and discuss state-of-the-art 
methods for mitigating the effect of rain 
on autonomous driving.

The fifth article, “3D Point Cloud Pro-
cessing and Learning for Autonomous 
Driving,” by Chen et al., summarizes 
cutting-edge processing and learning 
methods for 3D point clouds and offers 
perspectives on open issues that remain to 
be solved. “Deep Inverse Reinforcement 
Learning for Behavior Prediction in Au-
tonomous Driving,” by Fernando et al., 
is concerned with behavior modeling 
in autonomous driving, with a focus on 
deep inverse reinforcement learning. In 
“Novel Arithmetic in Deep Neural Net-
work Signal Processing for Autonomous 
Driving,” Cococcioni et al. review current 
and emerging arithmetic for deep neural 
network (DNN) signal processing. The 
authors also highlight the issues in imple-
menting DNN accelerators to achieve 
low-complexity processing of automo-
tive sensor signals without compromising 
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accuracy. Deter et al. close the issue with 
“Simulating the Autonomous Future,” 
which provides an overview of simulation 
tools for scene and scenario creation and 
describes open autonomous vehicle data 
sets, with a focus on constructing and 
validating virtual vehicle environments 
to replicate a range of test scenarios for 
autonomous driving.
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Mohammad Javad Shafiee, Ahmadreza Jeddi, 
Amir Nazemi, Paul Fieguth, and Alexander Wong

AUTONOMOUS DRIVING: PART 2

The National Highway Traffic Safety Administration re-
ported that more than 90% of in-road accidents in 2015 oc-
curred purely because of drivers’ errors and misjudgments, 

with such factors as fatigue and other sorts of distractions be-
ing the main cause of these accidents [1]. One promising solu-
tion for reducing (or even resolving) such human errors is via 
autonomous or computer-assisted driving systems. Autonomous 
vehicles (AVs) are currently being designed with the aim of re-
ducing fatalities in accidents by being insusceptible to typical 
driver errors. Moreover, in addition to improved safety, autono-
mous systems offer many other potential benefits to society: 1) 
improved fuel efficiency beyond that of human driving, mak-
ing driving more cost beneficial and environmentally friendly, 
2) reduced commute times due to improved driving behaviors 
and coordination among AVs, and 3) a better driving experience 
for individuals with disabilities, to name a few.

Given the extensive global interest toward the deployment 
of AV technologies, recent studies have introduced new guide-
lines and regulations for speeding up AV development and 
pushing AVs into the market in a more effective manner. At 
the same time, there have been significant efforts to inform the 
public on the capabilities and limitations of AV systems.

The most widely used approach to categorize AV systems is 
to classify them based on their level of automation, as standard-
ized by the Society of Automotive Engineers [2], ranging from 
level 0 (no automation) to level 5 (completely autonomous). 
Although a level 5 AV is the ideal, the majority of current AV 
systems are at levels 1 and 2. The limited autonomous driving 
capabilities of current AV systems are due to a range of chal-
lenges, such as the high cost of sensors, a lack of acceptance 
by the public, a lack of appropriate safety evaluations, and the 
high error rates of existing technologies. In this study, we focus 
on those challenges associated with level 3 or higher [2].

Although different levels of automation can lead to some 
variations in the developed systems, the general architecture 
of an autonomous driving system consists of five main com-
ponents, as shown in Figure 1, grouped into two main areas of 
1) perception and 2) decision/control. Perception includes all of 
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the hardware and software attempting to find the current state 
of the AV system with respect to its surrounding environment, 
such that this information can be used as the input to decision 
and control. Sensors, algorithms to process the sensed data, 
environmental mapping, and localizing the 
AV with respect to the generated map are 
all components within perception. Sensor 
devices that are typically used in AV per-
ception include lidar, various types of visual 
cameras, GPS, and radar as well as Internet 
of Vehicles devices.

Raw sensory data are processed by a vari-
ety of algorithms to generate useful informa-
tion regarding the environment around the AV, of which three 
examples include:
1) Object detection: responsible for taking sensor data and 

detecting important objects of interest, such as traffic lights, 
traffic signs, road, lanes, pedestrians, and other vehicles

2) Semantic segmentation: responsible for segmenting the 
road and its participants from sidewalk and objects that are 
not within the road

3) Scene reconstruction: responsible for generating 3D 
scenes based on 2D images and/or lidar devices.

The perception algorithms employed are clearly a function of 
the automated driving level [2]. For example, whereas cruise 
control (based on lidar or radar sensors) is a functionality in 
level 1, lane centering (visible images and a segmentation 
model) is one of the main tasks in level 2. Level 3 driving sys-
tems are ones that can truly be considered autonomous, a level 
of autonomy that can allow drivers to sit back and relax. Sev-
eral models are being used to perform the automated driving. 
Traffic signs and traffic lights are detected by object detection 
models, typically based on visible camera images; other cars 
driving in the road can be detected using object detection mod-
els by fusing sensory data from different sources; and the valid 

area in which the car can drive is identified by segmentation 
models. Although drivers can be hands-off in level 3 vehicles, 
they need to be ready to engage and take control at any time. 
In contrast, drivers can be mind-off in level 4 vehicles, but 

only in certain, geofenced traffic areas, or 
in level 5 vehicles in any situation.

Different perception models may be 
used independently for different tasks, 
such as lane segmentation, traffic sign 
identification, and traffic light detection 
(some state-of-the-art comparison results 
on two different computer vision appli-
cations can be found in the longer version 

of this manuscript [3]). However, this information should be 
fused for path planning and decision making, for example, to 
be able to associate different signs and lights to a particular 
lane in the road. Nonetheless, such fusion is still a challenging 
task, and using predefined maps can mitigate this problem to 
some extent in a practical scenario and increases association 
accuracy. Localization and mapping systems provide a map of 
the environment surrounding the AV and determine the cur-
rent state (i.e., position and orientation) of the AV with respect 
to this detailed map.

Given the mapping of the environment and the AV’s cur-
rent state, the decision system makes decisions on what actions 
to be taken to optimally reach a goal; that is, the system is 
responsible for generating route proposals, motion planning 
for each of those routes, evaluating compliance with passen-
ger preferences and the law [4], calculating safety probabilities 
of each proposed trajectory, and making decisions on which 
trajectory to select. The control system acts upon these deci-
sions and controls the vehicle, generating appropriate com-
mands and ensuring that the proposed trajectory is followed. 
There remain several challenges regarding the interaction of 
these two parts. In particular, the decision-control system 
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FIGURE 1. The general architecture of an autonomous driving system, which is composed of the two main components of perception and decision 
making. The perception system typically consists of a set of machine learning algorithms and provides a semantic understanding of the world around 
the vehicle. The perception system can be negatively affected by different types of intrusion algorithms, commonly referred to as adversarial attacks. 
The perception system (and especially the sensing the world module) is the first step between the outside world and the autonomous driving system; 
therefore, any incorrect conclusions from the perception system, due to adversarial attacks, will propagate to later components, leading to potentially 
fatal decisions being made. The decision-making component of an AV is composed of motion planning, decision making, and control. These modules are 
responsible to identify the best path for the vehicle and to actuate the car toward that.

Perception includes all of 
the hardware and software 
attempting to find the 
current state of the AV 
system with respect to its 
surrounding environment.
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should reevaluate the possible risks in different situations 
constantly and predict the intentions of human drivers around 
the vehicle. Effectively estimating uncertainty is very impor-
tant; however, understanding human driver intention is still 
not a common practice in the field and is usually relaxed in 
the problem formulation.

A more granular description of the five components of an 
autonomous driving system is as follows:
1) Sensing the world: consists of various sensors and algo-

rithms processing the available data and provides a seman-
tic scene understanding [5].

2) Localization and mapping: computes the AV pose (loca-
tion and orientation) with respect to the surrounding envi-
ronment, which is frequently addressed via simultaneous 
localization and mapping techniques [6], 
well known in robotics and offline pre-
mapping.

3) Motion planning: provides different tra-
jectories as sequences of states, given the 
environment information, initial states, 
and the final goal [7].

4) Decision making: selects the optimal tra-
jectory while considering such other fac-
tors as safety, compliance, and so forth [8].

5) Control: actuates components and ensures that the AV fol-
lows the selected path [8].

The preceding modular structure requires harmonizing 
all components together, training all components together, 
and reducing the propagation of erroneous decision mak-
ing from level to level. As a result of these limitations, end-
to-end autonomous driving systems have been proposed, 
in which the components are learned as a single system. 
For example, Bojarski et al. [9] proposed PilotNet, a deep 
convolutional neural network (CNN)-based framework that 
takes visual data from cameras as sensory input and delivers 
a simple autonomous system for lane following by output-
ting steering angles based on a fully end-to-end approach. 
Caltagirone et al. [10] used a fully convolutional network to 
generate path proposals from lidar sensory data, a partial 
end-to-end paradigm.

Whether fully end to end, partial, or broken into classical 
components, deep learning methods are now at the heart of 
essentially all AV technologies. Although deep neural network 
(DNN) models provide the state-of-the-art performance in 
most scene-understanding algorithmic tasks, the robustness 
of neural network models has become a major concern in the 
research community. In the context of AV systems, extreme 
weather conditions and possible intrusion attacks by adversar-
ies are two key situations where these models may be particu-
larly vulnerable.

As seen in Figure 1, incorrect scene understanding by the 
sensing the world module, the first module in the sequence, can 
propagate wrong information through the pipeline of consecu-
tive modules and end up with an incorrect decision, possibly a 
fatal outcome. False information may be generated for a vari-
ety of reasons, such as severe weather conditions, complicated 

urban scenarios, and intrusion by adversaries, raising major 
concerns on the safety and security of DNN models.

In this article, we study how adversarial attacks can upend 
the claimed or assessed robustness of DNNs, specifically in the 
application to AVs. We mainly discuss how these attacks can 
impose danger to AV perception and can propagate through 
the entire pipeline. We analyze the existing mechanisms to 
address these issues and describe the best practices to improve 
AV systems.

Robustness challenges in autonomous 
driving systems
In this section, we describe two main factors that can influ-
ence the robustness of machine learning models specifically for 

autonomous driving applications. Although 
several different criteria can affect the ro-
bustness of a machine learning model, here 
we focus on adverse conditions and adver-
sarial attacks as prominent factors. Autono-
mous navigation requires an understand-
ing of the environment around the car, and 
machine learning models play an important 
role in fulfilling this task. In particular, these 
models need to perform perfectly in differ-

ent environments and scenarios, a degree of generalization that 
will be an important factor in reliable autonomous systems.

Wide variations and adverse conditions
Generalization can be defined as the ability of a trained 
model to deal with samples that were not seen during train-
ing. In contrast to generalization, models can also be subject 
to overfitting, whereby a model essentially memorizes the 
training samples and indeed performs with high accuracy on 
that training data but providing poor performance on unseen 
testing data. To measure the generalization of a model, the 
generalization error is defined as the difference between the 
expected and empirical errors. The empirical error is defined 
as the model error on the available sample data, whereas the 
expected error measures how the model can perform over 
variation of the data based on their true (but normally un-
known) underlying distribution. The available test set should 
be large enough to be able to calculate a reliable empirical 
error to quantify model generalization.

Understanding generalization is key in autonomous driving 
systems because of the safety-critical aspects of these systems. 
A generalized autonomous system should perform reliably in 
a wide variety of different conditions and variations, particu-
larly challenging in autonomous driving applications due to the 
extremely stochastic environments around the vehicle, which 
can cause a distribution drift. For example, an AV trained in 
one country and tested in another one will face inputs that did 
not exist in training.

Generalization and robustness issues have certainly been 
studied for different applications. Visual domain adaptation 
and generative adversarial networks (GANs) are two differ-
ent techniques proposed to improve model generalization. 

The decision-control 
system should reevaluate 
the possible risks in 
different situations 
constantly and predict 
the intentions of human 
drivers around the vehicle.



25IEEE SIGNAL PROCESSING MAGAZINE   |   January 2021   |

Tzeng et al. [11] took advantage of GAN methods to gener-
ate new samples, and they used discriminative modeling and 
weight sharing to improve the domain adaptation on differ-
ent classification tasks. Yang et al. [12] proposed a method 
to keep the generalization ability of an autonomous driving 
system by mapping real data into a unified domain and to 
make decisions on the virtual data.

Any autonomous driving system needs to be functional in 
real-world contexts and outdoor environments, performing 
reliably in different weather conditions or different lighting 
situations. A first simple but important situation is the system 
performance at nighttime, particularly the functionality of 
vision-based models. Taking advantage of lidar or far-infrared 
sensors and data fusion is one approach; 
however, there is a body of research [13] on 
directly improving the robustness of vision-
based models in dark environments.

Dai and Van Gool [13] proposed a new 
adaptation mechanism to address the seman-
tic segmentation problem at nighttime. They 
used twilight images as an intermediate step 
to adapt the models to darker environments 
before fine-tuning the model for nighttime 
scenes, a so-called gradual model adapta-
tion process.

The main issue in generalizing models 
to adverse conditions is the availability of training data to use 
in model learning. For example, thick fog is observable only 
during 0.01% of typical driving in North America; therefore, 
having enough samples for annotation and preparing training 
data are very challenging. As a result, generating synthetic 
data may be highly desirable. Sakaridis et al. [14] introduced 
a new approach to synthesize foggy driving scene data from 
clear-weather outdoor scenes; their results showed that using 
synthetic data helps the model to generalize better on foggy 
scenarios and leads to more robust predictions.

Although providing enough data with sufficiently varied/
adverse conditions is necessary, devising proper frameworks and 
methods to handle these conditions is crucial as well. Using lidar 
or far-infrared data might resolve nighttime scenarios; however, 
acquiring reliable lidar information might be challenging in 
severe conditions, such as rain, snow, or foggy situations. As a 
result, fusing information from different sources and sensors is a 
common approach. Several methods have focused on when and 
in which step such fusion should be performed. Methods can be 
divided into two main streams of early fusion [15], where the 
features extracted from each sensor are intertwined and knowl-
edge fusion is performed in an early stage of the network, versus 
late fusion [16], where each sensor datum is processed indepen-
dently and the results are combined at the end.

Intruding autonomous driving systems
Besides the natural challenges just discussed, unnatural factors 
may challenge autonomous driving systems as well. Essentially 
every software system is prone to some sort of intrusion, whether 
via physical access to the system or intrusions without any explicit 

interaction between intruder and physical system. For AV sys-
tems, it is the machine learning models that are our main concern 
in this article; because learned models understand the world based 
on sensory data, it is possible to intrude the system by providing 
deceiving sensory input that fools the machine learning models.

Adversarial attacks
Generally, attacks can be applied on any part of an intelligent 
system, such as on the training data (training-set poisoning), 
model output (model theft), and manipulated inputs (adversarial 
examples). Because careful model learning should avoid or limit 
the first two effects, it is the most likely attack, that of manipu-
lating sensor inputs as adversarial attacks, that will be our focus.

Adversarial examples are those input 
samples that can fool a trained model with 
a high confidence. In particular, those that 
reliably fool the trained model are, at the 
same time, only barely (or not at all) per-
ceptible to the human eye. 

In  an adversarial attack, the main goal 
is to find an input sample xl close to the 
true sample x that changes the prediction 
from conclusion ( )f xy =  to conclusion 

( ),y f x=l l  such that .y y! l  Ideally the dif-
ference between x and ,xl  the perturbation 
size, is very small, making the input per-

turbation close to imperceptible. Typically, the perturbation is 
measured using an l p  norm:

.x x p< <h = -l (1)

There are two types of adversarial attacks, white-box at-
tacks and black-box attacks [17]. In a white-box attack, the 
adversary has full access to the trained model and knowl-
edge regarding the model structure and parameters to allow 
for a fairly informed attack. In a black-box attack, the ad-
versarial method does not have access to the model, so the 
adversary has to query the target model to estimate those 
needed aspects of the model’s interior structure. The fast 
gradient sign method (FGSM) [18] and DeepFool [19] are 
two simple but well-known examples of white-box attacks. 
These two attacks fall into the class of first-order adversar-
ies, which use the gradients of the network loss function 
with respect to the input data to perturb input samples into 
adversarial examples.

Black-box attacks are more applicable in real-world sce-
narios and certainly more applicable in autonomous driving 
systems, because these systems are not accessible, in gen-
eral, to outsiders. Black-box attacks may be undertaken by 
ensemble-based approaches, which use multiple trained 
models and generate common adversarial examples, which 
are then validated on the target model. In other words, 
ensemble-based attacks generate adversarial samples using 
a white-box attack, and the samples are then used to attack 
the target model in black-box form, what is known as a 
transferable attack. A second black-box approach is that 

Any autonomous driving 
system needs to be 
functional in real-world 
contexts and outdoor 
environments, performing 
reliably in different 
weather conditions 
or different lighting 
situations. 
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of zeroth-order optimization [20], which tries to estimate 
the gradient and Hessian of the network function using the 
inputs and outputs of the model.

Another perspective is to divide adversarial methods 
into targeted and nontargeted attacks. A targeted approach 
tries to change the input in a way to have the model predict 
a particular specified (targeted) class label. For example, 
inducing the network to recognize a stop sign as a speed 
limit sign could be the outcome of this method. A nontar-
geted method manipulates a trained model to misclassify 
the input data without constraining the objective toward any 
specific class label.

Furthermore, for applications like object detection there 
are positive and negative classes, and adversarial samples are 
generated to either fool the model to not 
detect the object or to classify the object to 
a wrong class label. For example, a vision-
based autonomous driving system may mis-
classify a tree as a traffic sign (false positive) 
or may not classify a traffic sign at all (false 
negative). Table 1 summarizes the most well-
known adversarial attack algorithms.

Attacks are characterized based on whether they are white 
box or black box (that is, having access to model details or 
not), the number of network queries to be able to generate the 
perturbed input (attack frequency), and how they measure the 
amount of perturbation added to the input data. These charac-
teristics are described based on the most common approaches 
that these methods use; however, it is possible to extend these 
methods to change the characteristics as well. More details and 
the references to these methods can be found in the longer ver-
sion of this manuscript [3].

Defense mechanisms
In addition to the development of algorithms to challenge/at-
tack DNN models, a variety of defense mechanisms have been 
proposed to improve network robustness or mitigate the issue 
of facing adversarial perturbations. Model robustness against 
adversarial attacks can be addressed during training [18], most 
simply by augmenting the training set with adversarial exam-
ples. Goodfellow et al. [18] regularized the training of a DNN 
model by an adversarial objective function based on the fast 
gradient sign method:
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where ( )J $  is the training objective function. Given the uni-
versal approximator theorem, Goodfellow et al. argued that 
if adversarial examples are encoded in the training process, 
the model should learn those examples and become more 
robust in dealing with those (and hopefully other) examples. 
(The universal approximator theorem states that a neural 
network with at least one hidden layer can represent any 
function to an arbitrary degree of accuracy, assuming the 
hidden layer to have enough units.) That is, the model is con-
tinually supplied with adversarial examples, such that they 
essentially resist the current version of the model, applied 

in an iterative process to make the model 
progressively more robust. Although this 
technique does improve the robustness 
of DNNs, Moosavi-Dezfooli et  al. [19]
showed that there is still an effective and 
yet universal adversarial example to fool 
even such adversarially trained networks; 
nevertheless, this approach is still the 

most common in increasing DNN robustness.
The robustness of DNN models can also be improved by 

simply performing a preprocessing step on the input data. The 
adversarial attacks are usually generated as an additive pertur-
bation, almost noise [18], on the input data. The attack can be 
defended by heuristically removing input noise using any num-
ber of signal processing techniques, such as a moving average 
operator or taking advantage of compression methods [21] to 
remove high-frequency values.

Motivated by these ideas, Xie et  al. [22] illustrated that 
random resizing or random padding of input images reduces 
the effectiveness of adversarial attacks. At the same time, it 
is worth noting that these changes to the input data may also 
reduce the accuracy of the model. Goldblum et al. [23] pro-
posed a new distillation-based approach, which incorporates 
robust training of a student network. The proposed method fol-
lows a similar technique as adversarial training but in the con-
text of distillation, where a student network is sought to mimic 
the teacher’s outputs within an -e ball of training samples.

It is also possible to take advantage of postprocessing 
techniques to improve the network robustness. Using an 
ensemble of DNNs [24] allows decision making to be aggre-
gated across several models, improving robustness against 
adversarial attacks. This strategy can be combined with 
averaging [25] or noise perturbation [26] to make adversarial 
attacks more difficult. Table 2 summarizes the main tech-
niques to improve robustness of DNNs against adversarial 
attacks. These approaches can be performed in preprocess-
ing, during training, in postprocessing, or even by changing 
the network architecture.

Adversarial attacks for autonomous driving systems
Autonomous driving systems are among the pioneering fields 
in advancing machine learning and deep learning techniques, 

Table 1. The summary characteristics of common adversarial attacks.

Method 
White Box/
Black Box

Targeted/
Nontargeted

Attack 
Frequency Measurement 

FGSM White box Nontargeted One time Elementwise 
DeepFool White box Nontargeted Iterative l p  
C&W White box Targeted Iterative , ,l l l1 2 3  
PGD White box Both Iterative l3  
ZOO Black box Both Iterative l2

One pixel Black box Both Iterative l0

C&W: Carlini & Wagner; PGD: projected gradient descent; ZOO: zeroth-order 
optimization.

The main issue in 
generalizing models to 
adverse conditions is the 
availability of training data 
to use in model learning.
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and complex deep learning networks are used in all phases 
from perception to decision making and control. As a result, 
the effect of adversarial attacks has been significantly investi-
gated for autonomous driving applications.

Chen et  al. [27] proposed a new approach to fool the 
well-known faster region-based CNN (R-CNN) object 
detection. They generated adversarial attacks that trick the 
model into not detecting stop signs in a scene. They took 
advantage of expectation over transformation [28], where a 
random noise is added in each iteration of the optimization 
to infer more robust adversarial perturbations. Lu et al. [29]
proposed an optimization method searching through differ-
ent sets of stop sign examples to craft new stop sign images 
that are not detectable by faster R-CNN or you-only-look-
once network architectures.

However, it has been argued [30] that designing adversarial 
perturbation for real systems, in practice, is harder than those 
analyzed in the literature and in laboratory environments. Lu 
et al. [30] explained that because object detection and decision 
making in autonomous driving cars are performed based on a 
sequence of frames, it is far more difficult to fool a model for 
all frames than for one frame.

To be sure, recent algorithms have been proposed to craft 
adversarial attacks in real environments. Eykholt et al. [31]
introduced robust physical perturbation methods that can 
generate perturbations under different physical conditions. 
Figure 2 demonstrates an example of this approach, where 
a physical perturbation is added to a stop sign, causing the 
model to misclassify the stop sign. They took several con-
ditions into account, including environmental constraints, 
spatial constraints, and physical limits on imperceptibility, 
while optimizing the perturbation noise. These conditions 
are incorporated into the loss function during the opti-
mization step. It is worth mentioning that these types of 
changes to traffic signs are usually considered as ordinary 
changes that typically do not bring up any suspicions for 

human inspectors. In other words, these types of pertur-
bations might not be noticeable to human inspection as 
viable intrusions.

Sitawarin et al. [32] proposed a new algorithm that modi-
fies logos and advertisements such that the deep learning 
model detects them as different traffic signs in a scene. Fig-
ure 3 shows an example of this scenario. The refinement on the 
advertisement logo can fool the targeted model to classify the 
image as a bicycle crossing sign.

Although most of the research in the literature has focused 
on DNNs taking red, green, blue (RGB) images as input, these 
issues are not RGB specific. Recently, Cao et al. [33] analyzed 
the vulnerability of lidar-based methods in autonomous driv-
ing systems. They proposed an optimization-based approach 
to generate real-world adversarial objects, evading the lidar-
based detection framework, generating 3D objects that can 
fool the network and be invisible to detection.

(a) (b)

FIGURE 2. An example of a physical perturbation designed to fool a DNN 
model to misclassify a stop sign. (a) Adding these types of perturbations 
may not often draw a human’s attention because they may be assumed 
to be regular artifacts on the traffic sign. (b) This image demonstrates a 
physical attack that would cause the model to misclassify the stop sign. 
The example is extracted directly from [31].

(a) (b)

FIGURE 3. An example of the adversarial attack proposed by [32], where 
logos and advertisements are modified to cause a wrong interpretation 
by the DNN model. (a) An advertisement logo and (b) the modified logo 
designed to cause a perception model to recognize it as a bicycle cross-
ing sign. The example is extracted from [32].

Table 2. The different defense mechanisms to improve the robustness 
of DNN models against adversarial attacks.

Method Procedure Description 
Random resizing/ 
random padding 
[21]

Preprocessing Changing the size of the input 
image before passing to the 
network. 

Adversarial train-
ing [17] 

Training Adding targeted perturbed 
samples to the training data. 

Compression 
[20] 

Preprocessing Compressing and decompress-
ing the input samples before 
passing to the network. 

Distillation [22] Training/ 
postprocessing 

Training a student network 
given the original (teacher) 
network. 

Ensemble [23] Postprocessing Aggregating the decision of 
several networks to mitigate 
the effect of adversary. 

Noise  perturbation 
[25] 

Architectural 
change/training

Adding auxiliary noise modules 
in the network to neuter the effect 
of adversarial perturbation. 
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Best practices toward robust autonomous driving
In the previous section, we discussed the factors and issues in-
fluencing the robustness of an autonomous driving system. In 
this section, we will discuss the best practices to achieve more 
reliable systems for autonomous driving applications.

The key part of an autonomous driving system that might 
challenge the robustness of the system is machine learning 
models working to navigate the car. As a result, these mod-
els should be evaluated thoroughly before any deployment. 
Although the robustness evaluation of each model individually 
is a first step, the robustness of these mod-
els must also be evaluated in a combined, 
closed-loop framework before deploy-
ment, as evaluated by Tuncali et  al. [34]. 
The proposed framework is a simulated 
environment that tries to identify problem-
atic test scenarios by a falsification meth-
od. The  proposed simulated environment 
is composed of four different parts: 1) the 
perception system (the machine learning 
model to be examined), 2) the controller, 
3) the vehicle and the environment, and 
4) the renderer. The controller takes the 
detection information from the machine learning model and 
object class information and then estimates the actual posi-
tions of the objects (e.g., pedestrians or vehicles). The role 
of vehicle and environment modeling and the renderer is to 
generate driving scenarios, improving testing and making it 
closer to real-world situations without deployment.

Generating test cases leveraging real-world changes in 
driving conditions like rain, fog, snow, and lighting condi-
tions are important in the evaluation of autonomous driv-
ing systems. Having the capability of generating real-world 
conditions would help to identify cases that lead to prob-
lematic behavior by the autonomous system. This approach 
decreases the need for manual testing of rare-case scenarios 
to some extent. To this end, Tian et al. [35] proposed DeepT-
est, an automated approach to generate samples subject to a 
wide variety of environmental conditions to detect erroneous 
behaviors of DNN models. The proposed framework uses lin-
ear and convolutional transformations to change the bright-
ness or contrast or add fogginess or rain into real images. 
The idea is that autonomous driving systems should behave 
similarly for specific scenes with these types of variations; 
for example, that the steering angle (determined by a learned 
network) should not change significantly for a given scene but 
with different lighting or weather conditions applied. This 
testing approach can help to pinpoint corner cases of incon-
sistent system behavior.

There are several research studies examining the effective-
ness of simulated data in improving the accuracy and robust-
ness of perception models in autonomous driving. Ros et al. 
[36] introduced SYNTHIA, a synthetic data set of urban 
scenes to improve the performance of semantic segmentation 
models in autonomous applications. Their experimental results 
demonstrated that using synthetic data in conjunction with 

real-world data can boost the average per-class accuracy. This 
improvement is significant in classes having limited data set 
instances, such as pedestrians, cars, and cyclists. Furthermore, 
it has been stated by different autonomous driving groups, such 
as Waymo, that taking advantage of simulated driving systems 
improves the accuracy and performance of models in real-
world scenarios and in public roads.

Simulated environments are important in finding corner 
cases effectively and resolving them by providing better train-
ing data or more effective learning. However, it is also impor-

tant to improve the intrinsic robustness of 
machine learning algorithms. One of the 
main issues with deep learning models is 
that they are fairly deterministic, and fur-
thermore, there is a lack of measuring the 
uncertainty in the decision-making process, 
making it easy to estimate and predict a 
network’s decision making and making net-
works vulnerable to attack.

There have been improvements in DNN 
models to provide uncertainty while mak-
ing predictions [37]. Model uncertainty 
measures a DNN’s confidence associated 

with a prediction; for example, an AV DNN system could be 
exposed to test data that have a different distribution from 
that of the training data (for example, trained on urban data 
and tested in highway environments) and would ideally be 
expected to be uncertain in their predictions [38], where 
uncertainties may be aleatoric (data dependent) or epistemic 
(model dependent) [4]. Unfamiliar test data distributions, 
as a result of either insufficient original training data or a 
distributional shift, are common examples causing model 
uncertainty [39].

Gal [40] argued that softmax outputs in a DNN classifier 
should not be interpreted as its prediction confidence. They 
experimentally showed that for out-of-distribution test sam-
ples, a model can have high softmax outputs at times when 
predictions should be highly uncertain. Moreover, Gal and 
Ghahramani [37] illustrated that by using stochastic regular-
ization techniques, DNNs can be viewed as Bayesian approxi-
mators of Gaussian process. Using this Bayesian deep learning 
(BDL) view, one can easily estimate a model’s confidence 
without needing to change its architecture.

For end-to-end autonomous systems in which a DNN 
takes raw sensory data as input and maps them to control-
ling commands (e.g., steering, braking, acceleration, and so 
forth), finding model uncertainties is a simple procedure. 
Michelmore et  al. [38] proposed to add dropout layers to 
Nvidia’s PilotNet (i.e., an end-to-end self-driving car sys-
tem) as a stochastic regularizer in the training step. How-
ever, they were also used at test time to extract the model 
confidence by computing the model output multiple times 
for each input image.

Figure 4 shows an illustration of two different end-to-
end autonomous systems with and without model uncertainty. 
Bayesian DNNs can be substituted to provide uncertainty in 

Generating test cases 
leveraging real-world 
changes in driving 
conditions like rain,  
fog, snow, and  
lighting conditions  
are important in the 
evaluation of autonomous 
driving systems.
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the decision-making process. As seen in 
Figure 4, by incorporating uncertainty in the 
decision-making process and taking advan-
tage of probabilistic approaches, the system 
can provide more reliable predictions, better 
decision making, and safer actions.

However, in a modularized autonomous 
architecture, where the system is organized 
as a pipeline of subsystems, evaluating 
model uncertainties is a much bigger challenge than that of 
end-to-end architectures. McAllister et  al. [4] stated that to 
prevent errors generated in perception subsystems to not prop-
agate through the rest of the pipeline and affect the entire deci-
sion-making process, all of the subsystems should be equipped 
with BDL tools to allow uncertainty distributions to be taken 
into and propagated by each subsystem.

Conclusions
Autonomous driving offers potentially major advantages to 
society, such as reducing injury and gasoline usage while 
also decreasing insurance costs. The past few years have 
witnessed remarkably significant progress toward fully au-
tomated vehicles being present on public roads. However, 
there do still remain concerns regarding the reliability of the 
computer vision and data analysis models operating within 
AVs and, even more significantly, their robustness in differ-
ent situations. In this article, we examined the robustness of 
autonomous systems, focusing on proper functioning in ad-
verse conditions/environments and in the presence of intru-
sions and adversarial attacks. Practical solutions to mitigate 
these issues and to improve the robustness of these models 
were discussed, ranging from extending data sets by simu-
lated data, simulated evaluation environments to uncover 

corner cases, and new techniques to better 
calculate the uncertainty of such models 
in decision making, all strategies that can 
help to improve the performance of mod-
els in real-world applications.

The tremendous success of autono-
mous driving has opened a vast range 
of opportunities for researchers across a 
wide range of domains but also for mem-

bers of society beginning to imagine a different future. This 
excitement has led to raised expectations and optimistic 
timelines about how soon such vehicles might be expected; 
however, for reasons of safety and engineering ethics, it is 
essential to fully understand the robustness and reliability of 
the designed systems.
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include adversarial machine learning, continual learning, and 
video object segmentation.
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T he interest in autonomous driving has continuously in-
creased in the last two decades. However, to be adopted, 
such critical systems need to be safe. Concerning the per-

ception of the ego–vehicle environment, the literature has investi-
gated two different types of methods. On the one hand, traditional 
analytical methods generally rely on handcrafted designs and fea-
tures while on the other hand, learning methods aim at designing 
their own appropriate representation of the observed scene.

Analytical methods have demonstrated their usefulness for 
several tasks, including keypoints detection [1], [2], optical 
flow, depth map estimation, background subtraction, geomet-
ric shape detection, tracking, and simultaneous localization and 
mapping (SLAM) [3]. Those methods have the advantage of 
being easily explainable. However, it is difficult to apply them 
to high-dimensional data for semantic scene analysis. For exam-
ple, identifying the other road users or understanding the large 
variety of situations present in an urban scene requires extract-
ing complex patterns from high-dimensional data captured by 
camera sensors.

Learning methods are now the most adapted in terms of pre-
diction performances for complex pattern-recognition tasks [4] 
implied in autonomous vehicles scene analysis and understand-
ing. However, state-of-the-art results are often obtained with 
large and fully labeled training data sets [5]. Hand labeling a 
large data set for a given specific application has a cost. Another 
difficulty is apprehending the learned representations from end 
to end. To overcome the former limitation, transfer learning and 
weakly supervised learning methods have been proposed. Some 
of them can exploit partially labeled [6], [7] or noisy labeled data 
sets [8], [9]. Concerning the latter problem, under mild theoreti-
cal assumptions on the learning model, we can interpret the pre-
dicted outputs. For instance, it is possible to automatically detect 
overfitting of the training [10], to estimate the fraction of misla-
beled examples [11], or to estimate the uncertainty in the predic-
tion outputs [12].

In addition to the difficulty of obtaining a large labeled 
training data set, another challenge for learning methods is 
to prevent unpredictable events. Indeed, some scenes unseen 
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during training can appear frequently in 
the context of the autonomous vehicle. For 
instance, an accident on the road can drasti-
cally change the appearance and location of 
potential obstacles. Thus, even if it is pos-
sible to predict when the model does not 
know what it observes, it may be interest-
ing to confirm it through an analytical pro-
cess and to adapt the learning model to this 
novel situation.

It turns out that self-supervised learning 
(SSL) methods, consisting of combined analytical and learning 
techniques, have been shown in the literature to have the abil-
ity to address such issues. For instance, the SSL system in [13]
won the 2005 DARPA Grand Challenge thanks to its adapt-
ability to changing environments. SSL for autonomous driving 
vehicles perception is most often based on learning from data 
that is automatically labeled by an upstream method, similar to 
feature learning in [14]. In this article, we address the following 
aspects of SSL.
■ Abilities such as sequential environment adaptation on the 

application time, referred to as online learning, self-super-
vised evaluation, unnecessity of hand-labeled data, foster-
ing of multimodal techniques [13], and self-improvement 
are included. For example, iterative learning progressively 
reduces the corrupted predictions [15].

■ We also address tasks made possible thanks to those 
advantages, such as depth map estimation [15], [16], 
temporal predictions [17], moving obstacles analysis 
[18], and long-range vision [13], [19]. For example, the 
SSL system in [19] learns to extrapolate the appear-
ance of obstacles and traversable areas observable by 
stereo vision in a short range and to identify them at a 
longer distance beyond the detection range of the ste-
reo vision.
While the cited SSL techniques are designed for specific 

use case applications, they present some similarities. In par-
ticular, a shared underlying idea is to learn to predict, from 
given spatiotemporal information (e.g., a single camera frame 
[13], [16], [19], [21], [22]), something (e.g., traversable area seg-
mentation [13], [19], depth estimation [16], or moving obstacles 
segmentation [21], [22]) that can be automatically labeled in 
another way using additional spatiotemporal information (e.g., 

a stereo-vision camera [16], [19], temporal 
sequence [23], or depth sensor [13]).

We propose to highlight those interde-
pendencies. In this way, we aim to provide 
readers with some analytical, learning, and 
hybrid tools that are transversal to the final 
application use cases. In addition, the limi-
tations of the presented frameworks are dis-
cussed and highlighted in Table 1, as well 
as the perspectives of improvement for self-
evaluation, self-improvement, and self-adap-

tation, to address future autonomous driving challenges.

Analytical methods
Before the recent growing interest in deep learning methods, many 
analytical methods (without learning) were proposed, bringing 
baseline reference tools for multiple challenging perception tasks 
in the context of autonomous driving. Some of the most investi-
gated tasks considered in this article are briefly introduced.
■ Keypoints feature detection: Before analyzing the sensor 

data from a relatively high level, analytical techniques 
often require performing spatial or temporal data matching 
using feature-detection methods. More specifically, these 
methods consist of detecting and extracting local features 
in the sensor data. These handcrafted features can be small 
regions of interest [24]. To enable the matching of sensor 
data, captured from the same scene with different spatial 
or temporal points of view, such features need to be as 
invariant as possible to scale, translation, and rotation 
transformations. The most common sensor data is an 
image captured by a camera. In this case, competitive fea-
ture detectors include scale-invariant feature transform 
(SIFT) [1], speeded-up robust features [25], and oriented 
fast and rotated brief [26]. When a depth sensor is also 
available, the depth information can be exploited to further 
improve feature detection. For instance, the tridimensional 
rotational invariant surface keypoints method [2] is specifi-
cally designed for red-green-blue-depth (RGB-D) images. 
More recently, lidar has enabled the acquisition of point 
clouds. To tackle this new form of sensor data, some fea-
ture-detection techniques are derived from image ones 
(e.g., Harris and SIFT). Alternatively, some new approach-
es such as intrinsic shape signatures [27] are exclusively 

designed for point clouds. From a practi-
cal point of view, implementing common 
image feature detectors can be found in 
image libraries as OpenCV [28] and in 
point clouds libraries as PCL [29]. 
Feature detectors are exploited by several 
autonomous driving perception tech-
niques that require matching of sensor 
data, including optical flow, disparity 
map, visual odometry, SLAM, and track-
ing techniques.

■ Optical flow: This dense [30] or sparse 
[31] motion pattern can be obtained by 

Table 1. A comparison of state-of-the-art analytical, learning, and SSL methods for 
autonomous vehicle perception challenges. 

Methodology 
No Hand 
Labeling

Dense 
Complex 
Pattern 
Analysis

Online Self-
Evaluation and 
Adaptation

Knowledge  
Extrapolation

Low-Cost  
Sensor  
Requirements

Analytical +++ + ++ + + 
Supervised learning + +++ + + +++ 
SSL +++ ++ +++ +++ ++ 

+: inappropriate; ++: intermediary; +++: appropriate.

It turns out that self-
supervised learning 
methods, consisting of 
combined analytical and 
learning techniques, have 
been shown in the literature 
to have the ability to 
address such issues.
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computing points or features transformations throughout a 
temporal images sequence captured from a static or mobile 
ego–camera point of view. In the context of autonomous 
driving perception, optical flow is relevant for background 
subtraction and motion estimation of the ego–vehicle and 
surrounding moving obstacles, as proposed by Menze and 
Geiger [32]. It can also be exploited, as in the case of a 
monocular mobile camera without any additional informa-
tion, for relative depth map estimation [33] of the surround-
ing static environment.

■ Depth map estimation: This task aims at providing image 
pixel depths, namely the relative or absolute distance 
between the camera and captured objects. Several tech-
niques exist to address this undertaking. One of the most 
common and effective approaches is to 
compute a disparity map from a stereo 
camera. Combined with the extrinsic 
camera parameters, such as the baseline 
distance separating both cameras, the 
disparity map can be converted into an 
inversely proportional absolute depth 
map. Another approach is to project 
lidar points on some of the camera 
image pixels. It also requires extrinsic spatial and temporal 
calibrations between both sensors. As mentioned previous-
ly, a relative depth map of a static scene can also be derived 
from the optical flow obtained with a moving camera. 
Under some assumptions, such as with additional accurate 
GPS and IMU sensors, information concerning the abso-
lute pose transformations of the moving camera, the abso-
lute depth map can then be obtained. The depth map can 
also be directly obtained with some RGB-D sensor and is 
interesting for identifying the 3D shape of objects in the 
scene. More specifically, in autonomous driving, an abso-
lute depth map is relevant for estimating the distance 
between the ego–vehicle and detected obstacles. However, 
we should note that absolute depth map estimation is more 
challenging compared to a relative depth map, as at least 
two jointly calibrated sensors are necessary. Consequently, 
it implies a relatively higher financial cost in production. 
Moreover, extrinsic calibrations can be sensitive to the 
ego–vehicle physical shocks. Finally, such sensor fusions 
can only offer depth estimation in a limited range, due to 
fixed baselines with stereo cameras or sparse point cloud 
projections with dispersive lidar sensors. Nevertheless, a 
relative depth map is sometimes sufficient to detect obsta-
cles and traversable areas. For example, considering the 
traversable area as a set of planes in the depth map 3D 
point cloud projection, some template-matching techniques 
can be used [19].

■ Geometric shape detection: Techniques such as Hough 
transform and random sample consensus (RANSAC) [34]
were initially aimed at identifying some basic geometric 
shapes such as lines for lane marking detection, ellipses for 
traffic lights detection, or planes for road segmentation. To 
deal with sophisticated template-matching tasks, tech-

niques such as the Hough transform have been generalized 
for arbitrary shape detection [35]. Nonetheless, these tech-
niques require an exact model definition of the shapes to be 
detected. Consequently, they are sensitive to noisy data and 
are impractical for detecting complex and varying shapes 
such as obstacles encountered in the context of autono-
mous driving. Indeed, such objects typically suffer from 
outdoor illumination changes, background clutter, or non-
rigid transformations.

■ Motion tracking: This technique aims at following some 
data points, features, or objects through time. Tracking fil-
ters such as the extended Kalman filter (EKF) predict the 
next motion using prior motion knowledge. Conversely, 
object tracking can be achieved by features or template 

matching between consecutive video frames. 
Pixel points and features tracking is relevant 
for dense or sparse optical flow, as well as 
visual odometry estimation [36]. Conversely, 
obstacle object tracking is very important in 
autonomous driving for modeling or antici-
pating their trajectories into the ego–vehicle 
environment. However, on the whole, while 
some techniques integrate uncertainty, they 

remain limited when managing complex real motion pat-
terns. Predicting pedestrian and driver behaviors typically 
requires knowledge of their context. Moreover, mobile 
obstacles’ appearances can drastically change depending on 
their orientation.

■ SLAM techniques: The complementarity between the con-
cepts mentioned has been demonstrated through the prob-
lem of simultaneously localizing the ego–vehicle and 
mapping the surrounding environment (SLAM) [3]. 
Features matching provides the pose transformations of the 
moving ego–vehicle. In turn, 3D scaled projections of 
depth maps combined with the successive estimated poses 
provide the environment mapping. Tracking filters and 
template matching may offer some robustness against 
sensor data noise and drifting localization estimation, as 
proposed in the EKF SLAM [37] and SLAM++ [38] ap -
proaches, respectively.
To summarize, analytical methods can successfully 

handle several perception tasks of significant interest in 
the context of autonomous driving. In particular, a self-
driving vehicle embedding these techniques is able to carry 
out physical analysis such as the 3D reconstruction mod-
eling of the environment, as well as dynamic estimations 
concerning the ego–vehicle and the encountered surround-
ing mobile obstacles. Moreover, these techniques have the 
advantage of being easily explainable in terms of design. 
This facilitates the identification and prevention of failure 
modes. However, some critical limitations persist, including 
the following issues.
■ A lack of landmarks and salient features combined with 

the presence of dynamic obstacles may entail a severe deg-
radation of feature detection and matching.

■ Severe noisy sensor data induces the same risks.

In autonomous driving,  
an absolute depth map  
is relevant for estimating  
the distance between  
the ego–vehicle and 
detected obstacles.



34 IEEE SIGNAL PROCESSING MAGAZINE   |   January 2021   |

■ It is impossible to achieve dense real-time semantic scene 
analysis of environments including a wide range of com-
plex shape patterns.

By recognizing and predicting complex patterns with gener-
alization abilities, learning methods aim at overcoming such 
issues, as developed in the next section.

Learning methods
Learning methods have demonstrated state-of-the-art predic-
tion performances for semantic analysis tasks in the last de-
cade. Autonomous driving is a key application that can greatly 
benefit from these recent developments. For instance, learn-
ing methods have been investigated in this context, for iden-
tifying the observed scene context using classification, for 
detecting the other road users surrounding the ego–vehicle, 
for delineating the traversable area surface, or for dynamic 
obstacle tracking.
■ Classification: This learning method aims at predicting, for 

a given input sensor sample, an output class label. To deal 
with high-dimensional data containing 
complex patterns, the first stage is gener-
ally to extract relevant features using 
handcrafted filters or learned feature 
extractors. For image feature extraction, 
the state-of-the-art techniques use convo-
lutional neural network (CNN) architec-
tures composed of a superposition of 
consecutive layers of trainable convolu-
tional filters. Then, a second stage is to apply a learning 
classifier on the feature maps generated as output of these 
filters. Some commonly used classifiers are the support vec-
tor machine (SVM) and the multilayer perceptron (MLP). 
Both require training that is usually performed in a fully 
supervised way on labeled data. The CNN and MLP deep 
learning models are trained by backpropagating the output 
prediction error on the trainable weights up to the input. 
Concerning the evaluation of these models, a test data set is 
required, which is labeled as well. The accuracy metric is 
commonly used to evaluate the prediction performances, 
while the F1 score, a harmonic mean of the precision and 
recall, is relevant for information retrieval. An image-classi-
fication application example in autonomous driving is for 
categorizing the context of the driven road [39].

■ Detection: Generally, this learning method localizes the 
regions of interest in a visual sensor data, which in turn can 
be classified. A commonly used strategy, invariant to scales 
and translations, applies an image classifier on sliding win-
dows over an image pyramid. Then, several advanced com-
petitive image-detection techniques, such as region proposal 
networks [40] or Yolo [41], have been developed more 
recently and have been adapted for road users detection [39].

■ Segmentation: As its name suggests, this task provides a 
segmentation of visual sensor data. The following three 
distinct applications can be considered.
• Semantic segmentation assigns a semantic class label to 

each pixel. An example is road segmentation [39]. 

State-of-the-art methods for autonomous vehicle per-
ception can exploit an autoencoder architecture, but 
also dilated or atrous convolutions, as well as an image 
context modeling strategy as reviewed in [42]. In the 
context of image segmentation, these models are trained 
to predict as output a pixel-wise classification of the 
input image.

• Instance segmentation aims at detecting and segmenting 
each object instance. Examples include foreground seg-
mentation and object detection of potentially moving 
obstacles [43].

• Panoptic segmentation [4] is a unification of the two 
previously mentioned segmentation tasks.

Some models dealing with these segmentation tasks have been 
adapted for performing per-pixel regression tasks such as dense 
optical flow estimation [44] or depth map estimation [45].
■ Temporal object tracking: This task follows the spatial loca-

tion of selected objects along a temporal data sequence. 
State-of-the-art learning techniques use variants of the 

recurrent neural network (RNN) model [46]. 
Compared to standard filtering techniques, 
RNNs have the ability to learn complex and 
relatively long-term temporal patterns in the 
context of autonomous driving.

These methods can be combined in a 
unified framework, for instance by shar-
ing the same encoded latent feature maps, 
as proposed in MultiNet [39] for joint 

real-time scene classification, vehicle detection, and road 
segmentation. While demonstrating competitive prediction 
performances, the mentioned learning techniques are fully 
supervised. In other words, they have the limitation to require 
large-scale fully annotated training data sets in common. To 
alleviate this issue, the following other learning strategies 
have been investigated.

• Weakly supervised learning: These techniques can be 
trained with a partially labeled data set [6] and even-
tually with a fraction of corrupted labels [8], [9]. 
Advantageously, these approaches drastically reduce 
the need for labeled data.

• Clustering: These approaches can be defined as an unla-
beled classification strategy that aims to gather the data 
depending on their similarities without supervision. A 
huge advantage is that no labels are required. However, if 
it is necessary to associate the resulting clusters with 
semantic meanings understandable by humans, then a 
final step of punctual per-cluster hand labeling is required. 
State-of-the-art methods [47] dealing with complex real 
images mix trainable feature extractors with standard 
clustering methods such as a Gaussian mixture model 
(GMM) [48].

• Pretraining: Some relevant generic visual feature extrac-
tors can be obtained by performing a preliminary pre-
training of the CNN model on unlabeled or labeled data 
coming from the target application domain [19] or even 
from a different one [49].

Obstacle object tracking 
is very important in 
autonomous driving for 
modeling or anticipating 
their trajectories into the 
ego–vehicle environment.
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We also note that to apprehend the learned representations 
from end to end, it is possible to identify training overfitting 
[10] of deep learning models without validation test supervision. 
Furthermore, some learning approaches can estimate the prior 
of a noisy labeled training data set [11] or the model uncer-
tainty [12], [50].

Now that some considered analytical and learning methods 
have been treated separately, the next section shows the com-
plementarity between these two different types of approaches 
through several SSL systems developed in the context of the 
perception of the autonomous driving vehicle.

SSL autonomous driving applications
In the context of autonomous driving applications, we can or-
ganize the SSL perception techniques in two main categories:
1) High-level scene understanding includ-

ing road segmentation to discriminate 
the traversable path from obstacles to be 
avoided; dynamic obstacles detection 
and segmentation; and obstacles track-
ing and motion anticipation predictions.

2) Low-level sensor data analysis, with a 
particular focus on dense depth map 
estimation, which is potentially relevant 
input data information for dealing with the previously enu-
merated scene understanding challenges.

Scene understanding
To navigate safely, smoothly, or swiftly when it is required, 
a self-driving car must perform path planning adapted to the 
surrounding environment. The planned trajectories must pass 
through traversable areas, while ensuring that surrounding 
static and dynamic obstacles are avoided. For this purpose, it 
is necessary to detect and delineate these potential obstacles 
in advance, and also to anticipate future positions of the mo-
bile ones.

Traversable area segmentation
A traversable area can be identified by performing its segmentation 
over the mapped physical environment. Two different strategies 
have been successively applied. The former is mainly dedicated to 
off-road unknown terrain crossing. It entails fully self-supervised 
training systems (i.e., without hand-labeled data). The latter, which 
appeared more recently, is dedicated to urban road analysis. The 
main difference is that the SSL online systems are initialized with 
a supervised pretraining on hand-labeled data. This preliminary 
step aims at replacing the lack of landmarks on urban asphalt roads 
that have uniform textures, by prior knowledge.

SSL off-road systems
A road segmentation is proposed in [51] by exploiting temporal 
past information concerning the road’s appearance on monocu-
lar camera images. It considers the close observable area on the 
current monocular camera frame in front of the car as a travers-
able road. Next, it propagates optical flow on this area from the 
current frame up to the past captured frames. Then, it can deduce 

this close area’s appearance when it was spatially farther in the 
past. This past appearance of the actual close traversable area 
is exploited for producing horizontal line templates using the 
sum of squared differences matching measure. It is combined 
with a Hough transform-based horizon detector to define the 
image horizontal lines of pixels on which to apply the horizontal 
1D template matching. Next, with the assumption that the actual 
distant traversable area has roughly the same appearance as the 
actual close area had in the past, the 1D templates are applied 
over the current frame to segment the distant traversable area. 
If the best template-matching measure changes abruptly, then 
it is supposed that the ego–vehicle is going off the road or that 
the road’s appearance has suddenly and drastically changed. 
The approach in [51] is relevant for providing a long-range road 
image segmentation using a monocular camera only. However, 

a major issue is the critical assumption of 
considering the close area as always travers-
able. If the road aspect changes suddenly, 
then it is impossible with this SSL strategy 
to correctly segment this novel road region.

Another SSL road-segmentation ap -
proach is proposed in [13], dealing with this 
issue. Instead of using temporal informa-
tion with the assumption that the close area 

is always traversable, and in addition to the monocular cam-
era, a lidar sensor is used for detecting the obstacles close to 
the ego–vehicle. Projected on the camera images, lidar depth 
points enable automatically and sparsely labeling the close 
traversable area on images pixels. Then, a learning GMM is 
trained online to recognize the statistical appearance of these 
sparse analytically labeled pixels. Next, the trained model is 
applied on the camera pixels, which cannot benefit from the 
sparse lidar points projection, to classify them as road pixels 
or not. In this way, the vehicle can anticipate the far obstacles 
observable in the monocular camera images, but not in the dis-
persive lidar data. This SSL system enabled the Stanley self-
driving car, presented in Figure 1(a), to win the DARPA Grand 
Challenge [52] by smoothing the trajectories and increasing the 
vehicle speed thanks to the anticipation of distant obstacles. 
This highlighted the interest in combining multiple sensors in 
a self-driving car.

More recently, with the growing interest for deep learn-
ing methods, Hadsell et al. [19] propose to use a CNN classi-
fier model instead of the earlier template-matching or GMM 
learning techniques. Moreover, an additional paired camera 
(i.e., stereo camera) replaces the lidar sensor as in [13]. As 
off-road terrain traversable areas are not always completely 
flat, a multiground plane segmentation is performed in [19], 
on the short-range point cloud projection, obtained with the 
stereo-vision depth map by using a Hough transform plane 
detector. This technique provides several automatic labels for 
image patches that are observable in the short-range region. 
Then, addressing the long-range vision segmentation, the 
authors first train a classifier to predict patch labels auto-
matically estimated within the short-range region. Next, the 
trained classifier predicts the same labels on the long-range 

If the road aspect  
changes suddenly,  
then it is impossible  
with this SSL strategy to 
correctly segment this  
novel road region.
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observable image region patches by using a sliding window 
classification strategy. 

Concerning the prediction performances, the authors have 
demonstrated that the online fine tuning of the classifier and 
the offline pretraining of its convolutional layers using an unsu-
pervised autoencoder architecture can improve prediction per-
formances. Moreover, an interesting point to note is that instead 
of using uncertainty or noisy labeled learning techniques, the 
authors created transition class labels for the boundary image 
surfaces separating the obstacles from the traversable area. 
Finally, from an initial 11–12-m short-range stereo vision, the 
developed SSL system is able to extrapolate a long-range 
vision up to 50–100 m. Nonetheless, to estimate the short-range 
stereo 3D reconstruction, including planar sets of points corre-
sponding to the off-road traversable area, this approach requires 
the presence of salient visual features in the road regions. This 
may be impractical, for instance on the uniform visual texture 
of asphalt roads commonly encountered in urban scenarios, as 
illustrated in Figure 2.

Pretrained SSL urban road systems
Some other online SSL techniques deal with this issue by 
exploiting a classifier pretrained offline on hand-labeled 
data [53], [54]. The automatic labeling step previously per-
formed with analytical methods is replaced in [53] by an 
SVM classifier pretrained offline using a human annotated 
data set. In this way, this approach is also compatible with 
uniform asphalt road surfaces. However, compared to the 
previously presented SSL off-road approaches, it requires 
hand-labeled data.

A hybrid path-segmentation technique is proposed in 
[54]. It combines a 3D traversability cost map obtained 
by stereo vision and an SVM classifier pretrained offline 
over a human annotated data set. Six different ground sur-
faces are considered to train the classifier: asphalt, large 
gravel, small gravel, soil, grass, bushe,s and stones. The 
strategy is as follows. Online, SVM predictions refine 
the cost map concerning the flat regions. In turn, the 3D 
traversability cost map, obtained without supervision, is 
exploited to update some misclassifications of the pre-
trained classifier online.

To sum up these road-segmentation SSL approaches, we 
notice that while the sensor data and the analytical and learn-
ing models are different, the online process remains essen-
tially the same. The first stage always consists of generating 
automatic labels by using additional temporal [51], sensor [13], 
[19], or prior knowledge information [53], [54]. Then, a sec-
ond stage trains or updates an online classifier, such that it can 
be used to provide a long-range or refined road segmentation. 
Overall, while the short-range visions based on depth sensors 
aims at ensuring the reliable detection of close obstacles, using 
such SSL vision techniques in static environments directly 
enables anticipating the path-planning evolution at a long 
range. Consequently, it is possible to increase the maximum 
speed velocity of the self-driving car [13] while preserving 
smooth trajectories [19].

FIGURE 1. Three self-driving cars are shown: (a) the self-driving car Stan-
ley that won the DARPA Grand Challenge using an SSL system equipped 
with a calibrated monocular camera and a lidar sensor [13] (Source: 
Wikipedia); (b) the autonomous mobile robot LAGR, which integrates 
another SSL vision approach [19] able to identify online the obstacles and 
road segmentation from a short-range stereo vision up to a long-range 
monocular vision (Source: DARPA); and (c) the car equipped with the 
perception sensors used to generate the KITTI data set [20].

360° Velodyne Laser Scanner

Stereo Camera Rig GPS

Monochrome Color

(a)

(b)

(c)
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Now that we have presented some SSL techniques dealing 
with limited depth sensors in static environments, we focus on 
dynamic obstacles, as they represent the other potential road 
users interacting with the ego–vehicle in the shared surround-
ing environment.

Dynamic obstacles analysis
This section starts by presenting an SSL approach [21] based 
on a binary per-pixel segmentation of dynamic obstacles. 
Then, we introduce its extension [18] for dynamic obstacles 
instance segmentation, such that the differ-
ent road users can be separated.

SSL for dynamic obstacles pixel-wise segmentation
A pixel-level binary segmentation of dynamic 
obstacles is proposed in [21], using temporal 
image sequences captured with a monocular 
camera installed on a mobile urban vehicle. 
The approach firstly separates sparse dynamic keypoints fea-
tures from the static ones, by applying a RANSAC technique 
over the optical flow between consecutive frames. Then, the 
automatically produced per-pixel dynamic labels are trans-
ferred as input of a learning Gaussian process (GP) model. 
Next, the trained model extrapolates this knowledge to label 
as dynamic the pixels of the same visual properties instead of 
the ones previously automatically identified as dynamic. The 
whole process is achieved during an online procedure. The 
system is evaluated on a hand-labeled data set. This SSL strat-

egy has the advantage to provide the background subtraction 
from a moving camera, while extrapolating a dense per-pixel 
segmentation of the dynamic obstacles from sparse detected 
keypoints. However, this technique cannot provide per-obsta-
cles analysis as it merely predicts a binary mask of pixels cor-
responding to dynamic obstacles.

The technique in [18] extends the previous approach for 
SSL multi-instance segmentation by using temporal image 
sequences captured with a monocular camera installed on a 
mobile urban vehicle. The authors apply, over the mobile key-

points detected by [21], a clustering method 
using the tracked keypoints information 
such as their spatial location and motion 
pattern features. The multi-instance seg-
mentation of dynamic obstacles is evalu-
ated on a hand-labeled video sequence of 
the KITTI data set [20].

Overall, the authors state that some issues 
shared with analytical methods persist in their approach. If the 
dynamic obstacles shadows are projected on the background, 
then the latter are considered as dynamic as well. Moreover, 
the segmentation of distant dynamic obstacles can be missed 
if the corresponding keypoints variations are considered as 
noise due to the difficulty to detect the corresponding slight 
optical flow variations. Furthermore, if a dynamic obstacle, 
either large or close to the sensor, represents the majority of the 
image keypoints, then this given obstacle is likely to be treated 
as the static background scene.

FIGURE 2. Salient features location in an urban ego–vehicle environment. (a) An arbitrary frame, extracted from the KITTI data set [20], illustrating an 
urban, asphalt road with the surrounding environment. (b) Keypoints detected on the left input image using the SIFT detector. The distribution is dense in 
the off-road region and sparse on the asphalt road in the image center.

(a)

(b)

It is possible to increase the 
maximum speed velocity 
of the self-driving car 
while preserving smooth 
trajectories.



38 IEEE SIGNAL PROCESSING MAGAZINE   |   January 2021   |

Nonetheless, it is important to bear in mind that these 
approaches present state-of-the-art competitive performanc-
es for dynamic obstacles detection and segmentation without 
training or pretraining on annotated data. In addition, the 
method in [18] provides interesting tools to analyze on the 
move the dynamic obstacles, for example to separately track 
them and learn to predict their intention.

The next focus is on SSL techniques designed for object 
tracking and temporal predictions in urban road scene evolu-
tion, including dynamic obstacles.

Temporal tracking predictions
To deal with object appearance changes, a competitive SSL 
tracking technique [55] proposes an online adaptive strategy 
combining tracking, learning, and object detector real-time 
modules. However, in the context of autonomous driving, it 
may often be necessary to simultaneously 
track, and even anticipate, the trajectories of 
several surrounding road users. Moreover, 
being able to consider the interactions be-
tween each road user requires some complex 
motion pattern analysis.

It turns out that some SSL approaches 
propose to deal with this challenge by 
focusing the prediction effort on the entire 
scene in a unified way, rather than on every 
obstacle independently. The SSL deep tracking system [23]
learns to predict the future state of a 2D lidar occupancy grid. 
This is achieved by training an RNN on the latent space of a 
CNN autoencoder, which is applied on the input occupancy 
grid considered as an image. Such an approach could be cat-
egorized as unsupervised. However, in this article we make 
the choice to consider that exploiting an additional future tem-
poral information during the training, not available during the 
prediction step, is a type of self-supervision.

Each cell of the grid is represented by a pixel, which can 
be color-coded as occluded, void, or obstacle surface. Conse-
quently, the model can be trained from end to end by learn-
ing to predict the next occupancy grid states using the past 
and current conditions. Solely the prediction output error of 
nonoccluded cells is backpropagated during the training. By 
definition, this system can perform a self-evaluation by com-
puting a per-pixel photometric error between the predicted 
occupancy grid and the real future observed occupancy grid 
at the same temporal instant. This technique has the advan-
tage of being compatible with complex motion patterns 
compared to Bayesian and Kalman tracking techniques. In 
addition, the training process enables predicting the obstacle 
trajectories, even during occlusions. The major interest of 
deep tracking is that, as the model learns to predict a com-
plete scene, it naturally considers interactions between each 
dynamic obstacle present in the scene. In [17], the deep track-
ing model is extended for a real mobile lidar sensor by adding 
a spatial transformer module to take into consideration the 
displacements of the ego–vehicle with respect to its environ-
ment during object tracking.

In turn, these tracking approaches provide the tools to col-
lect motion pattern information of surrounding dynamic obsta-
cles, such that this information may help to classify obstacles 
depending on their dynamic properties [56].

Low-level sensor data analysis
This section addresses the sensor data analysis for low-level 
information estimation in the context of autonomous driving. 
Compared to the previous methods, the attention has mainly 
focused recently on SSL depth map estimation from monocu-
lar or stereo cameras.

SSL depth map estimation
The self-supervised depth map estimation approach presented 
in [16] predicts a depth map from a monocular camera without 
relying on annotated depth maps. The pose transformation be-

tween both left and right cameras is known. 
The SSL strategy is as follows. First, the 
left camera frame is provided as input to a 
CNN model trained from scratch to predict 
the corresponding depth map. Second, an 
inverse warping is performed by combining 
the predicted left depth map with the right 
camera frame to output a synthesized frame 
similar to the input left frame. In this way, 
an SSL photometric reconstruction error 

can be computed as output of the decoder part. Next, this per-
pixel error is directly used to train the encoder weights using 
the stochastic gradient descent optimization technique. While 
requiring neither pretraining nor annotated ground-truth 
depths, this approach presents prediction performances com-
parable with the state-of-the-art fully supervised monocular 
techniques. However, the ground-truth pose transformation, 
related to the interview displacement between both cameras, 
is required.

Following a similar idea, another technique is proposed in 
[15]. It is trained to reconstruct, from a given frame, the second 
frame taken from a different point of view. It generates a depth 
map using a stereo camera during the training step, and also dur-
ing the prediction step. This makes the approach more robust, 
such that it becomes competitive with standard stereo-matching 
techniques. Moreover, the constraint of preserving two cameras 
and the pose transformation ground truth for predictions enables 
its counterpart to perform online learning. This may be interesting 
for dealing with unseen novel ego–vehicle environments during 
the training.

To overcome the necessity of the pose transformation ground 
truth, Zhou et al. [57] propose to predict, from a temporal 
sequence of frames, the depth map with a learning model 
and the successive camera pose transformations with another 
learning model. Both models are trained together from end to 
end to make the novel view synthesis of the next frame. How-
ever, the pose transformation estimation implies that the pre-
dicted depth map is defined up to a scale factor.

A more modular technique [49] exploits either temporal 
monocular sequences of frames as in [57], the paired frames 

In the context of 
autonomous driving, it 
may often be necessary 
to simultaneously track, 
and even anticipate, the 
trajectories of several 
surrounding road users.
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of a stereo camera as in [15], or jointly 
exploited temporal and stereo information. 
This framework also deals with the false 
depth estimation of moving obstacles by 
ignoring the pixels not varying between 
two consecutive temporal frames during 
training. It also deals with occluded pixels 
when the captured point of view changes 
by using a minimum reprojection loss.

To summarize, low-level analysis tech-
niques for depth map estimation have dem-
onstrated that SSL strategies without using 
ground-truth labels can bring state-of-the-art solutions com-
petitive with fully supervised techniques. Overall, the SSL 
techniques presented in this section support the following 
conclusion: By exploiting the complementarity between ana-
lytical and learning methods, it is possible to address several 
autonomous driving perception tasks, without necessarily 
requiring an annotated data set. Presented methodologies are 
summarized in Figure 3 along with Table 2.

Limitations and future challenges
In the context of autonomous driving, some limitations remain 
in the presented SSL perception systems and open future re-
search perspectives.

Catastrophic forgetting
During the online learning procedure, the 
trainable weights of the model may require 
unnecessary repetitive updates for detecting 
a given pattern throughout the environment 
exploration. In fact, when a learning model 
is continuously specialized for dealing with 
the latest data, the likelihood increases that 
the model simultaneously forgets the poten-
tially relevant formerly learned patterns. It 
turns out that it is possible to deal with this 
catastrophic forgetting issue when using 

neural networks [61]. For future research directions, it may be 
interesting to combine such incremental learning techniques 
with the presented SSL frameworks.

The following issues concern the scene depth map estima-
tion solely based on temporal analysis.
■ The presence of dynamic obstacles in the scene during the 

learning stage can result in poor estimates of the observed 
scene. As discussed in [21], further research on SSL for 
potentially dynamic obstacle delineations on the sensor 
data may help to deal with this issue.

■ The current state-of-the-art techniques cannot estimate the 
real depth map without requiring a supervised scaling fac-
tor. The latter is generally obtained by estimating the real 

Table 2. The functional block connections of presented SSL methodologies depending on the application. Experimental data sets are exploited and 
relative prediction performances are reported whenever available. 

SSL Methodologies S1 " L Sn " L S1 " A Sn " A Sn " E A " L L " E A " E E " L Data Sets Performances 

(Off)road segmentation 
[13], [19], [51], [53], [54]

: : : : : : : — — 

Dynamic obstacles  
analysis [18], [21]

: : : : KITTI [20] 
Sidney [21]

—

Temporal tracking  
predictions [17], [23]

: : : : : Oxford Robotcar 
data set [55]

—

Depth map estimation  
[15]1, [16], [49]1, [57]

: 1: : : : KITTI  
Make3D [60]

[59]* > [49] > 
[16] > [57] > 
[61]*

* : supervised methods. The superscript 1 specifies that the methods in [15] and [49] exclusively use the connection Sn " L.

S1

Sn L E

Hand Labeling

(a)

S1

Sn

A

(b)

S1

Sn

E

A

L

(c)

FIGURE 3. Function diagrams showing the common connections depending on the strategy. (a), (b), and (c), respectively, refer to learning, handcrafted, 
and self-supervised learning strategies. Functional blocks represent a single monocular camera frame S1, additional sensor data (e.g., temporal frame 
sequence, stereo camera, or lidar data) Sn, a learning model L, an analytical method A, and evaluation method E.

By exploiting the 
complementarity between 
analytical and learning 
methods, it is possible 
to address several 
autonomous driving 
perception tasks, without 
necessarily requiring an 
annotated data set.
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metric values of the pose transformation between two 
consecutive camera viewpoints. As proposed in the Deep 
MANTA supervised detector [62], it may be interesting to 
recover this scale factor by using some template-matching 
techniques on the observable objects of the scene.
Concerning the online self-evaluation, some of the pre-

sented systems require an analytically obtained baseline 
reference [19]. However, if we consider that the analytical pro-
cesses, considered as ground-truth labeling techniques, are 
likely to generate some noisy labels, it may be interesting to 
investigate some future research on how to evaluate this prior 
noise from the learning model point of view [11], and how to 
deal with it [9].
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Enabling autonomous driving (AD) can be considered one of 
the biggest challenges in today’s technology. AD is a complex 
task accomplished by several functionalities, with environ-

ment perception being one of its core functions. Environment 
perception is usually performed by combining the semantic 
information captured by several sensors, i.e., lidar or camera. 
The semantic information from the respective sensor can be 
extracted by using convolutional neural networks (CNNs) for 
dense prediction. In the past, CNNs constantly showed state-
of-the-art performance on several vision-related tasks, such as 
semantic segmentation of traffic scenes using nothing but the 
red-green-blue (RGB) images provided by a camera. Although 
CNNs obtain state-of-the-art performance on clean images, al-
most imperceptible changes to the input, referred to as adver-
sarial perturbations, may lead to fatal deception. The goal of 
this article is to illuminate the vulnerability aspects of CNNs 
used for semantic segmentation with respect to adversarial at-
tacks, and share insights into some of the existing known adver-
sarial defense strategies. We aim to clarify the advantages and 
disadvantages associated with applying CNNs for environment 
perception in AD to serve as a motivation for future research in 
this field.

Introduction
The desire for mobility is a driving force in progressing technol-
ogy, with AD clearly being the next major step in automotive 
technology, along with electromobility. An AD vehicle is a high-
ly complex system with several sensors and subcomponents, one 
of which is vehicle-to-everything (V2X) communication.

In the context of AD, V2X communication has several 
applications, e.g., path planning and decision making [29], or 
systems used for localization and cooperative perception [14]. 
All autonomous systems need a perception stage, which consti-
tutes the first step in the process chain of sensing the environ-
ment. The purpose of cooperative perception systems in AD 
is the exploitation of information stemming from other traffic 
participants to increase safety, efficiency, and comfort aspects 
while driving [13]. The common concept lies in information 
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transmission between various vehicles as well as between 
vehicles and back-end servers over any kind of (wireless) trans-
mission channel. The transmitted information ranges from tra-
jectories of the ego vehicle and other traffic participants over 
vehicle state information to sensor data coming from radar, 
lidar, and the camera, and assists with constructing a more 
complete model of the physical world.

Each decision of an AD vehicle is based on the underlying 
environment perception and is intended to lead to an appropri-
ate action. Hence, the proper perception of the environment is 
an essential ingredient for reducing road accidents to a bare 
minimum to foster public acceptance of AD. The most com-
mon sensors of a single AD vehicle’s environment perception 
system [5], [16], [26] are shown in Figure 1.

Several external sensors, i.e., radar, lidar, and the camera, 
are mounted on an AD vehicle. Radar sensors are already 
widely used in multiple automotive functions and play a key 
role in enabling AD [10], [24]. Lidar sensors are capable of 
detecting obstacles [16] and have been used in numerous AD 
competitions [5]. Camera sensors, on the other hand, are main-
ly used for detecting lane markings or traffic signs [26] but can 
also be used for object detection and semantic segmentation 
[30]. The data captured by the three sensor groups are gathered 
within a central processing unit to extract semantic informa-
tion from the environment.

Over the past few years, the interest in employing deep neu-
ral networks (DNNs) increased noticeably as they constantly 
achieved state-of-the-art performance in multiple vision-relat-
ed tasks and benchmarks, including semantic segmentation for 
AD [8], [17]. Semantic segmentation is a classical computer 
vision task, where each pixel of an RGB image is assigned to a 
corresponding semantic class [see Figure 2(a) and (b)]. Because 
such camera-based technology is both cheaper and uses less 
data compared to lidar-based technology, it is of special inter-
est for AD. Recent progress in semantic segmentation enables 
real-time processing [30], making this an even more promising 
technology for AD applications.

Nevertheless, the environment perception system of an AD 
vehicle is a highly safety-relevant function. Any error can lead 
to catastrophic outcomes in the real world. Although DNNs 
reveal promising functional performance in a wide variety 
of tasks, they show vulnerability to certain input patterns, 
denoted as adversarial examples [25]. Adversarial examples 
are almost imperceptibly altered versions of an image and are 

able to fool state-of-the-art DNNs in a highly robust manner 
[see Figure 2(c) and (d)]. Assion et al. [2] showed that a virtu-
ally unlimited set of adversarial examples can be created on 
each state-of-the-art machine learning model. This intriguing 
property of DNNs is of special concern when looking at their 
applications in AD and needs to be addressed further by DNN 
certification methods [9], [27] or means of uncertainty quanti-
fication [19]. Cooperative perception, for example, can be seen 
as one of the weak spots in data processing during the environ-
ment perception of an AD vehicle; it can be used as a loophole 
to intrude adversarial examples to fool AD vehicles in range. 
Note that this is only one of many possible scenarios that show 
how adversarial examples can find their way into the system.

In this article, we examine the vulnerability of DNNs toward 
adversarial attacks, while focusing on environment perception 
for AD. For this purpose, we chose semantic segmentation as the 
underlying function that we want to perform adversarial attacks 
on because it is a promising technology for camera-based envi-
ronment perception. The article is intended to sensibilize the 
reader toward vulnerability issues of DNNs in environment 
perception for AD and to stir interest in the development of new 
defense strategies for adversarial attacks.

Semantic segmentation
An RGB image is a high-dimensional source of data, with pix-
els being the smallest units of semantic information. Semantic 
segmentation is a popular method used to extract the semantic 
information from an RGB image, where each pixel is tagged 

Lidar

Lidar

Camera

Radar

Camera

FIGURE 1. An AD research vehicle equipped with radar (orange), lidar (yel-
low), and camera sensors (purple). The sensors are placed at different 
locations to obtain an extensive environment sensing. 

(a) (b) (c) (d)

FIGURE 2. A simple adversarial attack using the iterative least-likely class method [15] to fool the image cascade network (ICNet) [30] on a hand-picked 
image from the Cityscapes validation set. (a) A clean input image, (b) a semantic segmentation of clean input image, (c) an adversarial example, and (d) 
a semantic segmentation of an adversarial example.
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with a label taken from a finite set of classes. Today’s state 
of the art in semantic segmentation is dominated by CNNs, a 
special form of DNNs. This section introduces some mathe-
matical notation regarding CNNs and gives an overview of the 
CNN architecture used for semantic segmentation throughout 
this article.

A mathematical notation
For the sake of simplicity, we first assume having a CNN, 
which takes one input image and outputs only a corresponding 
class for the entire image. Hence, we begin with simple image 
classification and then extend to semantic segmentation.

First of all, the input image is denoted as ,x GX H W C! 1 # #

with image height in pixels H, image width in pixels W, number 
of color channels C, data set ,X  and the set of integer gray val-
ues .G  Each image contains gray values x Gi

C!  at each pixel 
position ,i I!  with I  being the set of pixel positions, having 
the cardinality | | .H WI $=  The smaller patches of an image 
are denoted as ,x Gh w C

Ii !
# #  with patch height in pixels h, 

crop width in pixels w, and the set of pixel positions IIi 3

with i being the center pixel and | | .h wIi $=  For the special 
case of ,IIi =  we obtain .x xIi =  A CNN usually consists 
of several layers L, !  containing feature map activations 
f x RH W C! # #
,

, ,,^ h  of the respective layer ,L, !  and first-lay-
er input image x, with the set of layers ,L  feature map height 

,H,  feature map width ,W,  and number of feature maps .C,
Fed using the input image x, a CNN for image classification 
outputs a probability score xP s I!|^ h  for each class ,s S!
with , ,0 1I = 6 @  and the set of classes ,S  with the number of 
classes | | ,N S=  leading to

: .G IF H W C N
classification "# # (1)

For better readability, the CNN parameters i  are omitted in 
our notation. The predicted class * xs S!^ h  for the input im-
age x is then obtained by

* | .argmaxx xs P s
s S

=
!

^ ^h h (2)

 From now on, a CNN is considered, which is capable of 
performing semantic segmentation. The respective CNN out-
puts a probability | , xP s i^ h for each pixel position i I!  of 
the input image x and class .s S!  Altogether, it outputs class 
scores p x x IF H W N

segmentation != # #^ ^h h  for all pixel positions 
i I!  and classes ,s S!  leading to

: .G IF H W C H W N
segmentation "# # # # (3)

The semantic segmentation mask m x SH W! #^ h  contain-
ing the predicted class x xm s*

i i=^ ^h h at each pixel position 
i I!  of the input image x is then obtained by

.argmaxm x p x
s S

=
!

^ ^h h (4)

The performance of such a CNN is measured by the mean 
intersection-over-union (mIoU) 

 ,
N s s s

s1mIoU
TP FP FN

TP

s S

=
+ +

!
^ ^

^
^h h

h
h/  (5)

with the class-specific true positives ,sTP^ h  false positives 
,sFP^ h  and false negatives .sFN^ h

Architecture for semantic segmentation
Today’s state-of-the-art CNN architectures for semantic seg-
mentation are often based on the work of Long et al. [17]. They 
proposed to use a CNN, pretrained on image classification, as 
a feature extractor and further extend it to recover the original 
image resolution. The extended part is often referred to as the 
decoder and fulfills the task of gathering, reforming, and res-
caling the extracted features for the task of semantic segmenta-
tion. One characteristic of this proposed network architecture 
is the absence of fully connected layers. Such CNNs are there-
fore called fully convolutional networks (FCNs).

Especially for AD, a real-time capable state-of-the-art CNN 
being robust to minimal changes in the input is needed. Arnab 
et al. [1] analyzed the robustness of various CNNs for semantic 
segmentation toward simple adversarial attacks [11], [15] and 
concluded that CNNs using the same input with different scales 
are often most robust. The image cascade network (ICNet) 
developed by Zhao et al. [30] comprises both, a lightweight 
CNN architecture with multiscale inputs. The overall structure 
of the ICNet is depicted in Figure 3. The ICNet is designed 
to extract multiscale features by taking different scales of the 
image as inputs. The extracted multiscale features are fused 
before being upsampled to obtain a full-resolution semantic 
segmentation mask. The ICNet mainly profits from the com-
bination of high-resolution low-level features (i.e., edges) with 
low-resolution high-level features (i.e., spatial context). 

For the sake of reproducibility, an openly available reim-
plementation (https://github.com/hellochick/ICNet-tensor
flow) of the ICNet based on TensorFlow is used and tested on 
the widely applied Cityscapes data set [8]. Cityscapes serves 
as a good data set for exploring CNNs using semantic segmen-
tation for AD, having pixel-wise annotations for 5,000 images 
(validation, training, and test set combined), with relevant 
classes such as pedestrians and cars. The reimplementation of 
the ICNet achieves 67.26% mIoU on the Cityscapes validation 
set and runs at roughly 19 and 26 frames/s (fps) on our Nvidia 
Tesla P100 and Nvidia Geforce GTX 1080Ti, respectively, 
with an input resolution of 1,024 × 2,048. These numbers 
are promising and indicate that semantic segmentation could 
serve as a technology for the environment perception system 
of AD vehicles.

Adversarial attacks
Although CNNs exhibit state-of-the-art performance in several 
vision-related fields of research, Szegedy et al. [25] revealed 
their vulnerability toward certain input patterns. The CNN to-
pologies they investigated were fooled by just adding small, im-
perceptible patterns to the input image. An algorithm producing 
such adversarial perturbations is called an adversarial attack, 
and a perturbed image is referred to as an adversarial example.
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Based on the observations of Szegedy et al., new approach-
es arose for crafting adversarial examples more efficiently [3], 
[7], [11], [15], [21] and were even extended to dense prediction 
tasks, e.g., semantic segmentation [2], [18], [22]. In the follow-
ing section, two types of adversarial attacks are introduced: 
individual adversarial attacks, which aim to fool on the basis 
of one particular input image, as well as universal adversarial
attacks, which seek to fool on the basis of a whole bunch of 
images at the same time.

Individual adversarial perturbations
For the sake of simplicity, CNNs used for image classifi-
cation are considered in this section to describe the basic 
nature of targeted and nontargeted adversarial attacks us-
ing individual adversarial perturbations. As shown pre-
viously, image classification can be easily extended to 
semantic segmentation.

Common adversarial attacks aim at fooling a CNN so that 
the predicted class xs*^ h does not match with the ground-
truth class xs S!^ h  of the input image x. One example of 
such an adversarial type of attack is the fast gradient sign 
method (FGSM) introduced by Goodfellow et al. [11]. FGSM 
adopts the loss function s,x xJ^ ^ hh used during the train-
ing of the underlying CNN and computes the adversarial 
examples by

, ,x x r x x xJ ssign x
adv dm= + = + ^ ^ ^ hhh (6)

with the adversarial perturbation ,r RH W C! # #  the step-size 
,R!m +  and the gradient with respect to the input image 

x , .x xJ sd ^ ^ hh  Note that { } .1sign · H W C!! # #^ h  FGSM lets 
the perturbation r effectively increase the loss in each dimen-
sion by manipulating the input image into positive (“+”) gradi-
ent direction. Thus, one is not limited to using the ground truth 

xŝ h as depicted in (6), but can, in fact, use the output of the 
respective DNN .xs*^ h

Kurakin et al. [15] extended FGSM by using an iterative 
algorithm, changing the adversarial perturbation slightly in 
each iteration by a small .m  To prevent the adversarial per-
turbation’s magnitude from getting too large, it is upper-
bounded by

,r # e3 (7)

with R!e +  being the upper bound of the infinity norm 
and .$e m  This way, the perceptibility of the adversarial 
perturbation is controlled by adjusting e  accordingly. For the 
iterative case, (6) extends to

,

, ,

x x
x x r

x x xJ ssign x

0

1 1

adv

adv adv

adv advdm

=

= +

= +
x x x

x x

+ +

^ ^ ^ hhh (8)

with { , , , ...}0 1 2!x  being the current iteration index and 
therefore xadv

x  the adversarial example at iteration x  [the total 
number of iterations is set by flooring ., .min 4 1 25e e+^ h @6 @
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FIGURE 3. An architectural overview of ICNet [30]. The ICNet takes different scales of an RGB image as (a) inputs to output a (d) semantic segmentation 
mask. The encoder consists of (b) three scale-dependent parts to extract multiscale features from the (b) inputs. Each of these three encoder parts perform 
a downsampling by a factor of eight during feature extraction. To save computational complexity, the bigger scales are limited to low-level and midlevel 
feature extraction. The extracted multiscale features are then fused within the decoder by a (c) multiscale fusion block before performing a final upsampling 
to obtain a full-resolution semantic segmentation mask with respect to the input.
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Considering AD vehicles, there exists no ground truth for 
the data being inferred. As previously noted, a naive attacking 
idea in this setup would be finding an adversarial perturbation 
r, such that (classification)

.x xs s* *adv !^ ^h h (9)

Such an attack is the least-likely class method (LLCM) 
introduced by Kurakin et al. [15]. LLCM seeks to find an 
adversarial perturbation r to obtain

| | ,argmax argminx x xs P s P s
s s

o adv

S S
= =

! !
^ ^ ^h h h (10)

with the least-likely class xso^ h of the input image x. Different 
from before, the adversarial example using LLCM is obtained 
by taking a step into the negative direction of the gradient with 
respect to the input image x, according to

, ,x x x xJ ssign x
adv odm= - ^ ^ ^ hhh (11)

minimizing the loss function. Similar to FGSM, LLCM can 
also be performed in an iterative fashion, where in each step, 
a small adversarial perturbation is added to the respective in-
put image.

Another well-known approach used for crafting adversarial 
examples is DeepFool [21], introduced by Moosavi-Dezfooli 
et al. Compared with FGSM and LLCM, DeepFool not only 
searches for individual adversarial perturbations but also tries 
to find the minimal adversarial perturbation with respect to an 
l -p norm, changing the network’s output. This leads us to the 
following equation:

, ,argminr r x r xs ss.t. * *
min min

r
p != +^ ^h h (12)

with ||| · | p  being the l -p norm restricting the magnitude of .rmin

Moosavi-Dezfooli et al. primarily experimented with ,p 2=
showing DeepFool’s superiority in terms of speed and magni-
tude compared to FGSM when targeting the same error rate for 
the respective CNN. We do not go into further detail here, but 
instead refer the interested reader to [21] for more information 
about DeepFool.

Carlini and Wagner [7] proposed an approach that was 
shown to be extremely effective with regard to adversarial 
example-detection mechanisms. They used

2 ( ) ,

,

argminr x r

x r x

r c f

s ss.t. * *

min

min

r
$

!

< <= + +

+

^
^ ^

h
h h (13)

as an objective function, with c being a hyperparameter and 
( )x rf +  being a loss function. Athalye et al. [3] adopted this 

approach and, as a result, managed to circumvent several state-
of-the-art defense mechanisms. We refer the interested reader 
to [3] and [7] for more fine-grained information about both 
approaches and their specific variations.

Thus far, we have introduced adversarial attacks that were 
successfully carried out on image classification. Arnab et al. 
[1] conducted the first extensive analysis on the behavior of 
different CNN architectures for semantic segmentation using 
FGSM and LLCM, both performed iteratively and nonitera-
tively. They report results on a large variety of CNN archi-
tectures, including both lightweight and heavyweight CNN 
architectures. The main observation was that the network 
models using residual connections are often more robust when 
it comes to adversarial attacks. In addition, lightweight CNN 
architectures tend to be almost equally as robust as do heavy-
weight CNN architectures. In summary, the results on the 
Cityscapes data set demonstrated the vulnerability of CNNs 
in general. We show a typical attack in Figure 2 using the 
iterative LLCM on the ICNet with the hyperparameters 1m =

and .8e =  Despite being mostly imperceptible to the human 
eye, the adversarial example leads to a dramatically altered 
network output. To show the overall effect on the Cityscapes 
validation set, we computed the mIoU ratio for the iterative 
and noniterative LLCM using different values for .e  The mIoU 
ratio Q is defined by

,Q
mIoU
mIoU

clean

adv= (14)

with mIoUadv  being the mIoU on adversarially perturbed im-
ages ,xadv  and mIoUclean  being the mIoU on clean images x. 
The results are plotted in Figure 4. As expected, the stronger 
the adversarial perturbation (in terms of )e  the lower the mIoU 
on adversarial examples mIoUadv  and thus a lower mIoU ratio 
Q is obtained. As pointed out by Arnab et al. [1], we also ob-
serve that the noniterative LLCM is even stronger than its it-
erative counterpart, which contradicts the original observation 
made by Kurakin et al. [15] on image classification. Arnab et 
al. argue that this phenomenon might be a data set property of 
Cityscapes because the effect does not occur on their second 
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FIGURE 4. Adversarial attacks on the ICNet using the iterative or nonitera-
tive LLCM from Kurakin et al. [15] on the Cityscapes validation set with 
different values for ,e  an upper bound of the l -3 norm of the adversarial 
perturbation .r  We set m e=  for the noniterative LLCM and 1m=  for 
the iterative LLCM. A lower mIoU ratio Q means a stronger adversarial at-
tack. Note that the noniterative LLCM appears to be even more aggressive 
than that of the iterative LLCM.
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data set (Pascal VOC 2012). Nonetheless, we do not investigate 
this further as we prefer to focus on more realistically looking 
adversarial attacks discussed later in this section.

Metzen et al. [18] introduced new adversarial attacks for 
semantic segmentation. Instead of only fooling the CNN, 
they additionally wanted the respective CNN to output more 
realistically looking semantic segmentation masks. To do so, 
Metzen et al. developed two methods. The first method uses a 
fake semantic segmentation mask m z^ h instead of the original 
semantic segmentation mask m x ,^ h  with ,x z X! !  meaning 
that the fake segmentation mask refers to an existing image of 
data set .X  The overall assumption of Metzen et al. is that a 
possible attacker may invest time to create a few uncorrelated 
fake semantic segmentation masks him or herself. Assuming 
that the attacker wants to use the same fake semantic segmen-
tation mask to fool the respective CNN on several images, he is 
restricted to stationary situations to operate unnoticed, i.e., the 
AD vehicle does not move and thus the scenery captured by the 
camera sensor changes only slightly. Because of this operation-
al constraint, we call this method the stationary segmentation 
mask method (SSMM). The second method modifies the CNN’s 
original semantic segmentation mask m x^ h by replacing a pre-
defined objective class xo m Si != ^ h  at each corresponding 
pixel position xi IIo! 1^ h  by the spatial nearest-neighbor 
class ,x xn m Si j !=^ ^h h  with x xm mj i! .^ ^h h  Here, xIo^ h is 
the set of all pixel positions, where i xm o=^ h  holds. By com-
pletely removing the objective class o from the semantic seg-
mentation mask, we obtain

.
x

x
x

x
m

m
n

m oif
otherwise,i

i

i

iDNNM !
=

,
,

^ ^
^ ^h h
h h) (15)

with xmi
DNNM^ h being the new target class at pixel position 

.i I!  Metzen et al. suggested using the Euclidean distance of 
two pixel positions i and j to find the nearest-neighbor class sat-
isfying .x x xn m m oi j i!= =^ ^ ^h h h  In contrast to SSMM, the 
realistically looking fake semantic segmentation mask created 

using this method is now unique for each real semantic seg-
mentation output. Additionally, specific properties, such as the 
correlation between two consecutive real semantic segmenta-
tion outputs, are transferred to the created fake ones. 

Altogether, a possible attacker is able to create a sequence 
of correlated realistically looking fake semantic segmenta-
tion masks making this kind of attack suitable for situations 
where the respective AD vehicle moves. Due to these proper-
ties, we call this method the dynamic nearest-neighbor method
(DNNM). The application of DNNM has the potential to cre-
ate safety-relevant perception errors for AD. This can be seen 
in Figure 5, where DNNM is used to remove pedestrians or 
cars from the scene. The adversarial examples were created 
by setting ,10e =  followed by the same procedure that was 
used with iterative LLCM. Astonishingly, the semantic classes 
different from the objective class are completely preserved and 
the nearest-neighbor class seems to be a good estimate for the 
regions occluded by the objective class, thereby dangerously 
providing a plausible, but wrong, semantic segmentation mask.

Universal adversarial perturbations
Thus far, we have discussed approaches that generate adversari-
al perturbations for single-input images. In reality, however, it is 
difficult for a possible attacker to generate adversarial examples 
for each incoming image of an environment perception system, 
considering a camera running at 20 fps. Therefore, in AD ap-
plications, a special interest lies in single-adversarial perturba-
tions that are capable of fooling a CNN on a set of input images, 
e.g., a video sequence. This class of adversarial perturbations is 
called universal adversarial perturbation (UAP).

One of the first works toward finding UAPs was done by 
Moosavi-Dezfooli et al. [20]. Their idea was to find a UAP 
runi  that fools nearly all the images in some image set T  in an 
image classification task (again, only one class per image). To 
achieve this, they used the DeepFool algorithm in an iterative 
fashion to solve the optimization problem

,x r x xs s T T* *
uni 6! ! 1+ l^ ^h h (16)

(a) (b) (c) (d)

FIGURE 5. Adversarial attacks on the ICNet using a DNNM [18] on two example images, one with pedestrians and one with cars, from the Cityscapes 
validation set. The adversarial examples aim at removing pedestrians (top row) and cars (bottom row) from the scene. (a) A clean input image, (b) a 
semantic segmentation output on a clean input image, (c) an adversarial example created by the DNNM, and (d) a semantic segmentation output on an 
adversarial example created by the DNNM.
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with the subset of respective images T l for which the CNN is 
fooled, and the set of all the respective images T  the UAP is 
optimized on. The UAP is again constrained by

,r puni # e (17)

with ||| · | p  being the l -p norm of runi  and e  being its upper 
bound. In their experiments, Moosavi-Dezfooli et al. obtained 
the best results by setting p 3=  and .10e =  Different from 
all of the attacks shown before, the UAP optimized on T  gen-
eralizes well, meaning that the UAP can fool even a respective 
system on a disjointed set of images ,V  with ,V T+ Q=  on 
which the UAP was not optimized.

Although Moosavi-Dezfooli et al. used samples from a set 
of images T  to craft UAPs, Mopuri et al. [23] introduced a 
data set-independent method named fast feature fool (FFF). 
In this section, we consider the formulation of FFF from their 
extended work [22]. Adopting the overall objective in (16), 
FFF aims at finding a UAP that increases the mean activation 
in each layer L, !  without having any knowledge about the 
respective images x T! l to fool. This is done by minimizing 
the following loss function:

flogr rJ 2uni uni
L

=- ,

,!

,^ c ^h h m% (18)

with respect to runi  (as a first-layer input image), constrained 
by (17) with .p 3=  We used FFF on the ICNet to show the 
effectiveness and transferability of UAPs on several images 

taken from the Cityscapes validation set by following Mopuri 
et al. in choosing .10e =  The obtained results for some im-
ages are presented in Figure 6. Although it does not generate 
the same realistically looking semantic segmentation masks 
that the DNNM does, FFF still completely fools the ICNet 
on several diverse images and needs to be computed only 
once to obtain .runi  Moreover, safety-critical classes such as 
pedestrians and cars are removed from the scene in all exam-
ples, underlining again the risk of adversarial attacks for AD. 
Note that the particular danger of this method for AD lies in 
the fact that it just requires a generic adversarial pattern to be 
added to any unknown sensorial data x runi+^ h during driv-
ing, causing major errors in the output segmentation mask.

Adversarial defense
Thus far, we have demonstrated that DNNs can be fooled in 
many different ways by means of almost imperceptible modi-
fications of the input image. This behavior of DNNs presents 
challenges to their application within environment perception 
in AD. Therefore, appropriate adversarial defense strategies 
are needed to decrease the risk of DNNs being completely 
fooled by adversarial examples. In this section, some adver-
sarial defense strategies that have been hypothesized and de-
veloped to defend against adversarial attacks are presented. In 
general, adversarial defense strategies can be distinguished as 
being specific or agnostic to a model at hand. In the following 
section, we provide a brief introduction to model-specific de-
fense techniques but then focus on model-agnostic ones.

(a) (b) (c) (d)

FIGURE 6. Adversarial attacks on the ICNet using a (single) UAP runi  created by an FFF [22]. We show its effectiveness in fooling the ICNet on four 
example images with cars or pedestrians from the Cityscapes validation set. Each row corresponds to one attack scenario. (a) A clean input image, (b) a 
semantic segmentation of a clean input image, (c) an adversarial example created by the FFF, and (d) a semantic segmentation of an adversarial example 
created by the FFF.
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Model-specific defense techniques
Model-specific defense techniques aim at modifying the be-
havior of a specific DNN in such a way that the respective 
DNN becomes more robust toward adversarial examples. Note 
that such a technique can most often be alternatively applied 
to numerous DNN topologies, however, once it is applied it al-
ways defends only the specific DNN at hand. One well-known 
and intuitive method of model-specific defense techniques is 
adversarial training. In adversarial training, the original train-
ing samples of the DNN are extended using their adversarial 
counterparts, e.g., created by the FGSM from Goodfellow et 
al., as shown previously, and then retrained with this set of 
clean and adversarially perturbed images. 

Whereas the performance of the DNN on adversarial 
examples increases [11], [20], the effect is still marginal [21]. 
More importantly, it is also not clear what amount or type 
of adversarial example is sufficient to increase the DNN’s 
robustness up to a desired level. Xie et al. [28] investigated the 
effect of adversarial examples on the feature maps in several 
layers. Their observation was that adversarial examples cre-
ate noise-like patterns in the feature maps. To counter this, 
they proposed adding trainable denoising layers contain-
ing a denoising operation followed by a convolution opera-
tion. Xie et al. obtained the best results by using the nonlocal 
means (NLM) algorithm [6] for feature denoising. Bär et al. 
[4] explored the effectiveness of teacher–student approaches 
in defending against adversarial attacks. Here, an additional 
student DNN is included to increase the robustness against 
adversarial attacks, assuming that the potential attacker has a 
difficult time dealing with a constantly adapting student DNN. 
It was concluded that, in combination with simple output vot-
ing schemes this approach could be a promising model-specific 
defense technique. Nevertheless, a major drawback of model-
specific defense techniques is that the respective DNN has to 
be retrained, or one has to modify the network architecture, 
which is not always possible when using pretrained DNNs.

Model-agnostic defense techniques
In contrast to model-specific defense techniques, model-ag-
nostic defense techniques, once developed, can be applied in 
conjunction with any model, as they do not modify the model 
itself but rather the input data. In particular, the model does not 
need to be retrained. Hence, it serves in image preprocessing, 
where the adversary is removed from the input image.

Guo et al. [12] analyzed the effectiveness of nondiffer-
entiable input transformations in destroying adversarial 
examples. Nondifferentiability is an important property of 
adversarial defense strategies considering that the majority 
of adversarial attacks is built on gradient-based optimization. 
Guo et al. used image quilting (IQ) among some other input 
transformation techniques and observed IQ to be an effec-
tive way of performing a model-agnostic defense against sev-
eral adversarial attacks. IQ is a technique, wherein the input 
image x is viewed as a puzzle of small patches ,xIi  with i
being the position of the center pixel. To remove potential 
adversaries from an image, each of its patches ,xIi  irrele-

vant of being adversarially perturbed or not, is replaced by a 
nearest-neighbor patch x GP h b C

Ii ! 1 # #t  to obtain a quilt-
ed image ,xIQ  with P  being a large set of patches created 
beforehand from random samples of clean images. The aim 
is to synthetically construct an adversary-free image having 
the original semantic content.

Another model-agnostic defense technique is the NLM 
from Buades et al. [6]. NLM aims at denoising the input image. 
To accomplish this, NLM replaces each pixel value xi  by

,x xw ,i i j
j

j
NLM

I

=
!

/ (19)

with the NLM-denoised pixel ,xi
NLM  the interpixel weighting 

factor [ , ]w 0 1,i j !  for which w 1,j i jI/ =!  holds, and the pixel 
value x j  at position j. The interpixel weighting factor w ,i j  re-
lates the respective pixel xi  at pixel position i to the pixel x j  at 
pixel position j. It is defined by
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with patches xIi  and xI j  centered at pixel positions i and j, 
the squared Gaussian-weighted Euclidean distance ,,a2

2$< <  with 
a 0>  as the standard deviation of the Gaussian kernel, the hy-
perparameter for the degree of filtering h, and the normalizing 
factor .ia  By incorporating the squared Gaussian-weighted 
Euclidean distance, a large weight is put to pixels ,x j  whose 
neighborhood xI j  looks similar to xIi  (the neighborhood of 
the respective pixel xi  to be denoised).

The idea behind NLM is to remove the high local depen-
dency of adversarial perturbations. Nevertheless, applying 
NLM on the complete input image, as stated in (19), can be 
computationally demanding. Thus, the search window is often 
reduced to an image region R Ii 1  of size | | .R RR i #=  Note 
that I Ri i1 , with | | | | | |.I I Ri j i1=

Now let us look into the results of both model-agnostic 
defense methods, IQ and NLM, on the adversarial examples 
shown before. For IQ, the patch data set P  was created using 
samples from the Cityscapes training set. Here, we followed 
Guo et al. and collected | | 1 milli noP =  patches of size 5 × 
5 pixels in total. Increasing the size of the patch data set will 
lead to better approximations of the patches, but on the other 
hand, also increases the search space. The same holds when 
decreasing the size of the patches up to a certain level.

For NLM, patches Ii  and I j  of size 7 × 7 were used and the 
image region for the neighboring pixel was restricted accord-
ing to | | 9 9Ri #=  to keep an adequate algorithm complexity. 
The degree of filtering h was computed by . xh 2 15v= ,u^ h  with 

xvu^ h being an estimate for the Gaussian noise standard devia-
tion on the input image x.

Using these settings, we tested IQ, NLM, and a combined 
version of both, denoted as IQ+NLM, on the adversarial attacks 
shown in the “Adversarial Attacks” section (see Figures 5 and 6). 
It is important to note that we applied both defense methods 
without any extensive hyperparameter search. The adversarial 
defenses on DNNM-attacked images are depicted in Figure 7. 
From Figure 7(a) to (e), the original semantic segmentation 
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mask is reconstructed progressively better, with the combina-
tion of NLM and IQ showing the best results [Figure 7(e)]. Com-
paring NLM and IQ separately, it can be seen that IQ is able to 
reconstruct the original semantic segmentation mask even more 
precisely. The same behavior can be observed when looking at 
the mIoU values in Figure 7, where we report averages over the 
entire Cityscapes validation set. Altogether, the results show 
that by combining NLM with IQ, one can lever the destructive-
ness of DNNM—an important and reassuring observation.

The adversarial defenses on FFF-attacked images are illus-
trated and supported by the corresponding average mIoU values 
on the Cityscapes validation set shown in Figure 8. Here, it is not 
trivial to judge by looking only at the images, which defense is 
superior, IQ or NLM. In some cases, NLM seems to lead to better 
results, whereas in other cases, IQ appears to outperform NLM.
Yet, looking at the average mIoU values for the entire Cityscapes 
validation set leads to the conclusion that, overall, NLM is supe-
rior to IQ. Moreover, combining NLM with IQ again shows the 
best results, leading to an overall significant improvement in the 
restoration of the segmentation masks. This observation is both 
extremely important and relieving, as the existence of UAPs is 
particularly dangerous for the use case of DNNs in AD.

Even though we observe a certain level of effectiveness in 
using model-agnostic defense methods, there is still room for 
improvement in defending against adversarial attacks. The work 
of Carlini and Wagner [7] and Athalye et al. [3] are just two of 
many representative examples. Carlini and Wagner bypassed 
several state-of-the-art detection systems for adversarial exam-
ples with their approach, whereas Athalye et al. circumvented 
the nondifferentiality property of some state-of-the-art defenses 
by using different gradient approximation methods.

Summary and future directions
DNNs are one of the most promising technologies for the use 
case of environment perception in AD. Assuming the environ-
ment perception system consists of several camera sensors, a 
DNN trained for semantic segmentation can be used to per-
form extensive environment sensing in real time. Nevertheless, 

today’s state-of-the-art DNNs still reveal flaws when fed with 
specifically crafted inputs, denoted as adversarial examples. 
It was demonstrated step by step that it is quite easy and intui-
tive to craft adversarial examples for individual input images 
using the LLCM or the DNNM by simply performing gradient 
updates on the clean input image. It is even possible to craft 
adversarial examples to fool not only one but a set of images 
using the FFF method, without any knowledge of the respec-
tive input image to be perturbed. This in turn highlights the 
importance of appropriate defense strategies. From a safety-
concern perspective, the lack of robustness shown by DNNs is 
a highly relevant and important challenge to deal with before 
AD vehicles are released for public use.

DNNs’ lack of robustness evoked the need for defense strate-
gies and other fallback strategies regarding the safety relevance 
for AD applications. Model-agnostic defense strategies only 
modify the potentially perturbed input image to decrease the 
effect of adversarial attacks. This way, an already-pretrained 
DNN can be used without the need for retraining or modifying 
the DNN itself. We explored two model-agnostic defense strat-
egies, namely, IQ and NLM, both on DNNM and FFF attacks, 
where the combination of IQ and NLM showed the best results 
on nearly all of the images. Nevertheless, although clearly 
robustifying the DNNs toward adversarial attacks, the cur-
rent state of research in model-agnostic defense strategies also 
showed that the vulnerability of DNNs is not entirely solved 
yet. However, ensembles of model-agnostic defenses could be 
promising for tackling adversarial attacks as well as intelligent 
redundancy (e.g., by teacher–student approaches). We also 
point out that certification methods [9], [27] should be further 
investigated to really obtain provable robustness.

What does this mean regarding the application of DNNs for 
AD? Are today’s DNNs not suitable for safety-critical appli-
cations in AD? We argue that this is to some extent true, if 
we only consider applying model-agnostic defenses without 
certification. DNN training and understandability are two 
highly dynamic academic fields of research. Research thus far 
has focused mainly on increasing the performance of DNNs, 

Average mIoU = 67.3% ... = 57.6% ... = 60.2% ... = 61.2% ... = 63.3%

(a) (b) (c) (d) (e)

FIGURE 7. Adversarial attacks on the ICNet using a DNNM [18], defended by IQ [12] and the NLM [6]. Both image rows correspond to the examples 
shown in Figure 5. The top row contains an example of where the DNNM was used to remove pedestrians from the scene, while the bottom row contains 
an example of where the DNNM was used to remove cars instead. (a) A clean output, (b) an adversarial output using the DNNM, (c) an adversarial output 
using the DNNM and defended by the NLM, (d) an adversarial output using the DNNM and defended by IQ, and (e) an adversarial output using the DNNM 
and defended by the NLM and IQ combined. The mIoU values below the bottom row refer to the average mIoU over the entire Cityscapes validation set.
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widely neglecting their robustness and certification. To develop 
employable machine learning-based functions that are realisti-
cally usable in a real-world setting, it is extremely important 
to establish their robustness against slight input alterations 
in addition to improving the task performance. Furthermore, 
new mature defense and certification strategies are needed, 
including fusion approaches, redundancy concepts, and mod-
ern fallback strategies. We especially recommend that automo-
tive companies focus on the certification of DNNs; otherwise, 
doors would be opened to potentially fatal attacks, which in 
turn would have consequences on the public acceptance of AD.

Acknowledgments
We gratefully acknowledge the support of Volkswagen Group 
Automation, Wolfsburg, Germany, and would like to thank 
Nico M. Schmidt and Zeyun Zhong for their help with setting 
up final experiments.

Authors
Andreas Bär (andreas.baer@tu-bs.de) received his B.Eng. 
degree from Ostfalia University of Applied Sciences, 
Wolfenbüttel, Germany, in 2016, and his M.Sc. degree from 
Technische Universität Braunschweig, Braunschweig, 
Germany, in 2018, where he is currently a Ph.D. degree candi-
date in the Faculty of Electrical Engineering, Information 
Technology, and Physics. His research interests include convo-
lutional neural networks for camera-based environment percep-
tion and the robustness of neural networks to adversarial 
attacks. In 2020, he won the Best Paper Award at the Workshop 
on Safe Artificial Intelligence for Automated Driving, held in 

conjunction with the IEEE Conference on Computer Vision 
and Pattern Recognition, along with coauthors Serin John 
Varghese, Fabian Hüger, Peter Schlicht, and Tim Fingscheidt.

Jonas Löhdefink (j.loehdefink@tu-bs.de) received his B.
Eng. degree from Ostfalia University of Applied Sciences, 
Wolfenbüttel, Germany, in 2015, and his M.Sc. degree from 
Technische Universität Braunschweig, Braunschweig, Germany, 
in 2018, where he is currently a Ph.D. degree candidate in the 
Faculty of Electrical Engineering, Information Technology, and 
Physics. His research interests include learned image compres-
sion and quantization approaches by means of convolutional 
neural networks and generative adversarial networks.

Nikhil Kapoor (nikhil.kapoor@volkswagen.de) received his 
B.Eng. degree from the Army Institute of Technology, Pune, 
India, in 2012, and his M.Sc. degree from RWTH Aachen 
University, Germany, in 2018. Currently, he is a Ph.D. degree 
candidate at Technische Universität Braunschweig, 
Braunschweig, Germany, in cooperation with Volkswagen 
Group Research. His research focuses on training strategies that 
range from improving the robustness of neural networks for 
camera-based perception tasks to augmentations and adversarial 
perturbations using concept-based learning.

Serin John Varghese (john.serin.varghese@volkswagen
.de) received his B.Eng. degree from the University of Pune, 
India, in 2013, and his M.Sc. degree from Technische 
Universität Chemnitz, Germany, in 2018. Currently, he is 
a Ph.D. degree candidate at Technische Universität 
Braunschweig, Braunschweig, Germany, in cooperation with 
Volkswagen Group Research. His research is focused on com-
pression techniques for convolutional neural networks used 

Average mIoU = 67.3% ... = 4.6% ... = 25.7% ... = 18.8% ... = 46%

(a) (b) (c) (d) (e)
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of both. (a) A clean output, (b) an adversarial output using the FFF, (c) an adversarial output using the FFF and defended by the NLM, (d) an adversarial 
output using the FFF and defended by IQ, and (e) an adversarial output using the FFF and defended by the NLM and IQ combined. The mIoU values in the 
bottom row refer to the average mIoU over the entire Cityscapes validation set. 



52 IEEE SIGNAL PROCESSING MAGAZINE   |   January 2021   |

for perception modules in automated driving, with a focus on 
not only inference times but also maintaining, and even 
improving, the robustness of neural networks.

Fabian Hüger (fabian.hueger@volkswagen.de) received his 
M.Sc. degree in electrical and computer engineering from the 
University of California, Santa Barbara, as a Fulbright scholar in 
2009. He received his Dipl.-Ing. and Dr.-Ing. degrees in electri-
cal engineering from the University of Kassel, Germany, in 2010 
and 2014, respectively. He joined Volkswagen Group Research, 
Germany, in 2010, and his current research is focused on safe 
and efficient use of artificial intelligence for autonomous driving.

Peter Schlicht (peter.schlicht@volkswagen.de) received his 
Ph.D. degree in mathematics from the University of Leipzig, 
Germany. After a two-year research stay at the Ecole 
Polytechnique Fédérale, Lausanne, Switzerland, he joined 
Volkswagen Group Research, Wolfsburg, Germany, in 2016 as an 
artificial intelligence (AI) architect. There he deals with research 
questions on AI technologies for automatic driving. His research 
interests include methods used for monitoring, explaining, and 
robotizing deep neural networks as well as securing them. 

Tim Fingscheidt (t.fingscheidt@tu-bs.de) received his Dipl.-
Ing. and Ph.D. degrees in electrical engineering, both from RWTH 
Aachen University, Germany, in 1993 and 1998, respectively. 
Since 2006, he has been a full professor with the Institute for 
Communications Technology, Technische Universität 
Braunschweig, Braunschweig, Germany. He received the 
Vodafone Mobile Communications Foundation prize in 1999 and 
the 2002 prize of the Information Technology branch of the 
Association of German Electrical Engineers (VDE ITG). In 2017, 
he coauthored the ITG award-winning publication, “Turbo 
Automatic Speech Recognition.” He has been the speaker of the 
Speech Acoustics Committee ITG AT3 since 2015. He served as 
an associate editor of IEEE Transactions on Audio, Speech, and 
Language Processing (2008–2010) and was a member of the 
IEEE Speech and Language Processing Technical Committee 
(2011–2018). His research interests include speech technology and 
vision for autonomous driving. He is a Senior Member of IEEE.

References
[1] A. Arnab, O. Miksik, and P. H. S. Torr, “On the robustness of semantic segmen-
tation models to adversarial attacks,” in Proc. CVPR, Salt Lake City, UT, June 
2018, pp. 888–897. doi: 10.1109/CVPR.2018.00099.

[2] F. Assion, P. Schlicht, F. Gressner, W. Gunther, F. Hüger, N. Schmidt, and U. 
Rasheed, “The attack generator: A systematic approach towards constructing adver-
sarial attacks,” in Proc. CVPR—Workshops, Long Beach, CA, June 2019, pp. 
1370–1379. doi: 10.1109/CVPRW.2019.00177.

[3] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense 
of security: Circumventing defenses to adversarial examples,” in Proc. ICML, 
Stockholm, Sweden, July 2018, pp. 274–283.

[4] A. Bär, F. Hüger, P. Schlicht, and T. Fingscheidt, “On the robustness of redun-
dant teacher-student frameworks for semantic segmentation,” in Proc. CVPR—
Workshops, Long Beach, CA, June 2019, pp. 1380–1388. doi: 10.1109/
CVPRW.2019.00178.

[5] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and H. Winner, 
“Three decades of driver assistance systems: Review and future perspectives,” IEEE 
Intell. Transp. Syst. Mag., vol. 6, no. 4, pp. 6–22, Oct. 2014. doi: 10.1109/
MITS.2014.2336271.

[6] A. Buades, B. Coll, and J.-M. More, “A non-local algorithm for image denois-
ing,” in Proc. CVPR, San Diego, CA, June 2005, pp. 60–65. doi: 10.1109/
CVPR.2005.38.

[7] N. Carlini and D. Wagne “Adversarial examples are not easily detected: 
Bypassing ten detection methods,” in Proc. AISec, New York, Nov. 2017, pp. 3–14. 
doi: 10.1145/3128572.3140444.

[8] M. Cordts et al., “The cityscapes dataset for semantic urban scene understand-
ing,” in Proc. CVPR, Las Vegas, NV, June 2016, pp. 3213–3223. doi: 10.1109/
CVPR.2016.350.

[9] K. Dvijotham, M. Garnelo, A. Fawzi, and P. Kohli, “Verification of deep proba-
bilistic models,” in Proc. NIPS—Workshops, Montréal, QC, Dec. 2018, pp. 1–5.

[10] F. Engels, P. Heidenreich, A. M. Zoubir, F. K. Jondral, and M. Wintermantel, 
“Advances in automotive radar: A framework on computationally efficient high-reso-
lution frequency estimation,” IEEE Signal Process. Mag., vol. 34, no. 2, pp. 36–46, 
Mar. 2017. doi: 10.1109/MSP.2016.2637700.

[11] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adver-
sarial examples,” in Proc. ICLR, San Diego, CA, May 2015, pp. 1–10.

[12] C. Guo, M. Rana, M. Cissé, and L. van der Maaten, “Countering adversarial 
images using input transformations,” in Proc. ICLR, Vancouver, BC, Apr. 2018, 
pp. 1–12.

[13] L. Hobert, A. Festag, I. Llatser, L. Altomare, F. Visintainer, and A. Kovacs, 
“Enhancements of V2X communication in support of cooperative autonomous driv-
ing,” IEEE Commun. Mag., vol. 53, no. 12, pp. 64–70, 2015. doi: 10.1109/
MCOM.2015.7355568.

[14] S.-W. Kim, W. Liu, M. H. Ang, E. Frazzoli, and D. Rus, “The impact of coop-
erative perception on decision making and planning of autonomous vehicles,” IEEE 
Intell. Transp. Syst. Mag., vol. 7, no. 3, pp. 39–50, 2015. doi: 10.1109/
MITS.2015.2409883.

[15] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning at 
scale,” in Proc. ICLR, Toulon, France, Sept. 2017, pp. 1–17.

[16] J. Levinson et al., “Towards fully autonomous driving: Systems and algo-
rithms,” in Proc. Intelligent Vehicles Symp. (IV), Baden-Baden, Germany, June 
2011, pp. 163–168. doi: 10.1109/IVS.2011.5940562.

[17] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for 
semantic segmentation,” in Proc. CVPR, Boston, MA, June 2015, pp. 3431–3440. 
doi: 10.1109/CVPR.2015.7298965.

[18] J. H. Metzen, M. C. Kumar, T. Brox, and V. Fischer, “Universal adversarial 
perturbations against semantic image segmentation,” in Proc. ICCV, Venice, Italy, 
Oct. 2017, pp. 2774–2783. doi: 10.1109/ICCV.2017.300.

[19] R. Michelmore, M. Wicker, L. Laurenti, L. Cardelli, Y. Gal, and M. 
Kwiatkowska, Uncertainty quantification with statistical guarantees in end-to-end 
autonomous driving control. Sept. 2019. [Online]. Available: arXiv:1909.09884

[20] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal 
Adversarial Perturbations,” in Proc. CVPR, Honolulu, HI, July 2017, pp. 1765–1773 
doi: 10.1109/CVPR.2017.17.

[21] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple and 
accurate method to fool deep neural networks,” in Proc. CVPR, Las Vegas, NV, 
June 2016, pp. 2574–2582 doi: 10.1109/CVPR.2016.282.

[22] K. R. Mopuri, A. Ganeshan, and V. B. Radhakrishnan, “Generalizable data-
free objective for crafting universal adversarial perturbations,” IEEE Trans. Pattern 
Anal. Mach. Intell., vol. 41, no. 10, pp. 2452–2465, Oct. 1, 2019. doi: 10.1109/
TPAMI.2018.2861800.

[23] K. R. Mopuri, U. Garg, and R. V. Babu, “Fast feature fool: A data independent 
approach to universal adversarial perturbations,” in Proc. BMVC, London, Sept. 
2017, pp. 1–12.

[24] S. M. Patole, M. Torlak, D. Wang, and M. Ali, “Automotive radars: A review of 
signal processing techniques,” IEEE Signal Process. Mag., vol. 34, no. 2, 
pp. 22–35, Mar. 2017. doi: 10.1109/MSP.2016.2628914.

[25] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and 
R. Fergus, “Intriguing properties of neural networks,” in Proc. ICLR, Montréal, 
QC, Dec. 2014, pp. 1–10.

[26] J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar, and B. Litkouhi, 
“Towards a viable autonomous driving research platform,” in Proc. Intelligent 
Vehicles Symp. (IV), Gold Coast, QLD, June 2013, pp. 763–770. doi: 10.1109/
IVS.2013.6629559.

[27] M. Wu, M. Wicker, W. Ruan, X. Huang, and M. Kwiatkowska, “A game-
based approximate verification of deep neural networks with provable guarantees,” 
Theor. Comput. Sci., vol. 807, pp. 298–329, Mar. 2019. doi: 10.1016/j.tcs.2019. 
05.046.

[28] C. Xie, Y. Wu, L. van der Maaten, A. L. Yuille, and K. He, “Feature denoising 
for improving adversarial robustness,” in Proc. CVPR, Long Beach, CA, June 2019, 
pp. 501–509 doi: 10.1109/CVPR.2019.00059.

[29] L. Zeng, K. Zhang, Q. Han, S. Chen, L. Ye, R. Wang, J. Lei, and Q. Xie, 
“Research of path planning model based on hotspots evaluation,” in Proc. 
Intelligent Vehicles Symp. (IV), Paris, France, June 2019, pp. 2193–2198. doi: 
10.1109/IVS.2019.8814163.

[30] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “ICNet for real-time semantic seg-
mentation on high-resolution images,” in Proc. ECCV, Munich, Germany, Sept. 
2018, pp. 418–434. doi: 10.1007/978-3-030-01219-9_25.

 SP



53

AUTONOMOUS DRIVING: PART 2

IEEE SIGNAL PROCESSING MAGAZINE   |    January 2021   |1053-5888/21©2021IEEE

Mazin Hnewa and Hayder Radha

dvanced automotive active safety systems, in general, and 
autonomous vehicles, in particular, rely heavily on visual 
data to classify and localize objects, such as pedestrians, 

traffic signs and lights, and nearby cars, to help the correspond-
ing vehicles maneuver safely in their environments. However, 
the performance of object detection methods could degrade 
rather significantly in challenging weather scenarios, including 
rainy conditions. Despite major advancements in the develop-
ment of deraining approaches, the impact of rain on object de-
tection has largely been understudied, especially in the context 
of autonomous driving. 

Introduction
Visual data plays a critical role in enabling automotive ad-
vanced driver-assistance systems and autonomous vehicles 
to achieve high levels of safety while the cars and trucks 
maneuver in their environments. Hence, emerging autono-
mous vehicles are employing cameras and deep learning-
based methods for object detection and classification [1]–
[3]. These methods predict bounding boxes that surround 
detected objects and classify probabilities associated with 
each bounding box. In particular, convolutional neural net-
work (CNN)-based approaches have shown very promising 
results in the detection of pedestrians, vehicles, and other 
objects [4]–[10]. These neural networks are usually trained 
using a large amount of visual data captured in favorable 
clear conditions. However, the performance of such systems 
in challenging weather, such as rainy conditions, has not been 
thoroughly surveyed or studied.

The quality of visual signals captured by autonomous 
vehicles can be impaired and distorted in adverse weather 
conditions, most notably in rain, snow, and fog. Such con-
ditions minimize the scene contrast and visibility, and this 
could lead to a significant degradation in the ability of 
the vehicle to detect critical objects in the environment. 
Depending on the visual effect, adverse weather conditions 
can be classified as steady (such as fog, mist, and haze) or 
dynamic, which have more complex effects (such as rain and 
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snow) [11]. In this article, we focus on rain because it is the 
most common dynamic challenging weather condition that 
impacts virtually every populated region of the globe. Fur-
thermore, there has been a great number of recent efforts that 
attempt to mitigate the effect of rain in the context of visual 
processing. While addressing the effect of other weather con-
ditions has been receiving some, yet minimal, attention, the 
volume of work regarding the mitigation of rain is far more 
prevalent and salient within different research communities.

It is worth noting that rain consists of countless drops 
that have a wide range of sizes and complex shapes, and rain 
spreads quite randomly, with varying speeds when falling on 
roadways, pavement, vehicles, pedestrians, and other objects in 
the scene. Moreover, raindrops naturally cause intensity varia-
tions in images and video frames. In particular, every raindrop 
blocks some of the light that is reflected by objects in a scene. 
In addition, rain streaks lead to low contrast and elevated lev-
els of whiteness in visual data. Consequently, mitigating the 
effect of rain on visual data is arguably one 
of the most challenging tasks that autono-
mous vehicles will have to perform, due to 
the fact that it is quite difficult to detect and 
isolate raindrops, and it is equally problem-
atic to restore the information that is lost or 
occluded by rain.

Meanwhile, there has been noticeable 
progress in the development of advanced 
visual deraining algorithms [12]–[17]. Thus, one natural and 
intuitive solution for mitigating the effect of rain on active 
safety systems and autonomous vehicles is to employ robust 
deraining algorithms and then apply the desired object detec-
tion approach to the resulting derained signal. State-of-the-art 
deraining algorithms, however, are designed to remove the 
visual impairments caused by rain, while attempting to restore 
the original signal with minimal distortion. Hence, the prima-
ry objective of these algorithms, in general, is to preserve the 
visual quality as measured by popular performance metrics, 
such as the peak signal-to-noise-ratio and structure similar-
ity index (SSIM) [18]. These metrics, however, do not reflect 
a viable measure for analyzing the performance of the system 
for more complex tasks, such as object detection.

The main objective of this article is to survey and pres-
ent a tutorial on state-of-the-art and emerging techniques 
that are leading candidates for mitigating the influence 
of rainy conditions on an autonomous vehicle’s ability to 
detect objects. In that context, our goal includes surveying 
and analyzing the performance of object detection methods 
that are representatives of state-of-the-art frameworks that 
are being considered for integration into autonomous vehi-
cles’ artificial intelligence (AI) platforms. Furthermore, 
we survey and highlight the inherent limitations of leading 
deraining algorithms, deep learning-based domain adapta-
tion, and image translation frameworks in the context of 
rainy conditions.

While surveying a variety of relevant techniques in this 
area, we present experimental results with the objective of 

highlighting the urgent need for developing new paradigms 
for addressing the challenges of autonomous driving in severe 
weather conditions. Although generative model-based image 
translation and domain adaptation approaches do show some 
promise, one overarching conclusion that we aim to convey 
through this article is that current solutions do not adequately 
mitigate the realistic challenges for autonomous driving in 
diverse weather conditions. This overarching conclusion opens 
the door for the research community to pursue and explore new 
frameworks that address this timely and crucial problem area. 
The architectures highlighting the main parts of this article are 
highlighted in Figure 1.  

Object detection for autonomous vehicles 
in clear and rainy conditions
The level of degradation in the performance of an object de-
tection method, trained in certain conditions, is influenced 
heavily by 1) how different the training and testing domains 

are and 2) the type of deep learning-based 
architecture used for object detection. Most 
recent object detectors are CNN-based 
networks, such as the single-shot multibox 
detector [9], region-based fully convolu-
tional network [10], You Only Look Once 
(YOLO) [8], RetinaNet [7], and Faster Re-
gions With CNNs (R-CNNs) [6]. To that 
end, we review two major classes of object 

detection frameworks that are both popular and representa-
tive of deep learning-based approaches. As we see later in 
this tutorial, these two classes of architectures exhibit differ-
ent levels and forms of degradation in response to challeng-
ing rainy conditions, and they also perform rather differently 
in conjunction with potential rain mitigation frameworks.

In particular, we briefly describe the underlying architec-
tures for Faster R-CNN and YOLO as representatives of two 
major classes of object detection algorithms. Faster R-CNN is 
arguably the most popular of the object detection algorithms 
that are based on a two-stage deep learning architecture; one 
stage is for identifying region proposals (RPs), and the second 
is for refining and assigning class probabilities for the cor-
responding regions. YOLO, on the other hand, is a represen-
tative of detection frameworks that directly operate on the 
whole image.

Deep learning-based methods for object detection
The utility of CNNs for object detection was well established 
prior to the introduction of the notion of RPs, commonly 
known as R-CNN [4], where “R” stands for regions or RPs. 
A fast version of R-CNN was later introduced [5], and then 
Ren et al. [6] presented the idea of the RP network (RPN) that 
shares convolutional layers with Fast R-CNN [5]. The RPN is 
merged with the Fast R-CNN into one unified network that is 
known as Faster R-CNN to achieve more computationally ef-
ficient detection. Under Faster R-CNN, an input image is fed 
to a feature extractor, such as the ZF  model [19] or VGG-16 
[20], to produce a feature map. Then, the RPN utilizes this 

The impact of rain on 
object detection has 
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especially in the context of 
autonomous driving. 



55IEEE SIGNAL PROCESSING MAGAZINE   |   January 2021   |

feature map to predict RPs (regions in the image that could 
potentially contain objects of interest).

In that context, many RPs are quite overlapped with each 
other, with significant numbers of pixels common among 
multiple RPs. To filter out the substantial redundancy that 
might occur with such a framework, nonmaximum suppression 
(NMS) [21] is used to remove redundant regions while keeping 
the ones that have the highest prediction scores. Subsequently, 
each regional proposal that survives the NMS process is 
used by a region-of-interest (RoI) pooling layer to crop the 
corresponding features from the feature map. This cropping 
process produces a feature vector that is fed to two fully 
connected layers: one predicts the offset 
values of a bounding box of an object with 
respect to the regional proposal, and the 
other predicts class probabilities for the 
predicted bounding box. Figure 2 shows a 
high-level architecture for Faster R-CNN.

On the other hand, Redmon et at. [8] pro-
posed to treat object detection as a regres-
sion problem, and they developed a unified 
neural network that is called YOLO to predict bounding boxes 
and class probabilities directly from a full image in one evalua-
tion. Under YOLO, an input image is divided into a specific set 
of grid cells, and each cell is responsible for detecting objects 
whose centers are located within that cell. To that end, each 
cell predicts a certain number of bounding boxes, and it also 
predicts the confidence scores for these boxes in terms of the 
likelihood that they contain an object. Furthermore, it predicts 

conditional class probabilities, given that it has an object. In 
this case, there are potentially many wrongly predicted bound-
ing boxes. To filter them out and provide the final detection 
result, a threshold is used on the confidence scores of the pre-
dicted bounding boxes. Figure 2 illustrates the general archi-
tecture of YOLO.

Object detection performance for neural network 
architectures in clear and rainy conditions
Here, we provide an insight into the level of degrada-
tion caused by rainy conditions on the performance of the 
two major deep learning architectures described previously. 

In particular, we focus on the following 
fundamental question: how much degrada-
tion a deep neural network that is trained 
in clear conditions will suffer when tested 
in rainy weather. In that context, we first 
describe the data set that we used for train-
ing and testing; this is followed by present-
ing some visual and numerical results. For 
the purpose of this tutorial, we needed a 

rich data set that was captured in diverse weather conditions. 
Despite the fact that there are few notable data sets [22]–[24], 
which are quite popular among the computer vision and AI 
research communities in terms of training deep NNs, there is 
only one (arguably two [25], [26]) that is properly labeled and 
annotated for our purpose and hence that could be used for 
training and testing for different weather conditions. In par-
ticular, we use the Berkeley Deep Drive (BDD100K) data set 
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FIGURE 1. The architectures highlighting the main parts of the article. The (a) “Object Detection for Autonomous Vehicles in Clear and Rainy Conditions” 
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[25] because it contains image tagging for weather (i.e., each 
image in the data set is labeled with its weather condition, 
such as clear, rainy, foggy, and so on). Meanwhile, although 
some other data sets, such as nuScenes [26], might contain 
some visuals captured in rainy conditions, they do not have 
weather tagging. Hence, choosing the BDD100k data set was 
influenced by the fact that we could select images illustrating 
a specific weather condition.

Moreover, the BDD100K has 100,000 video clips captured 
in diverse geographic, environmental, and weather conditions. 
It is worth noting that only one selected frame from each video 
is annotated with object bounding boxes as well as image-lev-
el tagging. Examples of annotated frames in clear and rainy 
weather are shown in Figure 3. In this article, we consider the 
four classes (vehicle, pedestrian, traffic light, and traffic sign) 
that are labeled and provided as ground-truth objects within 
the BDD100K data set. Naturally, these four classes are among 

the most critical objects for an autonomous vehicle. In this 
tutorial, we use images that are captured in clear weather from 
the designated training set of the BDD100K to form our under-
lying training data set. We refer to this training data as the 
train clear set, which we used consistently to train the detec-
tion methods for the different scenarios covered in this article. 
For testing, we use a collection of clear weather images from 
the testing set of the BDD100K. We refer to this latter group as 
the test clear set. Table 1 gives the number of annotated objects 
in the train clear and test clear data sets.

One approach to demonstrate the impact of rain on object 
detection methods that are trained in clear conditions is by 
rendering synthetic rain [27]–[29] within the images of the 
test clear set. Then, the synthetic rainy data can be used to 
test the already trained object detection methods. The ben-
efit of this approach is that one would have the exact same 
underlying content in both testing data sets in terms of the 
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objects within the scene, with one set representing the origi-
nal clear-weather content when the data was captured and 
another set with the synthetic rain. This would plainly show 
the impact of rain, as the visual objects are the same in both 
tested sets (the test clear set and a test synthetic rain set). 
However, from our extensive experience in this area, we 
noticed that most well-known rain simulation methods do 
not render realistic rain that viably captures actual and true 
rainy weather conditions, especially for a driving vehicle. 
Thus, when comparing the two scenarios, this discrepancy 
between synthetic and natural (real) rainy conditions will 
lead to domain mismatch. As a result, we do not test the 
detection methods using synthetic rain in our study because 
those techniques will not demonstrate the impact of true 
natural rain on a driving vehicle.

Alternatively, we use images captured in real rainy condi-
tions from the training and testing sets of the BDD100K data 
set to test the object detection methods. It is worth noting that 
several images in the data set are wrongly tagged as rainy 
weather when they actually show clear or cloudy conditions, 
such as the examples in Figure 3(c). To solve this problem, 
we manually selected the images that were truly captured 
in rainy weather to form what we refer to as the test rainy
set. Equally important, we elected to have both the test clear 

and test rainy sets include approximately the same number of 
annotated objects, as shown in Table 1, to provide statistically 
comparable results.

It is important to make one final critical note regarding 
the currently available data sets for training NNs designed 
for object detection. The lack of data sets captured in diverse 
conditions, including rain, snow, fog, and other weather sce-
narios, represents one of the most challenging aspects of 
achieving a viable level of training for autonomous vehicles. 
Even for the BDD100K data set, which is one of very few 
publicly available data sets with properly annotated objects 
captured in different weather conditions, there is not a suf-
ficient amount of annotated visual content that is truly viable 
for training in rainy weather. This fundamental issue with 
the lack of real training data for rainy and other conditions 

Weather: Clear Weather: Clear Weather: Clear

Weather: Rainy Weather: Rainy Weather: Rainy

Weather: Rainy Weather: Rainy Weather: Rainy
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FIGURE 3. The examples of the annotated images in the BDD100K data set [25]. Images in (a) are tagged as clear weather, and images in (b) and (c) are 
tagged as rainy weather. However, images in (c) are wrongly tagged; they actually show clear or cloudy weather. 

Table 1. The number of annotated objects in the training and testing 
sets that are used in our study.

Set Vehicles Pedestrians Traffic Signs Traffic Lights
Train clear 149,548 16,777 43,866 26,002
Test clear 13,721 2,397 3,548 4,239
Test rainy 13,724 2,347 3,551 4,246
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has clearly become a major obstacle, to the extent that lead-
ing high-tech companies working in the area have begun a 
focused effort designated specifically for collecting data in 
rainy conditions. For example, Waymo recently announced 
plans to begin collecting data for autonomous driving in 
rainy conditions [30]. 

Performance metric
To evaluate the detection performance, we compute the 
mean average precision (mAP). This metric has been the 
most popular performance measure since the time when it 
was originally defined in the PASCAL Visual Object Classes 
Challenge 2012 for evaluating detection methods [31]. To de-
termine the mAP, a precision/recall curve is first computed 
based on the prediction result against the ground truth. A pre-
diction is considered a true positive if its bounding box has 
1) an intersection-over-union value greater than 0.5 relative 
to the corresponding ground-truth bounding box and 2) the 
same class label as the ground truth. Then, the curve is up-
dated by making the precision monotonically decrease. This 
is achieved by setting the precision for recall r to the maxi-
mum precision obtained for any recall .r r2  The AP is the 
area under the updated precision/recall curve. It is computed 
by numerical integration. Finally, the mAP is the mean of the 
AP among all classes.

Results and discussion
We trained the detection methods (Faster R-CNN and YOLO) 
using the train clear set, which is described in the “Object 
Detection Performance for Neural Network Architectures 
in Clear and Rainy Conditions” section. We used the same 
training settings and hyperparameters that were employed 
in the original papers [6], [8]. Then, we tested the trained 
models by using the test clear and test rainy sets to illus-
trate the impact of rain. Table 2 presents the AP for each 
class as well as the mAP evaluated based on the AP values 
of the classes. From the table, we observe that the mAP 
clearly declines in rainy weather compared to clear weath-

er using both Faster R-CNN and YOLO. Consequently, 
these results undoubtedly illustrate that the performance 
of an object detection framework that is trained using clear 
visuals could significantly degrade in rainy weather condi-
tions. The performance decreases due to the fact that rain 
covers and distorts important details of the underlying 
visual features, which are used by detection methods to 
classify and localize objects. Figure 4 provides examples 
when the detection methods fail to perceive most objects 
in rainy conditions.

Moreover, one can notice that in rainy conditions, the AP 
for the pedestrian and traffic light classes declines more sig-
nificantly than the decrease in performance for vehicle and 
traffic sign classes. This discrepancy in performance degra-
dation for different objects is due to a variety of factors. For 
example, vehicles usually occupy larger regions within an 
image frame than other types of objects; hence, even when 
raindrops or rain streaks cover a visual of a vehicle, there are 
still sufficient features that can be extracted by the detection 
method. Furthermore, traffic signs are normally made from 
materials that have high reflectivity, which makes it easier for 
an object detection method to achieve higher accuracy, even 
when a traffic sign visual is distorted by some rain. Overall, in 
both cases, the important features needed for reliable detection 
are still salient within the underlying deep NNs of the detec-
tion algorithms. Nevertheless, rain could still impact the detec-
tion of vehicle and traffic signs, as shown in the bottom three 
rows of Figure 4.

Deraining in conjunction with object detection
Deraining methods attempt to remove the effect of rain and 
restore an image of a scene that has been distorted by raindrops 
or rain streaks, while preserving important visual details. In 
this tutorial, we review three recently developed deraining 
algorithms [14]–[16] that employ deep learning frameworks 
for the removal of rain from a scene. The high-level architec-
tures of these methods are illustrated in Figure 5. In the fol-
lowing, we briefly describe these three deraining methods and 

Table 2. The AP for each class and mAP evaluated based on the AP values of the classes.

Faster R-CNN YOLO-V3

Mitigating Technique V-AP P-AP TL-AP TS-AP mAP V-AP P-AP TL-AP TS-AP mAP
None (clear conditions*) 72.61 40.99 26.07 38.12 44.45 76.57 37.12 46.22 50.56 52.62
None (rainy conditions**) 67.84 32.58 20.52 35.04 39 74.15 32.07 41.07 50.27 49.39
Deraining: DDN [14] 67 28.55 20.02 35.55 37.78 73.07 29.89 40.05 48.74 47.94
Deraining: DeRaindrop [15] 64.37 29.27 18.32 33.33 36.32 70.77 30.16 37.7 48.03 46.66
Deraining: PReNet [16] 63.69 24.39 17.4 31.68 34.29 70.83 27.36 35.49 43.78 44.36
Image translation: UNIT [32] 68.47 32.76 18.85 36.2 39.07 74.14 34.19 41.18 48.41 49.48
Domain adaptation [33] 67.36 34.89 19.24 35.49 39.24 Not applicable

V-AP: vehicle AP; P-AP: pedestrian AP; TL-AP: traffic light AP; TS-AP: traffic sign AP; DDN: deep-detail network.
*The top row shows the performance in clear conditions (i.e., using the test clear set), while all other rows show the performance in rainy conditions (i.e., using the test rainy set).
**Significant degradation in performance can be observed due to rainy conditions (text in red) relative to the performance in clear conditions (top row). Improvements in perfor-
mance by mitigating the effect of rain can be observed using generative model-based image translation and/or domain adaptation (highlighted in bold). Meanwhile, deraining 
algorithms do not improve, and most of the time further degrade, the performance.
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highlight their limitations when employing them in conjunc-
tion with object detection methods.

Deep detail network
Fu et at. [14] proposed a deep detail network (DDN) to 
remove rain from a single image. They employed a CNN, 
which is a residual neural network (ResNet) [34], to predict 
the difference between clear and rainy images, and used this 
difference to remove rain from a scene. In particular, the 
DDN exploits only the rainy image’s high-frequency details, 
and it uses such details as input to the ResNet while ignor-
ing the low-frequency background (interference) of the same 
underlying scene.

Attentive generative adversarial network
Qian et at. [15] proposed an attentive generative adversarial 
network (GAN) that is called DeRaindrop to remove rain-
drops from images. In this method, a GAN [35] with visual 
attention is employed to learn raindrop areas and their sur-
roundings. The first part of the generative network, known 

as the attentive recurrent network (ARN), produces an at-
tention map to guide the next stage of the DeRaindrop 
framework. The ARN includes the ResNet, long short-term 
memory (LSTM) [36], and CNN layers. The second stage 
of DeRaindrop, which is known as the contextual autoen-
coder, operates on the attention map, and hence it focuses 
on (or pays more attention to) the raindrop areas. The overall 
process from the two stages is expected to clean images free 
of raindrops. The architecture also includes a discriminative 
network, which assesses the generated rain-free images to 
verify that they are similar to real ones that have been used 
during the training process.

Progressive image deraining network
Ren et at. [16] proposed a PReNet to recursively remove 
rain from a single image. At each iteration, some rain is re-
moved, and the remaining rain can be progressively erased 
during subsequent iterations. Consequently, after a certain 
number of iterations, most of the rain should be removed, 
leading to a rain-free, quality image. In addition to several 

(a) (b) (c)

FIGURE 4. The (a) ground truth shown with example detection results using (b) Faster R-CNN and (c) YOLO for different visual scenes from the  
test rainy set [25].
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residual blocks of ResNet, the PReNet includes a CNN layer 
that operates on both the original rainy image and the cur-
rent output image. The PReNet also includes another CNN 
layer to generate the output image. Furthermore, a recur-
rent layer is appended to exploit dependencies in the deep 
features across iterations via convolution-
al LSTM. To train the PReNet, a single 
negative SSIM [18] or mean-square-error 
loss is used.

Results and discussion
To demonstrate the performance of the de-
raining methods outlined previously, we 
apply the pretrained deraining models pro-
vided by the corresponding authors to the test rainy set as a 
prepossessing step. After applying the deraining algorithms, 
which are anticipated to remove the rain from the input vi-
sual data and generate rain-free clear visuals, we feed 
the derained images into the object detection methods. Table 
2 shows the performance of the detection methods after ap-
plying the deraining approaches. It can be seen that the der-
aining algorithms actually degrade the detection performance 
when compared to directly using the rainy images as input 
into the corresponding detection frameworks. This is true 
for both Faster R-CNN and YOLO. One important factor for 
this degradation in performance is that the deraining process 
tends to smooth out the input image, and hence it distorts the 

meaningful information and distinctive features of a scene 
while attempting to remove the effect of rain.

In particular, it is rather easy to observe that state-of-the-
art deraining algorithms smooth out the edges of objects in 
an image, which leads to a loss of critical information and 

features, which are essential for enabling 
the detection algorithms to classify and 
localize objects. The images in the top two 
rows of Figure 6, representing outputs of 
Faster R-CNN and YOLO, show some of 
the objects that are not detected after using 
the deraining methods but that are success-
fully detected if rainy images are directly 
used as input into the detection algorithms.

A related critical issue to highlight for current derain-
ing algorithms is their inability to remove natural raindrops 
found in realistic scenes captured by moving vehicles. The 
root cause of this issue is the fact that deraining algo-
rithms have been largely designed and tested using synthetic 
rain visuals superimposed on the underlying scenes. What 
aggravates this issue is that, at least in some cases, the back-
ground environments employed to design and test deraining 
algorithms are predominantly static scenes with a minimal 
number of moving objects. Consequently, the salient dif-
ferences between such synthetic scenarios and the realistic 
environment encountered by a vehicle that is moving through 
natural rain represents a domain mismatch that is too 
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FIGURE 5. The general architectures of the used deraining methods, including (a) the DDN [14], (b) DeRaindrop [15], and (c) progressive recurrent 
network (PReNet) [16]. LSTM: long short-term memory; ARN: attentive recurrent network.

Relying purely on state- 
of-the-art deraining 
solutions does not 
represent a viable 
approach for mitigating 
the impact of rain.
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much to handle for current deraining algorithms, and this 
leads to the algorithms’ failure under realistic conditions 
for autonomous vehicles. Hence, overall, we believe that 
relying purely on state-of-the-art deraining solutions does 
not represent a viable approach for mitigating the impact 
of rain on object detection. The images in Figure 6(a) and 
(b), especially some of the cases in the bottom two rows, 
illustrate examples of the failure of deraining methods to 
improve the performance of object detection. 

Alternative training approaches for deep 
learning-based object detection
The requirement that autonomous driving systems must 
work reliably in different weather conditions is at odds with 
the fact that the training data are usually collected in dry 
weather with good visibility. Thus, the performance of ob-
ject detection algorithms degrades in challenging weather 
conditions, as we showed in the first “Results and Discus-
sion” section.

Ground Truth Without Deraining DDN DeRainDrop PReNet

Ground Truth Without Deraining DDN DeRainDrop PReNet
(a)

(b)

FIGURE 6. The example detection results for different visual scenes where no deraining methods were employed and where deraining methods (DDN 
[14], DeRaindrop [15], and PReNet [16]) were used in conjunction with detection methods. Objects were perceived using (a) Faster R-CNN [6] and  
(b) YOLO [37].
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One simple approach to address this problem is to train a 
given CNN for the detection of objects using images captured 
in real rainy weather. As we highlighted earlier, sufficient 
annotated data sets captured by moving vehicles in realistic 
urban environments in natural rainy conditions are not readily 
available. To that end, and in spite of the fact that some data 
sets are available, the very few data sets captured under real 
rainy conditions are not properly annotated [25]. Having such 
small data sets inherently makes them inadequate to reliably 
train deep learning architectures for objection detection. Fur-
thermore, annotating the available data captured in real rainy 
conditions with accurate bounding boxes is an expensive and 
time-consuming process.

An alternative approach for addressing the lack-of-real-data 
issue is to train detection methods using synthetic rain data. 
However, and as we highlighted earlier, the trained methods 
generalize poorly on real data due to the domain shift between 
synthetic and natural rain. To solve this issue, we review 
approaches that can be employed for training the detection 
methods using annotated clear data in conjunction with unan-
notated rainy data. In particular, we review and survey two 
emerging frameworks for addressing this critical issue: image 
translation and domain adaptation.

Unsupervised image-to-image translation
Image-to-image translation (I2IT) is a well-known computer 
vision framework that translates images from one domain 
(e.g., captured in clear weather) to another domain (e.g., rainy 
conditions) while preserving the underlying and critical visual 
content of the input images. In short, I2IT attempts to learn a 
joint distribution of images in different domains. The learning 
process can be classified into a supervised setting, where the 
training data set consists of paired examples of the same scene 
captured in both domains (e.g., clear and rainy conditions), and 
an unsupervised setting, where different examples of both do-
mains are used for training; hence, these examples do not have 
to be taken from the same corresponding scene.

The unsupervised case is inherently more challenging 
than supervised learning. More importantly, to address the 
main issue we face in the context of the lack of data needed to 
train object detection architectures in realistic conditions, we 
consequently need an unsupervised setting. In particular, the 
requirement of having a very large set of image pairs, where 
each pair of images must be of the same scene captured in 
different domains, renders supervised I2IT solutions virtu-

ally useless for our purpose. In fact, this requirement imposes 
more constraints than the lack-of-data issue that we are already 
trying to address. Hence, and despite the availability of well-
known supervised learning-based techniques in this area [38], 
[39], we have to resort to unsupervised solutions to address the 
problem at hand.

Recently, GANs [35] have been achieving very promising 
performance results in the area of image translation [32], [38]–
[41]. In general, a GAN consists of a generator and a discrimi-
nator. The generator is trained to fool the discriminator, while 
the latter attempts to distinguish (or discriminate) between real 
natural images, on the one hand, and fake images, which are 
generated by the trained generator, on the other hand. By doing 
this, GANs align the distribution of translated images with real 
images in the target domain.

As mentioned earlier, data sets that have paired clear–rainy 
images in driving environments are not publicly available. As a 
result, we use unsupervised I2IT (UNIT) [32] to translate clear 
images to rainy ones since the training process for the UNIT 
framework does not require paired images of the same scene. 
In other words, UNIT training requires two independent sets 
of images, where one consists of images in one domain, and 
the other includes images in a different domain. The high-level 
architecture of the UNIT model is shown in Figure 7. First, the 
encoder network maps an input image to a shared latent code (a 
shared, compact representation of an image in both domains). 
Then, the generator network uses the shared latent code to gen-
erate an image in the desired domain.

To train the UNIT model that learns the mapping from 
clear images to rainy ones, we use the train clear set that con-
sists of clear-weather annotated images as the source domain. 
For the target rainy domain, we extract a sufficiently large 
number of images from the rainy videos in the BDD100K 
data set. Subsequently, we apply images in the train clear 
set to the trained UNIT model to generate rainy images. We 
refer to the images that are generated by the UNIT model as 
the train-gen-rainy set. Examples of generated rainy images 
appear in Figure 8.

Eventually, we use the train-gen-rainy data set to train the 
detection methods. This is followed by using the test rain data 
set to evaluate the AP performance of the detection meth-
ods, which are now trained using the generated rainy set. We 
also calculate the mAP as we have done for other approaches. 
Table 2 shows the performance of detection methods that are 
trained using generated rainy images by the UNIT model.

Clear Image

CNN Layers ResNet ResNet

Encoder Network Generator Network

Shared
Latent Code

Transposed
CNN Layers

Rainy
Generated Image

FIGURE 7. The high-level architecture of the UNIT model [25] to generate images.
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Domain adaptation
Domain adaptation is another potentially viable framework 
that could be considered to address the major challenges that 
we have been highlighting in this tutorial regarding 1) the 
salient mismatch between the two domains (clear and rainy 
weather conditions) and 2) the lack of annotated training data 
captured in rainy conditions. In particular, a domain adaptation 
framework [33] has been designed and developed specifical-
ly for Faster R-CNN due to the fact that it is among the most 
popular object detection approaches. (At this point, we are not 
aware of other domain adaptation frameworks that have been 
designed and developed for YOLO. Consequently, given the 
tutorial nature of this article, we review only domain adapta-
tion that has already been developed for Faster R-CNN [33].)  
The framework developed in [33] adapts deep learning-based 
object detection to a target domain that is different from the 
training domain, without requiring any annotations in the target 

domain. In particular, it employs the adversarial training strat-
egy [35] to learn robust features that are domain invariant. In 
other words, it makes the distribution of features extracted from 
images in the two domains indistinguishable.

The architecture for the domain-adaptive Faster R-CNN 
model [33] is shown in Figure 2. There are two levels of domain 
adaptation that are employed. First, an image-level domain 
classifier is used. At this level, the global attributes (such as 
the image style, illumination, and so forth) of the input image 
are used to distinguish between the source and target domains. 
Thus, the (global) feature map resulting from the common 
CNN feature extractor of the Faster R-CNN detector is used 
as input toward the image-level domain classifier. Second, an 
instance-level domain classifier is employed. This classifier 
uses the specific features associated with a particular region 
to distinguish between the two domains. Hence, the instance-
level domain classifier uses the feature vector resulting from 

(a) (b)

FIGURE 8. The example images generated by the trained UNIT model. The (a) original clear images and (b) generated rainy images [25]. 



64 IEEE SIGNAL PROCESSING MAGAZINE   |   January 2021   |

the FCs at the output of the RoI pooling layer of the Faster 
R-CNN detector. The two classifiers, the image- and instance-
level ones, should naturally agree in terms 
of their binary classification decision about 
whether the input image belongs to the 
source or target domain. Consequently, a 
consistency regularization stage combines 
the output of the two classifiers to promote 
consistency between their outcomes.

While the two domain adaptation classi-
fiers are optimized to differentiate between 
the source and target domains, the Faster 
R-CNN detector must be optimized such that 
it becomes domain-independent or domain 
invariant. In other words, the Faster R-CNN 
detector must distinguish objects regardless of the input image 
domain (clear or rainy). Hence, the feature map resulting from 
the Faster R-CNN feature extractor must be domain invariant. To 
that end, this feature extractor should be trained and optimized to 
maximize the domain classification error achieved by the domain 
adaptation stage. Thus, while both the image- and instance-level 
domain classifiers are designed to minimize the binary classi-
fication error (between the source and target domains), the Faster 
R-CNN feature extractor is constructed to maximize the same 
binary classification error.

To achieve these contradictory objectives, a GRL [42] is 
employed. Thus, the GRL is a bidirectional operator that is 

used to realize two different optimization 
objectives. In the feed-forward direction, 
the GRL acts as an identity operator. This 
leads to the standard objective of minimiz-
ing the classification error when performing 
local backpropagation within the domain 
adaptation network. On the other hand, for 
backpropagation toward the Faster R-CNN 
network, the GRL becomes a negative sca-
lar. Hence, in this case, it leads to maximiz-
ing the binary classification error, and this 
maximization promotes the generation of a 
domain invariant feature map by the Faster 

R-CNN feature extractor.
Consequently, for the purpose of this tutor ial, we devel-

oped and employed a domain-adaptive Faster R-CNN 
[33] for rainy conditions. To train this model, we prepare the 
training data to include two sets: source data, which consists 
of images captured in clear weather (this set includes data 
annotations in terms of bounding box coordinates and object 
categories), and target data, which includes only images cap-
tured in rainy conditions without any annotations. To validate 
the trained model using domain adaptation, we tested it using 

(a) (b) (c)

FIGURE 9. The (a) ground truth, (b) original training, and (c) alternative training, where the example detection results using alternative training approaches 
for Faster R-CNN and YOLO are shown. The top-right image depicts the improvement in vehicle and traffic sign detection when images generated by I2IT 
(the UNIT model [25]) are used to train Faster R-CNN. The middle-right image shows the improvement in pedestrian detection when domain adaptation 
[33] is employed to train Faster R-CNN. The bottom-right image illustrates the improvement in pedestrian detection when images generated by I2IT (the 
UNIT model [25]) are harnessed to train YOLO.

The lack of data, and 
especially annotated data, 
that captures the truly 
diverse nature of rainy 
conditions for moving 
vehicles is arguably 
the most critical and 
fundamental issue  
in this area.
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the test rainy set. The performance of the detection method 
(Faster R-CNN) that is trained by the domain adaptation 
approach is shown in the bottom row of Table 2.

Discussion
Based on the results in Table 2, we observe that while derain-
ing algorithms degrade the AP performance when tested on 
scenes distorted by natural rain, improve-
ments can be achieved when employing 
I2IT and domain adaptation as mitigating 
techniques. Different cases are presented 
in Figure 9. In terms of the AP, and as an 
example, rainy conditions degrade the pe-
destrian detection capabilities for YOLO by 
more than 5% (from approximately 37% to 
32%), but by using image translation, the 
performance improves to an AP of more than 34%, conse-
quently narrowing the gap between the clear- and rainy-
condition performances. Similarly, both image translation 
and domain adaptation improve the traffic sign detection 
performance for Faster R-CNN. Furthermore, image trans-
lation seems to improve the vehicle detection performance 
under Faster R-CNN.

In other cases, for example, the traffic light detection per-
formance under Faster R-CNN, the domain adaptation and 
image translation do not seem to perform well when tested on 
natural rainy images (even when using natural rainy images as 
the target domain for training these techniques). One potential 
factor for this poor performance in some of these cases is the 
fact that small objects, such as traffic lights, are quite chal-
lenging to detect to start with. This can be seen from the very 
low AP value, even in clear conditions, which is a mere 26%. 
Naturally, the impact of raindrops or rain streaks on such 
small objects in the scene could be quite severe, to the extent 

that a mitigating technique might not be able to recover the 
salient features of these objects.

In summary, employing domain adaptation or generat-
ing rainy weather visuals using UNIT translation, and then 
using these visuals for training, seems to narrow the gap 
in performance due to the domain mismatch between clear 
and rainy weather conditions. This promising observation 

becomes especially clear when consider-
ing the disappointing performance of 
deraining algorithms. Nevertheless, it is 
also evident that there is still much room 
for improvement toward reaching the 
same level of performance in clear condi-
tions. There are key challenges that need 
to be addressed, though, when designing 
any new mitigating techniques for clos-

ing the aforementioned gap. These challenges include the 
broad and diverse scenarios for rainy conditions, especially 
in driving environments.

These diverse cases and scenarios can’t be learned 
in a viable way by using state-of-the-art approaches. For 
example, raindrops have a wide range of possible appear-
ances, and they come with various sizes and shapes, 
especially when falling on the windshield of a vehicle. 
Another factor is the influence of windshield wipers on 
altering the amount of rain, and even the shapes and sizes 
of raindrops, between wipe cycles. Other external factors 
include reflections from the surrounding wet pavement, 
mist in the air, and splash effects. Current state-of-the-
art image translation techniques and domain adaptation 
are not robust enough to capture this wide variety of rain 
effects. Figure 10 provides images from the test rainy set 
that illustrate several rainy weather scenarios and effects 
for driving vehicles.

(a) (b) (c)

FIGURE 10. The images from the test rainy set that illustrate several rainy weather scenarios and effects for driving vehicles, with (a) no raindrops,  
(b) various raindrops, and (c) mist and pavement reflection [25]. 

Generative models could 
still play a crucial role in 
training object detection 
methods to be more 
robust and resilient in 
challenging conditions.



66 IEEE SIGNAL PROCESSING MAGAZINE   |   January 2021   |

Conclusions
Besides outlining state-of-the-art frameworks for object de -
tection, deraining, I2IT, and domain adaptation, this tutorial 
highlighted crucial results and conclusions regarding current 
methods in terms of their performance in rainy weather 
conditions. In particular, we believe there is an overarching 
consistent message regarding the limitations of the surveyed 
techniques in handling and mitigating the impact of rain for 
visuals captured by moving vehicles. This consistent observation 
has serious implications for autonomous 
vehicles since the aforementioned limitations 
impact autonomous vehicles’ core safety 
capabilities. To address these issues, we 
recap some of our key findings and point out 
potential directions.
1) The lack of data, and especially anno-

tated data, that captures the truly diverse 
nature of rainy conditions for moving 
vehicles is arguably the most critical 
and fundamental issue in this area. 
Major industry players are becoming more willing to tack-
le this problem and more open about addressing this issue 
publicly. Consequently, a few related efforts have just 
been announced and actually commenced by high-tech 
companies. These efforts are specifically dedicated to 
operating fleets of autonomous vehicles in challenging 
and diverse rainy weather conditions, explicitly for the 
sake of collecting data under these conditions [30]. After 
years of testing and millions of driven miles conducted 
primarily in favorable and clear weather, there is a salient 
admittance and willingness to divert important resources 
toward data collection in challenging weather conditions 
that will be encountered by autonomous vehicles.

2) Despite the recent efforts to collect more diverse data, we 
believe that generative models could still play a crucial 
role in training object detection methods to be more 
robust and resilient in challenging conditions. In particu-
lar, we believe that novel and more advanced frameworks 
for UNIT could play a viable role for generating mean-
ingful data for training. Due to the fact that these frame-
works do not require annotated data, their underlying 
generative models could be useful in many ways. First, 
they could fill the gap that currently exists in terms of the 
lack of real annotated data in different weather condi-
tions; hence, progress in terms of training and testing new 
object detection methods could be achieved by using 
these generative models. 

Second, even after a reasonable amount of annotated 
data captured in natural rainy conditions becomes avail-
able, the generative models could still play a pivotal role 
in both the basic training and coverage of diverse scenari-
os. In other words, UNIT models could always generate 
more data that can compliment real data, and this, on its 
own, could be quite helpful to further the basic training of 
object detection methods. Furthermore, despite the num-
ber of various rainy condition scenarios that real data actu-

ally represent, there will always be a need for capturing 
certain scenarios that are not included in a real data set.  In 
that context, generative models could be used to produce 
data representing the scenarios that are missing from the 
real data sets, and hence they could increase the coverage 
and diversity of the cases that object detection methods 
can handle.

3) There is a need for novel deep learning architectures 
and solutions that have adequate capacity for handling 

object detection under diverse conditions. 
Designing a neural network that performs 
quite well in one domain yet degrades in 
others is not a viable strategy for autono-
mous vehicles. In general, training the 
leading object detection architectures 
through a diverse set of data does not 
necessarily improve the performance of 
these architectures relative to their results 
when trained on a narrow domain of 
cases and scenarios. We believe that this 

issue represents an opportunity for researchers in the 
field to make key contributions.
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AUTONOMOUS DRIVING: PART 2

e present a review of 3D point cloud processing and learn-
ing for autonomous driving. As one of the most important 
sensors in autonomous vehicles (AVs), lidar sensors col-

lect 3D point clouds that precisely record the external surfaces 
of objects and scenes. The tools for 3D point cloud processing 
and learning are critical to the map creation, localization, and 
perception modules in an AV. Although much attention has been 
paid to data collected from cameras, such as images and videos, 
an increasing number of researchers have recognized the im-
portance and significance of lidar in autonomous driving and 
have proposed processing and learning algorithms that exploit 
3D point clouds. We review the recent progress in this research 
area and summarize what has been tried and what is needed for 
practical and safe AVs. We also offer perspectives on open issues 
that are needed to be solved in the future.

Introduction and motivation
As one of the most exciting engineering projects of the modern 
world, autonomous driving is an aspiration for many research-
ers and engineers across generations. It is a goal that might 
fundamentally redefine the future of human society and ev-
eryone’s daily life. Once autonomous driving becomes ma-
ture, we will witness a transformation of public transportation, 
infrastructure, and the appearance of our cities. The world is 
looking forward to exploiting autonomous driving to reduce 
traffic accidents caused by driver errors, save drivers’ time, 
and liberate the workforce, as well as to save parking spaces, 
especially in urban areas [1].

Autonomous driving: History and current state
It has taken decades of effort to get closer to the goal of au-
tonomous driving. From the 1980s through the DARPA Grand 
Challenge in 2004 and the DARPA Urban Challenge in 2007, 
the research on autonomous driving was primarily conducted in 
the United States and Europe, yielding incremental progresses 
in driving competence in various situations [2]. In 2009, Google 
started a research project on self-driving cars and later created 
Waymo to commercialize the accomplishment based on their 
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early technical success. Around 2013–2014, the rise of deep neu-
ral networks brought on the revolution of practical computer vi-
sion and machine learning. This emergence made people believe 
that many technical bottlenecks of autonomous driving could be 
fundamentally solved. In 2015, Uber created the Uber Advanced 
Technologies Group with the aim to enable AVs to complete scal-
able ride-sharing services. This goal has become a common de-
ployment strategy within the industry.  

SAE International, a transportation standards organization 
previously known as the Society of Automotive Engineers, 
introduced the J3016 standard, which defines six levels of 
driving automation; visit https://www.sae.org/news/2019/01/
sae-updates-j3016-automated-driving-graphic for more infor-
mation. The standard ranges from SAE L0 (no automation) to 
SAE L5 (full automation). One turning point occurs between 
L2 and L3, where the driving responsibility shifts from a human 
driver to an autonomous system, and another turning point 
occurs between L3 and L4, where the human no longer drives 
under any circumstances. Currently, there are numerous high-
tech companies, automobile manufacturers, and start-up com-
panies working on autonomous-driving technologies, including 
Apple, Aptiv, Argo AI, Aurora, Baidu, General Motors Cruise, 
Didi, Lyft, Pony.ai, Tesla, Zoox, the major automobile compa-
nies, and many others [3]. These companies have ambitious 
goals to achieve SAE L4 in the near future.  

Although there has been significant progress across many 
groups in industry and academia, there is still much work to be 
done. Efforts from both industry and academia are needed to 
achieve autonomous driving. Recently, there have been many 
discussions and hypotheses about the progress and future of 
autonomous driving; however, few thoughts from those who 
push industrial-level self-driving technologies from the front-
line are publicly accessible. In this article, we provide a unify-
ing perspective from both practitioners and researchers.

In industry, an autonomous system usually includes a series 
of modules with complicated internal dependencies. Most mod-
ules are still far from being perfect due to a number of tech-
nical bottlenecks and the long-tail issues [4]. Additionally, a 
small error from one module can cause problems in subsequent 
modules and potentially result in a substantial failure at the 
system level. There has been some initial research on end-to-
end systems where the entire system is trained end to end and 
information can flow from sensors directly to the final plan-
ning or control decisions. These systems offer the promise to 
reduce internal dependency challenges; however, these systems 
often lack explainability and are difficult to analyze. Although 
significant progress has been made, there remain many open 
challenges in designing a practical autonomous system that can 
achieve the goal of full self-driving.

A tour of an autonomous system
An autonomous system typically includes the sensing, map-
creation, localization, perception, prediction, routing, plan-
ning, and control modules [5] (see Figure 1). A high-definition 
(HD) map is created offline. At runtime, the online system is 
given a destination. The system then senses its environment, 
localizes itself to the map, perceives the world around it, and 
makes corresponding predictions of future motion for these 
objects. The motion planner uses these predictions to plan a 
safe trajectory for an AV to follow the route to the destination 
executed by the controller.

Sensing module
To ensure reliability, autonomous driving usually requires 
multiple types of sensors. Cameras, radar, lidar, and ultrasonic 
sensors are most commonly used. Among those sensors, lidar 
is particularly interesting because it directly provides a pre-
cise 3D representation of a scene. Although the techniques for 
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FIGURE 1. The high-level architecture of a typical autonomous system. An HD map is built offline. At runtime, the online system is given a destination. The 
system then senses its environment, localizes itself to the map, perceives the world around it, and makes corresponding predictions of the future motion 
for these objects. The motion planner uses these predictions to plan a safe trajectory for an AV to follow the route to the destination, which is executed 
by the controller. Note that two types of 3D point clouds are used in this autonomous system: a point cloud map, created by the map creation module 
and consumed by the localization module, and a real-time lidar sweep, collected by the sensing module and consumed by the localization and perception 
modules. 
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3D reconstruction and depth estimation based on 2D images 
have been significantly improved with the development of 
deep learning-based computer vision algorithms, the result-
ing estimations are still not always precise or reliable. Besides 
algorithmic constraints, fundamental bottlenecks also include 
inherent exponential range error growth in depth estimation, 
poor performance in low light, and the high computational cost 
of processing high-resolution images. On the other hand, lidar 
measures 3D information through direct physical sensing. A 
real-time lidar sweep consists of a large number of 3D points, 
called a 3D point cloud. (The measurements from radar and 
ultrasound are also called 3D point clouds, but our focus is on 
the 3D point clouds collected by lidar.) Each 3D point records 
the range from the lidar to an object’s external surface, which 
can be transformed into the precise 3D coordinate. These 3D 
point clouds are extremely valuable for an AV to localize itself 
and detect surrounding objects in the 3D world. 

The vast majority of companies and researchers rely heav-
ily on lidar to build a reliable AV [6]. This is why we believe 
that advanced techniques for 3D point cloud processing and 
learning are indispensable for autonomous driving.

Map creation module
Map creation is the task of creating an HD map, a precise het-
erogeneous map representation of the static 3D environment 
and its traffic rules. An HD map usually contains two map 
layers: a point cloud map, representing 3D geometric informa-
tion of the surroundings, and a traffic rule-related semantic 
feature map, containing road boundaries, traffic lanes, traf-
fic signs, traffic lights, and so on. These two map layers are 
aligned together in the 3D space and provide detailed navi-
gation information. As one map layer, the point cloud map 
is a dense 3D point cloud and is mainly used for providing 
localization prior. Different from common maps designed for 
humans, an HD map is designed for AVs. The map creation 
module is crucial because an HD map provides valuable prior 
environmental information, as discussed in the “3D Point 
Cloud Processing for HD Map Creation” section. 

Localization module
Localization is the task of finding the ego position of an AV 
relative to a reference position in the HD map. This module is 
crucial because an AV must localize itself to use the correct 
lane and other important priors in the HD map. One of the core 
techniques is 3D point cloud registration; that is, estimating the 
precise location of an AV by matching real-time lidar sweeps 
to the offline HD map, as mentioned in the “3D Point Cloud 
Processing for HD Map Creation” section.

Perception
Perception is the task of perceiving the surrounding environ-
ment and extracting information related to navigation. This 
module is crucial because the perception module is the visual 
system of an AV, which should detect, track, and classify ob-
jects in the 3D scene. It used to be considered the technical 
bottleneck of autonomous driving. Recently, with large-scale 

training data and the development of advanced machine learn-
ing algorithms, the overall performance of the perception mod-
ule has improved tremendously. Some core techniques include 
2D and 3D object detection. 2D object detection becomes rela-
tively mature, while 3D object detection is based on real-time 
lidar sweeps and becomes an increasingly hot research topic, 
as discussed in the “3D Point Cloud Processing for Localiza-
tion” section.

Prediction
Prediction is the task of predicting the future potential trajec-
tories of each object in the 3D scene. This module is crucial 
because an AV must know the possible future behaviors of 
nearby objects to plan a safe trajectory.

Routing
Routing is the task of designing a high-level path from the AV’s 
starting position to its destination. The output of this module 
provides a high-level guideline for the planning module. 

Planning 
Motion planning is the task of designing a trajectory for an AV 
based on the state of current cars and its surrounding environ-
ment and destination. This module is crucial because an AV 
must know how to react to the surrounding environment. 

Control
Control is the task of executing the commands from the plan-
ning module. It takes charge of controlling the actuators of the 
steering wheel, throttle, and brakes.

Overview of 3D point cloud processing and learning
As mentioned previously, lidar provides indispensable 3D in-
formation for autonomous driving. In the following sections, 
we discuss the processing and learning techniques that convert 
raw lidar measurements into useful information. 

Usages in autonomous driving
Two types of 3D point clouds are commonly used in an AV: 
a real-time lidar sweep and a point cloud map, which is one 
layer in the HD map (see Figure 1). A point cloud map pro-
vides previous environmental information: the localization 
module uses a point cloud map as a reference in 3D point 
cloud registration to determine the position of the AV, and 
the perception module uses a point cloud map to help split 
the foreground and background. On the other hand, real-time 
lidar sweeps are consumed by the localization module to reg-
ister against the point cloud map and by the perception mod-
ule to detect surrounding objects in the 3D scene. Therefore, 
3D point cloud processing and learning are critical to build 
the map creation, localization, and perception modules in an 
autonomous system.

Recent progress in academia
Sensors capture data and data feeds algorithms. During the 
development of radar, acoustic sensors, and communication 
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systems, 1D signal processing experienced a rapid growth 
during the past century, leading to a revolutionary impact on 
digital communication systems. With the popularization of 
cameras and televisions, 2D image processing experienced 
a rapid growth during the past 30 years, resulting in a sig-
nificant change to photography, entertainment, and surveil-
lance. Due to the increasing needs from industrial robotics, 
autonomous driving, and augmented reality, 3D sensing 
techniques is experiencing rapid development recently. At 
the same time, the algorithms used to process and learn from 
3D point clouds are starting to receive much attention in aca-
demia. The discussion in the following sections is divided 
into two parts: 3D point cloud processing, which handles 3D 
point clouds from a signal processing perspective, and 3D 
point cloud learning, which handles 3D point clouds from a 
machine learning perspective. 

3D point cloud processing
3D point cloud processing is the analyzing and modifying of 
a 3D point cloud to optimize its transmission, storage, and 
quality through various mathematical and computational algo-
rithms. Even though the processing algorithms could be signif-
icantly different, many processing tasks are naturally extended 
from 1D signal processing and 2D image processing. For ex-
ample, 3D point cloud compression is the 3D counterpart of 
image compression and aims to reduce the cost for storage or 
transmission of a 3D point cloud; 3D point cloud denoising is 
the 3D counterpart of image denoising and seeks to remove 
noise from a 3D point cloud; 3D point cloud registration is the 
3D counterpart of image registration and attempts to align 
two or more 3D point clouds of the same scene; and 3D point 
cloud downsampling and upsampling are the 3D counterpart 
of image scaling and look to change the resolution (number of 
points) in a 3D point cloud. 

3D point cloud learning
3D point cloud learning is the process of interpreting and un-
derstanding a 3D point cloud. Using the powerful tools of 
deep neural networks, computer vision researchers aim to ex-
tend the success from images and videos to 3D point clouds. 
Two primary learning problems are 3D point cloud recogni-
tion and segmentation. Similar to the cases for 2D images, 
3D point cloud recognition aims to classify a given 3D point 
cloud into a predefined class category and 3D point cloud 
segmentation aims to partition a given 3D point cloud into 
multiple segments. Due to the irregular format of 3D point 
clouds, one of the biggest challenges for designing a learning 
algorithm is to formulate efficient data structures to represent 
3D point clouds. Some algorithms transform 3D point clouds 
to regular 3D voxels so that 3D convolutions can be used 
for analysis; however, they must make a tradeoff between 
resolution and memory. To handle raw point clouds directly, 
PointNet [7] uses pointwise multilayer perceptrons (MLPs) 
and max-pooling to ensure the permutation invariance. After 
that, a series of 3D deep learning methods follow PointNet as 
their base networks.

Relationship between academia and industry
The technical transition from 1D time series to 2D images 
is quite natural because both types of data are supported on 
regular-spacing structures; however, the technical transition 
from 2D images to 3D point clouds is not straightforward be-
cause those points are irregularly scattered in a 3D space. 
Numerous popular methods used to handle 3D point clouds 
are proposed heuristically by practitioners. Therefore, there 
is substantial room for researchers and practitioners to col-
laborate and solve fundamental tasks on 3D point cloud pro-
cessing and learning so that we can accelerate the progress of 
autonomous driving.

Key ingredients of 3D point cloud 
processing and learning
In this section, we introduce the basic tools of 3D point cloud 
processing and learning. We start with the key properties of 
3D point clouds. Next, we evaluate some options for repre-
senting a 3D point cloud. Finally, we review a series of popu-
lar tools used to handle 3D point clouds. These tools have re-
ceived great attention in academia. Even though some of them 
may not be directly applied to an autonomous system, it is still 
worth mentioning because they could inspire new techniques, 
which are potentially useful to autonomous driving. As dis-
cussed in the “Representative Tools” section, we consider two 
typical types of 3D point clouds in autonomous driving: real-
time lidar sweeps and point cloud maps.

Properties

Real-time lidar sweeps
Because of the sensing mechanism, for each 3D point in a real-
time lidar sweep, we can trace its associated laser beam and 
captured time stamp. One real-time lidar sweep can naturally 
be organized on a 2D image, whose x-axis is the time stamp 
and y-axis is the laser ID. We thus consider each individual real-
time lidar sweep as an organized 3D point cloud. For example, a 
Velodyne HDL-64E has 64 separate lasers, and each laser fires 
thousands of times per second to capture a 360° field of view. 
We thus obtain a set of 3D points associated with 64 elevation 
angles and thousands of azimuth angles. In a real-time lidar 
sweep, the vertical resolution is usually much lower than that 
of the horizontal resolution. Each collected 3D point is associ-
ated with a range measurement, an intensity value, and a high-
precision GPS time stamp. Note that for a global-shutter image, 
the pixel values are collected by a charge-coupled device at the 
same time; however, for a real-time lidar sweep, the 3D points 
are collected at various time stamps. For the same laser, fir-
ings happen sequentially to collect 3D points. For different la-
sers, firings are not synchronized either; thus, the collected 3D 
points are not perfectly aligned on a 2D regular lattice. 

Because the arrangement of 64 lasers follows a regular 
angular spacing, the point density of a real-time lidar sweep 
changes over the range; that is, we collect many more 3D points 
from nearby objects than from faraway objects. Moreover, a 
real-time lidar sweep naturally suffers from the occlusion; that 
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is, we obtain 3D points only from the sides of objects facing the 
lidar. To summarize, some key properties of a real-time lidar 
sweep include: 
■ Pseudo 3D: A real-time lidar sweep arranges 3D points 

approximately on a 2D lattice. Due to the imperfect syn-
chronization, 3D points are not perfectly aligned on a 2D 
lattice. Meanwhile, unlike a 3D point cloud obtained from 
multiple views, a real-time lidar sweep reflects only a spe-
cific view; we thus consider its dimension to be pseudo 
3D.

■ Occlusion: Each individual real-time lidar sweep records 
the 3D environment from nearly a single viewpoint. 
change slightly. A front object would occlude the other 
objects behind it.

■ Sparse point clouds: Compared to a 2D image, a real-time 
lidar sweep is usually sparse representations of objects, 
especially for faraway objects. It cannot provide detailed 
the 3D shape information of objects.

Point cloud maps
To create a point cloud map, one needs to aggregate real-time 
lidar sweeps scanned from multiple AVs across time. Because 
there is no straightforward way to organize a point cloud map, 
we consider it an unorganized 3D point cloud. For example, for 
a 200 200-m2#  portion of an HD map, one needs to aggregate 
the lidar sweeps around that area for 5–10 trials, leading to 
more than 10 million 3D points. Because lidar sweeps could be 
collected from significantly different views, an HD map after 
aggregation gets denser and presents a detailed 3D shape in-
formation. To summarize, some key properties of a point cloud 
map include:
■ Full 3D: A point cloud map aggregates multiple lidar 

sweeps from various views, which is similar to 3D data 
collected from scanning an object on a turntable. A 
point cloud map captures information on more objects’ 
surfaces, providing a denser and more detailed 3D rep-
resentation.

■ Irregularity: 3D points in a point cloud map are irregularly 
scattered in the 3D space. They come from multiple lidar 
sweeps and lose the laser ID association, causing an unor-
ganized 3D point cloud.

■ No occlusion: A point cloud map is an aggregation of 3D 
points collected from multiple viewpoints. It depicts the 
static 3D scene with much less occlusion.

■ Dense point clouds: A point cloud map provides a dense 
point cloud, which contains detailed 3D shape information, 
such as high-resolution shapes and the surface normals.

■ Semantic meanings: As another layer in the HD map, a traf-
fic rule-related semantic feature map contains the semantic 
labels of a 3D scene, including road surfaces, buildings, and 
trees. Because a traffic rule-related semantic feature map 
and a point cloud map are aligned in the 3D space, we can 
trace the semantic meaning of each 3D point. For example, 
3D points labeled as trees in a point cloud map would help 
improve perception as lidar points on leaves of trees are 
usually noisy and difficult to recognize.

Matrix representations
Representations have always been at the heart of most signal 
processing and machine learning techniques. A good repre-
sentation lays the foundation to uncover hidden patterns and 
structures within data and is beneficial for subsequent tasks. 
A general representation of a 3D point cloud is through a set, 
which ignores any order of 3D points. Let ( , )p aS i i i

N
1= =" ,  be 

a set of N 3D points, whose ith element [ , , ]x y zp Ri i i i
3!=

represents the 3D coordinate of the ith point and ai  represents 
other attributes of the ith point. A real-time lidar sweep usually 
includes the intensity ra Ri i !=  and a point cloud map usu-
ally includes surface normals ;n Ri

3!  thus, [ , ] .ra n Ri i i
4!=

For generality, we consider the feature of the ith point as 
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For efficient storage and scientific computation, a matrix 
(or tensor) representation is appealing. Let f be the mapping 
from a set of 3D points S  to a matrix (or tensor) X with a pend-
ing shape. A matrix representation of a 3D point cloud is thus 

( ).fX S=  Next we discuss a few typical approaches used to 
implement the mapping ( ).f $

Raw points
The most straightforward matrix representation of a 3D point 
cloud is to list each 3D point in the set S  as one row in the 
matrix. Consider
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draw)
!=  is the features of ith point in 

the 3D point cloud.
The advantages of raw-point-based representation are that 

1) it is simple and general and 2) it preserves all of the informa-
tion in the original set of 3D points; however, its shortcoming 
is that it does not explore any geometric property of 3D points. 
This representation is generally used in the map and the local-
ization module of an autonomous system, where high precision 
is needed.

3D voxelization
To enjoy the success of 2D image processing and computer vi-
sion, we can discretize the 3D space into voxels and use a series 
of voxels to represent a 3D point cloud. A straightforward dis-
cretization is used to partition the 3D space into equally spaced 
nonoverlapping voxels from each of three dimensions, as pre-
sented in Figure 2(a). Let a 3D space with range H, W, and D
along the x-, y-, and z-axes, respectively. Each voxel is of size h, 
w, and d, respectively. The (i, j, k)th voxel represents a 3D voxel 
space, ( , , ) ( ) ,x y z i h x ih1V , ,i j k 1; #= -" ( ) ,j w y jw1 1#-

( ) .k d z kd1 1#- ,  We then use a three-mode tensor to repre-
sent this 3D point cloud. Let ,X R( ) H W DVOX ! # #  whose (i, j, k)th 
element is
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The tensor X(vox)  records the voxel occupancy.
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The advantages of the 3D voxelization-based represen-
tation are that 1) the resulting voxels are associated with a 
natural hierarchical structure and all of the voxels have a 
uniform spatial size and 2) we can use off-the-shelf tools 
such as 3D convolutions to analyze data; however, its short-
comings are that 1) it does not consider specific properties of 
organized 3D point clouds, 2) it usually leads to an extremely 
sparse representation where most voxels are empty, and 3) it 
involves a serious tradeoff between the resolution and the 
memory. This representation can be used in the perception 
module of autonomous driving as well as the storage of 3D 
point clouds.

Range view
As discussed in the “Properties” section, a real-time lidar 
sweep is essentially a series of range measurements from a 
single location with a certain angular field of view [see Fig-
ure 2(b)]. We can approximately organize the 3D points in a 
real-time lidar to a 2D range-view image. Each pixel in the 
range-view image corresponds to a frustum in the 3D space. 
The pixel value is the range from the lidar to the closest 3D 
point inside the frustum. Specifically, we partition the 3D 
space along the azimuth angle [ , )0 2!a r  and the elevation 
angle ( , ]/ /2 2!i r r-  with the resolution of azimuth angle 

0a  and the resolution of elevation angle .0i  The (i, j)th pixel 
corresponds to a frustum space, ( , , ) ( )x y z i 1V ,i j 0; #a= -"

/ ,cos xa x y i2 2
01a+^ h ( )j 10i - # /tan za x y2 2+^ h +

/ .j2 01r i ,  We then use a 2D matrix to represent a 3D point 
cloud. Let ,X R( ) H WFV ! #  whose (i, j)th element is
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We consider the smallest range value in each frustum space. 
When no point falls into the frustum space, we set a default val-
ue as –1. Note that the range-view-based representation could 
also use nonuniform-spaced elevation angles according to the 
lidar setting.

The advantages of the range-view-based representation are 
that 1) it naturally models how lidar captures 3D points, reflect-
ing a 2D surface in the 3D space and 2) most associated frustum 
spaces have one or multiple 3D points, leading to a compact 
range-view image; however, its shortcoming is that it is difficult 
to model an unorganized point cloud, such as the point cloud 
map in an HD map. This representation can be used in the per-
ception module.

Bird’s-eye view
The bird’s-eye view (BEV)-based representation is a special 
case of 3D voxelization, as it ignores the height dimension. 
It projects 3D voxels to a BEV image, as shown in Figure 2(c). 
Let a 3D space with range H, W along the x- and y-axes, 
respectively. Each pixel is of size h, w, respectively. The 
(i, j)th pixel in the BEV image represents a pillar space, 

( , , ) ( ) ,x y z i h x ih1V ,i j 1; #= -" ( ) .j w y jw1 1#- ,  We 
then use a 2D matrix to represent a 3D point cloud. Let 
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The matrix X(BEV)  records the occupancy in the 2D space. 
Note that there are a few variations of the BEV-based rep-
resentations. For example, instead of using a binary value, 
MV3D [8] uses a few statistical values in each pillar space to 
construct .X( )BEV

The advantages of the BEV-based representation are that 1) 
it is easy to apply 2D vision-based techniques, 2) it is easy to 
merge with information from the HD map; for example, drivable 
areas and the positions of intersections encoded in the HD map 
can be projected onto the same 2D space and fused with lidar 
information, 3) it is easy to use for subsequent modules, such 
as prediction and motion planning, and 4) objects are always 
the same size regardless of range (contrasting with the range-
view-based representation), which is a strong prior and makes 
the learning problem much easier. However, the shortcoming
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FIGURE 2. The common approaches used to discretize the 3D space. (a) The 3D voxel-based representation is used to discretize the 3D space into equally 
spaced nonoverlapping voxels from each of the three dimensions, (b) the range-view-based representation is used to discretize the 3D space along the azi-
muth and elevation angles, and (c) the BEV-based representation is used to discretize the 3D space along the x-  and y-axes, omitting the height dimension.
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of this voxelization is that 1) it also involves a serious tradeoff 
between resolution and memory, causing excessive quantiza-
tion issues related to obtaining detailed information on small 
objects, 2) it does not consider the specific properties of orga-
nized 3D point clouds and cannot reason the occlusion, and 3) 
it causes the sparsity issue because most pixels are empty. This 
representation can be used in the perception 
module of autonomous driving.

Representative tools
3D point clouds have been studied across 
various communities, including robotics, 
computer graphics, computer vision, and 
signal processing. In the following sec-
tions, we introduce a few representative 
tools used to process and learn from 3D 
point clouds. We mainly emphasize deep neural network-
based approaches because of their practical applications in 
autonomous driving.

Nondeep learning methods
Before the emergence of deep learning, there have been many 
traditional methods used to handle 3D point clouds for various 
tasks. However, unlike deep neural networks, those conven-
tional methods can hardly be described in a single method-
ological framework. This is because handcrafted tools are spe-
cifically designed to cater to the needs of each individual task. 
For example, in 3D point cloud segmentation and 3D shape 
detection, traditional techniques have been developed based 
on either region growth with simple geometric heuristics or 
graph-based optimization, or robust estimation methods, such 
as random sample consensus [9]. As another important task, 
3D key point matching is closely related to 3D point cloud reg-
istration and 3D point cloud recognition. To tackle this task, 
many statistics-based methods have been developed in a hand-
crafted fashion and aim to describe the geometric structures 
around 3D key points or objects. For a more comprehensive 
discussion, see [10].

Convolutional neural networks 
The motivation for using convolutional neural networks 
(CNNs) is to leverage off-shelf deep learning tools to process 
3D point clouds. As regularized versions of MLPs, CNNs em-
ploy a series of convolution layers and are commonly applied 
to analyzing images and videos. A convolution layer operates 
a set of learnable filters on input data to produce the output 
that expresses the activation map of filters. The beauty of a 
convolution layer is weight sharing, that is, the same filter co-
efficients (weights) are applied to arbitrary positions in a 2D 
image, which not only saves a lot of learnable weights but also 
ensures shift invariance and helps avoid overfitting to limited 
training data. As a general and mature learning framework, 
CNNs and common variations are widely used in various com-
puter vision tasks, including classification, detection, and seg-
mentation and have achieved state-of-the-art performance in 
most tasks.

Based on the success of CNNs in images and videos, CNNs 
have been applied to 3D point cloud data as well. Multiple 
representations have been used, including the 3D voxelization-
based representation (2), the range-view-based representation 
(3), and the BEV-based representation (4). A benefit of using 
CNNs to handle a 3D point cloud is that a convolution operator 

naturally involves local spatial relationships. 
In PointNet, each 3D point is processed 
individually, while in CNNs, adjacent vox-
els or pixels are considered jointly, provid-
ing richer contextual information. The basic 
operator is a 3D convolution for the 3D 
voxelization-based representation and a 2D 
convolution for the range-view-based rep-
resentation and BEV-based representation, 
respectively. Without a loss of generality, 

consider a four-mode tensor ,X RI J K C! # # #  after convolving 
with C 3D filters ,H R Ck k k! # # #  the ( , , , )i j k c thl  element of 
the output Y RI J K C! # # # l is
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For simplicity, we omit the boundary issue. 3D convolution is 
expensive in both computation and memory usage.

Because of their discretization, many techniques and archi-
tectures developed for 2D images can be easily extended to 
handle 3D point clouds. Even though their discretization 
causes an inevitable loss of information, CNNs usually pro-
vide reliable performances and are widely used in many tasks. 
As discussed previously, one critical issue about discretizing 
a 3D point cloud is that a resulting 3D volume or 2D image is 
sparse. A huge amount of computation is wasted in handling 
empty voxels.

In summary, CNNs handle a 3D point cloud in a dis-
cretized representation. This approach inevitably modifies the 
exact 3D position information, but still provides strong and 
promising empirical performances because of the spatial rela-
tionship prior and the maturity of CNNs. It is thus widely used 
in the industry.

PointNet-based methods
The motivation for using PointNet-based methods is to direct-
ly handle raw 3D points by deep neural networks without any 
discretization. PointNet [7] is a pioneering work that achieves 
this goal. Raw 3D point clouds are inherently unordered sets, 
and PointNet was designed to respect this property and pro-
duce the same output regardless of the ordering of the input 
data. The key technical contribution of PointNet is to use a 
set of shared pointwise MLPs followed by global pooling to 
extract geometric features while ensuring this permutation-
invariant property of raw 3D data. Even though the architec-
ture is simple, it has become a standard building block for 
numerous 3D point cloud learning algorithms and achieves a 
surprisingly strong performance on 3D point cloud recogni-
tion and segmentation.

Raw 3D point clouds are 
inherently unordered sets, 
and PointNet was designed 
to respect this property 
and produce the same 
output regardless of the 
ordering of the input data.
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PointNet considers the raw-point-based representation 
X(r )aw  (1). Let H RN D! #  be a local-feature matrix, where 
the ith row Hi  represents the features for the ith point, and 
let h RD!  be a global-feature vector. A basic computational 
block of PointNet works as

, , , ,( ) i N1H MLP X forR( )
i i

DL (r )aw
f!= =

,( )maxpool Hh RD!= (5)

where X( )
i
raw  is the ith 3D point’s feature, and ( )MLP(L) $  de-

notes L-layer MLPs, which map each 3D point to a feature 
space, and ( )maxpool $  performs downsampling by computing 
the maximum values along the column (the point dimension) 
[see Figure 3(a)]. Note that each 3D point goes through the 
same MLPs separately.

Intuitively, the MLPs propose D representative geometric 
patterns and test whether those patterns appear around each 3D 
point. The max-pooling records the strongest response over all 
of the 3D points for each pattern. Essentially, the global-feature 
vector h summarizes the activation level of D representative 
geometric patterns in a 3D point cloud, which can be used to 
recognize a 3D point cloud. Meanwhile, because each 3D point 
goes through the same MLPs separately and the max-pooling 
removes the point dimension, the entire computational block is 
permutation invariant; that is, the ordering of 3D points does 
not influence the output of this block. To some extent, PointNet 
for 3D point cloud learning is similar to principal component 
analysis (PCA) for data analysis: it is simple, general, and effec-
tive. Just like PCA, PointNet extracts global features in a 3D 
point cloud.

To summarize, PointNet-based methods handle 3D point 
clouds in the raw-point-based representation and ensure the 
permutation invariance. The effectiveness has been validated 
in various processing and learning tasks.

Graph-based methods
The motivation for using graph-based methods is to leverage 
the spatial relationships among 3D points to accelerate the 
end-to-end learning of deep neural networks. One advantage 
of CNNs is that a convolution operator considers local spatial 
relationships; however, those relationships are between adjacent 
voxels (or adjacent pixels), not original 3D points. To capture 
the local relationships among 3D points, one can introduce a 

graph structure, where each node is a 3D point and each edge 
reflects the relationship between each pair of 3D points. This 
graph structure is a discrete proxy of the surface of an original 
object. A matrix representation of a graph with N nodes is an 
adjacency matrix ,A RN N! #  whose (i, j)th element reflects the 
pairwise relationship between the ith and jth 3D points [see Fig-
ure 3(b)]. Graph-based methods usually consider the raw-point-
based representation (1). Each column vector in X(r )aw  is then 
data supported on the A graph, called a graph signal.

There are several ways to construct a graph, such as 
K-nearest-neighbor (KNN), -e nearest-neighbor, and  learn-
able graphs. A KNN graph is one in which two nodes are con-
nected by an edge when their Euclidean distance is among 
the Kth smallest Euclidean distances from one 3D point to all 
of the other 3D points. An -e nearest-neighbor graph is one in 
which two nodes are connected by an edge when their Euclid-
ean distance is smaller than a given threshold .e  Both KNN 
and -e graphs can be efficiently implemented using efficient 
data structures, such as Octree [11]. A learnable graph is one 
whose adjacency matrix is trainable in an end-to-end learn-
ing architecture.

A general graph-based operation is a graph filter, which 
extends a classical filter to the graph domain and extracts fea-
tures from graph signals. The most elementary nontrivial graph 
filter is called a graph shift operator. Some common options 
for a graph shift operator include the adjacency matrix A, the 
transition matrix D A1- (D is the weighted degree matrix, 
a diagonal matrix with D A, ,ji i i j/=  reflecting the density 
around the ith point), the graph Laplacian matrix ,D A-  and 
many other structure-related matrices. The graph shift replaces 
the signal value at a node with a weighted linear combination 
of values at its neighbors; that is, ,Y AX RN(r )aw !=  where 
X RN(r ) 3aw ! #  is an input graph signal (an attribute of a point 
cloud). Every linear, shift-invariant graph filter is a polynomial 
in the graph shift
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where , , , ,h L0 1 1f, = -,  are filter coefficients and L is the 
graph filter length. A higher-order corresponds to a larger 
receptive field on the graph vertex domain. The output of graph 
filtering is given by the matrix-vector product ( ) .hY A X(r )aw=
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FIGURE 3. The representative tools. (a) PointNet uses a set of shared pointwise MLPs followed by max-pooling to extract the geometric features that 
exhibit the permutation-invariant property of raw 3D point clouds. (b) The graph-based methods introduce a graph structure that captures the local 
relationships among 3D points. In the graph, each node is a 3D point and each edge reflects the relationship between each pair of 3D points.
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Graph filtering can be used in various processing tasks, such as 
3D point cloud downsampling and denoising [12].

Inspired by the success of graph neural networks in social 
network analysis, numerous recent research works incorporate 
graph neural networks to handle a 3D point cloud. As the first 
such work, [13] introduces two useful techniques: the edge con-
volution operation and learnable graphs. The edge convolution 
is a convolution-like operation used to extract geometric fea-
tures on a graph. The edge convolution exploits local neighbor-
hood information and can be stacked to learn global geometric 
properties. Let H RN d! #  be a local-feature matrix, where the 
ith row Hi  represents the features for the ith point. A basic com-
putational block works as , ,i gH X X R( , )i i j i j

d(r ) (r )aw aw
E != ! ^ h

where E  is the edge set and ( , )g $ $  is a generic mapping, imple-
mented by some neural networks, and i is a generic aggregation 
function, which could be the summation or maximum opera-
tion. To some extent, the edge convolution extends PointNet by 
inputting a pair of neighboring points’ fea-
tures. The edge convolution is also similar 
to graph filtering: both aggregate neighbor-
ing information; however, the edge convo-
lution specifically models each pairwise 
relationship by a nonparametric function. 
The authors in [13] also suggest learning a 
graph dynamically; it always uses a KNN 
graph, but the distance metric is the Euclid-
ean distance in the high-dimensional feature space. 

Subsequent research has proposed to use novel graph neural 
networks to handle 3D point cloud recognition and segmenta-
tion. As one of the most recent works in this area, [14] con-
structs the deepest-yet graph convolution network architecture, 
which has 56 layers. It transplants a series of techniques from 
CNNs, such as residual and dense connections as well as dilat-
ed graph convolutions, to the graph domain.

To summarize, graph-based methods build graph struc-
tures that capture the distribution of a 3D point cloud and 
take advantage of local spatial relationships. This approach 
handles 3D point clouds in the raw-point-based representation, 
ensuring the permutation invariance. This approach is less 
mature: even though leveraging a graph improves its overall 
performance, graph construction is more art than science and 
takes extra computational cost [13]. Additionally, deep archi-
tectures used for graph-based neural networks still need more 
exploration [14].

3D Point cloud processing for HD map creation

Overview of an HD map creation module
To precisely represent the static 3D environment and traffic 
rules, an HD map usually contains two map layers: a point 
cloud map, representing 3D geometric information of sur-
roundings, and a traffic rule-related semantic feature map, 
containing road boundaries, traffic lanes, traffic signs, traf-
fic lights, the height of the curbs, and so forth. The main 
reason for creating an offline HD map is that understand-
ing traffic rules in real time is too challenging. For example, 

based on the current technology, it is difficult for an AV to 
determine the correct lane in real time when driving into at 
an intersection with complicated lane merging and splitting. 
In contrast, all traffic rules and environmental information 
can easily be encoded in an HD map, which goes through an 
offline process with human supervision and quality assur-
ance. An HD map provides strong and indispensable priors 
and fundamentally eases the designs of multiple modules 
in an autonomy system, including localization, perception, 
prediction and motion planning. Therefore, an HD map is 
widely believed to be an indispensable component of autono-
mous driving.

Priors for localization
The role of localization is to localize the pose of an AV. In 
an HD map, the point cloud map and the traffic rule-related 
semantic features, such as lane markers and poles, are usually 

served as localization priors for the map-
based localization. These priors are used to 
register real-time lidar sweeps to the point 
cloud map, such that one can obtain the re-
al-time high-precision ego motion of an AV.

Priors for perception
The role of perception is to detect all objects 
in the scene as well as their internal states. 

The perception module can use an HD map to serve as a prior 
for detection. For example, the positions of traffic lights in 
an HD map are usually served as perception priors for traffic 
light-state estimation. Using the point cloud map as priors, one 
can separate a real-time lidar sweep into foreground and back-
ground points in real time. We can then remove background 
points, which are those lying on the static scenes, such as road 
surfaces and the trunks of trees, and feed only foreground 
points to the perception module. This formalism can signifi-
cantly reduce the computational cost and improve the precision 
of object detection.

Priors for prediction
The role of prediction is to predict the future trajectory of each 
object in the scene. In an HD map, 3D road and lane geom-
etries and connectivities are important priors to the prediction 
module. These priors can be used to guide the predicted trajec-
tories of objects to follow the traffic lanes.

Priors for planning
The role of motion planning is to determine the trajectory of 
an AV. In an HD map, traffic rule-related semantic features 
such as lane geometries and connectivities, traffic lights, traf-
fic signs and the speed limit of lanes are indispensable priors 
for the planning module. These priors are used to guide the 
designed trajectory to follow the correct lane and obey the 
stop signs and other traffic signs.

Because an HD map is critical to autonomous driving, it must 
be created with high precision and be up to date. To achieve this, 
it usually needs sophisticated engineering procedures to analyze 

Graph-based methods 
build graph structures that 
capture the distribution  
of a 3D point cloud and 
take advantage of local 
spatial relationships.
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data from multiple modalities by exploiting both machine learn-
ing techniques and human supervision. A standard map creation 
module includes two core components: 3D point cloud stitching 
and semantic feature extraction (see Figure 4). 3D point cloud 
stitching merges real-time lidar sweeps collected from multiple 
vehicles across times into a point cloud map, and semantic fea-
ture extraction extracts semantic features, such as lane geom-
etries and traffic lights, from the point cloud map. To view a 
video illustration of the industrial-level HD maps, visit https://
vimeo.com/303412092 and additional illustrations in the supple-
mentary material that accompanies this article on IEEE Xplore. 

3D point cloud stitching
The goal of 3D point cloud stitching is to create a high-
precision point cloud map from the sensor data collected by 
a fleet of vehicles across time. Because a point cloud map 
dominates the precision of all the map priors, centimeter-
level precision is required for any local portion of the point 
cloud map. To promptly create and update city-scale HD 
maps, the process of 3D point cloud stitching must be highly 
robust and efficient.

One fundamental problem of 3D point cloud stitching is 
that of estimating the six-degree-of-freedom (DOF) pose 
of each lidar sweep, also called lidar pose. We consider the 
map frame as the standardized global frame, and the lidar 
frame as the ego frame of an AV at the time stamp when 
the corresponding real-time lidar sweep is collected. A lidar 
pose is then a transformation between the map frame and the 
lidar frame. It includes 3D translation and 3D rotation. Note 
that the 6-DOF pose can be represented as a 4 4#  homoge-
neous transformation matrix. Using the lidar poses, all of the 
lidar sweeps can be synchronized to the standardized global 
frame and integrated to form a dense 3D point cloud. To esti-
mate lidar poses, a commonly used technique is simultane-
ous localization and mapping (SLAM). Let Si  and S j  be 

the ith and jth real-time lidar sweeps, respectively. SLAM 
works as

( , ) ( ) ,argmin h p p g p,p
pp

i j iSSi j

ji

+; E// (6)

where pi is the 6-DOF lidar pose associated with the ith real-
time lidar sweep, ( , )h p p, i jSSi j  indicates the negative log like-
lihood of the measurement on the misalignment between Si

and S j  and ( )g $  indicates the negative log likelihood of the dif-
ference between the predicted lidar position in the map frame 
and the direct measurement of GPS [15]. A typical choice of 

( , )h p p, i jSSi j  is the objective function of the iterative closest 
point (ICP) algorithm. We thus minimize the objective func-
tion of the ICP algorithm and assign the optimized value to 

( , ) .h p p,S S i ji j

SLAM is a big research field in robotics communities and 
there exists extensive research that aims to solve the optimiza-
tion problem (6). For example, the filter-based SLAM solves 
the optimization problem (6) in an approximated and online 
fashion. It employs Bayes filtering to predict and optimize 
the map and lidar poses iteratively based on its online sensor 
measurements. On the other hand, the graph-based SLAM 
optimizes all of the lidar poses together by using all sensor 
measurements across time. It constructs a pose graph that 
models the relations among lidar poses. In the pose graph, 
the ith node is the ith lidar pose ;pi  and the (i, j)th edge is 
the cost of misalignment between the ith and jth lidar poses, 

( , )h p p, i jS Si j  (see the pose graph in Figure 4). Intuitively, each 
edge weight is either the total point-to-point distance or the 
total point-to-plane distance between two lidar sweeps. Solv-
ing (6) is thus equivalent to minimizing the total sum of the 
edge weights of a pose graph. For a city-scale map creation, 
the SLAM solution must satisfy the requirements discussed in 
the following sections.
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FIGURE 4. A standard HD map creation system includes two core components: a 3D point cloud stitching and semantic feature extraction. 3D point 
cloud stitching usually adopts graph-based simultaneous localization and mapping (SLAM) with hierarchical refinement, and semantic feature extraction 
contains iterative procedures of machine learning and human supervision. A key component in graph-based SLAM is a pose graph, which models the 
relations among lidar poses. The nodes are lidar poses and edges reflecting the misalignment level between two lidar poses. The final outputs include a 
point cloud map, which is a dense 3D point cloud, as well as a traffic rule-related semantic feature map, containing the positions of land markers, traffic 
signs, and traffic lights. IMU: inertial measurement unit. 
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High local and global precision
Local precision indicates that the lidar poses in a local region 
are accurate with respect to one another, and global preci-
sion indicates that all of the lidar poses in the entire HD map 
are accurate with respect to the standardized global frame. 
For the SLAM solution, centimeter-/microradian-level lo-
cal precision must be achieved because autonomy software 
modules require highly accurate local surroundings from 
the HD map, and centimeter-level global precision is useful 
to accelerate the HD map update process, especially for the 
city-scale application.

High robustness
The SLAM solution requires handling the noisy sensor mea-
surements collected by multiple vehicles driving in compli-
cated scenes and complex driving conditions in the real world.

High efficiency
The SLAM solution necessitates handling the optimization 
of more than 100 million lidar poses. To achieve high preci-
sion and robustness, the graph-based SLAM is a better option 
than the filter-based SLAM because the global optimization 
formalism makes the graph-based SLAM inherently more ac-
curate; however, it is still challenging to solve the city-scale 
graph-based SLAM problem with high efficiency and robust-
ness. There are two main reasons for this. First, the scale of the 
problem is enormous. It is expensive to solve the optimization 
problem (6) in a brute-force way because the core step of the 
optimization algorithm is solving a series of equations associ-
ated with an n n# matrix, where n is the total number of lidar 
poses. For a city-scale map, n could be more than 100 millions, 
causing big issues for both computational efficiency and nu-
merical stability of the optimization algorithm. Second, evalu-
ating edge weights in a pose graph usually suffers from low 
precision because sensor data are collected in complex driving 
conditions. For example, the calculation of the misalignment 
between consecutive lidar sweeps will likely be compromised 
by the moving objects.

To effectively solve this problem, the graph-based 
SLAM with the hierarchical refinement formalism can be 
adopted [16]. The functionality of hierarchical refinement 
formalism provides a good initialization for the global opti-
mization, making the optimization both fast and accurate. 
The hierarchical refinement formalism distinguishes two 
types of edges in a pose graph; that is, adjacent and loop-
closure edges. Adjacent edges model the relations between 
two lidar poses whose corresponding lidar sweeps are con-
secutively collected from the same log set, and loop-closure 
edges model the relations between two lidar poses whose 
corresponding lidar sweeps are collected around the same 
location from different log sets (different vehicles or across 
time). To handle these two types of edges, the hierarchi-
cal refinement formalism includes two steps: 1) optimizing 
adjacent edges, including a chain of lidar poses from a sin-
gle log set and 2) optimizing loop-closure edges, including 
lidar poses across log sets, as shown in Figure 4. In the first 

step, rather than relying simply on aligning lidar sweeps, 
sensor measurements from multiple modalities, including 
inertial measurement units (IMUs), GPS, odometer, cam-
eras, and lidar, can be fused together to calculate the adja-
cent edges. Because consecutive lidar sweeps have similar 
lidar poses, this step is usually easy and provides extremely 
high precision. In the second step, the loop-closure edges 
are calculated by aligning lidar sweeps through the ICP 
algorithm. After these two steps, we then perform global 
optimization (6).

Because most edges in a pose graph are adjacent edges, 
which can be highly optimized through the first step, the 
hierarchical refinement formalism provides a good initial-
ization for the global optimization. Therefore, the compu-
tational cost for optimizing the entire pose graph can be 
significantly reduced, and the robustness of the global opti-
mization can be greatly improved by the hierarchical refine-
ment formalism.

Semantic feature extraction
The goal of semantic feature extraction is to extract traffic 
rule-related semantic features, such as lane geometries, lane 
connectivities, traffic signs, and traffic lights, from the point 
cloud map. This component requires both high precision and 
recall. For example, missing a single traffic light prior in a city-
scale HD map can potentially cause serious issues to the per-
ception and motion planning modules, severely jeopardizing 
the safety of autonomous driving.

The semantic feature-extraction component usually con-
tains two iterative steps. The first of which uses machine 
learning techniques to automatically extract features, while 
the second step introduces human supervision and quality 
assurance processes to ensure the high precision and recall of 
semantic features. 

To automatically extract features, standard machine learn-
ing techniques are based on CNNs. The inputs are usually the 
combination of the lidar ground images and the camera imag-
es associated with the corresponding real-time lidar sweep. 
A lidar ground image renders the BEV-based representation 
of the point cloud map obtained in 3D point cloud stitching, 
where the values of each pixel are the ground height and laser 
reflectivity of each lidar point. The outputs are usually the 
semantic segmentation of either the lidar ground images or the 
camera images. The networks follow from standard image seg-
mentation architectures.

After obtaining the output, the pixel-wise semantic 
labels are projected back to the point cloud map. By fit-
ting the projected 3D points into 3D splines or 3D polygons, 
the traffic rule-related semantic feature map can then be 
obtained. Note that the human-editing outcomes also serve 
as an important source of training data for automatic fea-
ture-extraction algorithms, where these two steps therefore 
form a positive feedback loop to improve the precision and 
efficiency of HD map production. There still exist several 
challenges for HD map creation, which are presented in the 
next section.
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Real-world challenges

Point cloud map with centimeter-level global precision
Global precision can greatly benefit the updating of a city-scale 
point cloud map. The changes of the urban appearance usually 
take place locally. Ideally, the map update should focus on the 
targeted portion of the pose graph; however, 
a point cloud map with high local precision 
but without high global precision cannot free-
ly access the targeted portion from a global 
aspect and guarantee its precision. In com-
parison, given a point cloud map with high 
global precision, one can focus on updating 
the targeted portion of the pose graph, thus 
significantly reducing the scale of computa-
tion; however, it is challenging to enforce the global precision to 
the graph-based SLAM. This is because the global optimization 
formalism of graph-based SLAM tends to distribute the error of 
each edge uniformly in the graph. Therefore, even if the GPS 
observations are accurate, the corresponding lidar poses can be 
misaligned after global optimization. Enforcing centimeter-level 
global precision of a point cloud map can be especially challeng-
ing in the places where the GPS signal is unavailable, such as in 
a building canyon, a tunnel, or an underground garage. 

Automatic semantic feature extraction
Although there exists extensive research on semantic segmentation 
based on 3D point clouds and camera images, it is still challeng-
ing to automatically extract lane connectivities in the intersections 
and traffic lights that indicate lane-control relations. This is due to 
limited training labels and complex traffic conditions. Currently, 
the solution for extracting complex semantic features, such as traf-
fic light to lane-control information, still relies largely on human 
supervision, which is both expensive and time consuming.

3D Point cloud processing for localization

Overview of the localization module
As introduced in the “A Tour of an Autonomous System” sec-
tion, the localization module finds th ego position of an AV 

relative to the reference position in the HD map. It consumes 
the real-time measurements from multiple sensors including 
lidar, the IMU, GPS, odometer, and cameras as well as the HD 
map (see Figure 5). Because of the 3D representation of an HD 
map, the ego position of an AV is a 6-DOF pose (translation 
and rotation), which is a rigid transformation between the map 

and lidar frames. The importance of the lo-
calization module to autonomous driving is 
that it bridges the HD map to the other mod-
ules in an autonomous system.  For exam-
ple, by projecting the HD map priors, such 
as the lane geometries to the lidar frame, 
the AV gains the knowledge of which lane 
it drives on and which lanes the detected 
traffic is on. To view a video illustration of 

real-time localization, visit (https://vimeo.com/327949958) 
and additional illustrations in the supplementary material that 
accompanies this article on IEEE Xplore. 

To enable full autonomous driving, high precision and 
robustness are the most critical criteria for the perfor-
mance of the localization module. High precision indicates 
that the error of translation and the error of rotation angle 
should be at the centimeter and microradian levels, respec-
tively. It allows for the traffic detected from 1 km away to 
be associated with the correct lanes in the HD map, and 
the lane-change intentions of the nearer traffic can be pre-
dicted by measuring the distance between its wheels to the 
lane boundaries, which can significantly benefit motion 
planning and prediction modules. Robustness indicates 
that the localization module is expected to work in all 
driving conditions with changes in illumination, weather, 
traffic, and road conditions. Note that although the com-
mercial-grade GPS/IMU unit with real-time kinematics 
mode has accurate position measurement in open areas, 
it is not robust enough for autonomous driving because it 
suffers from the low-precision issue in the city due to mul-
tipath effects.

To achieve these aforementioned criteria, the map-based 
localization with multisensor fusion is the standard approach. 
As discussed in previous sections, an HD map could be created 

Real-Time Lidar Sweep

HD Map
IMU GPS Odometer

Bayes Filter
Geometry-Based Matching

Laser Reflectivity-Based Matching

Lidar-to-Map Registration Multisensor Fusion

Lidar Pose

FIGURE 5. A standard map-based localization system includes two core components: lidar-to-map registration and multisensor fusion. Lidar-to-map reg-
istration uses geometry-based matching and laser reflectivity-based matching to achieve high precision and recall, and multisensor fusion adopts Bayes 
filters to merge multiple modalities.  

The importance of the 
localization module to 
autonomous driving is that 
it bridges the HD map to 
the other modules in an 
autonomous system.



80 IEEE SIGNAL PROCESSING MAGAZINE   |   January 2021   |

beforehand to significantly ease the localization. On the con-
trary, the SLAM-based solution cannot satisfy these criteria.

Map-based localization
The basic idea of the map-based localization is to estimate the 
lidar pose by matching a lidar sweep to the point cloud map in 
an HD map by leveraging the measurements from the IMU, 
GPS, and cameras to make pose estimation robust. A map-
based localization system usually consists of two components, 
as depicted in Figure 5. The first component is the lidar-to-map 
registration, which computes the lidar pose by registering lidar 
sweep to a point cloud map; The second component is the mul-
tisensor fusion, which estimates the final pose from the IMU, 
odometer, and GPS as well as the estimation from the lidar-to-
map registration.

Lidar-to-map registration
The lidar-to-map registration component directly estimates the 
lidar pose by matching the lidar sweep to the point cloud map. 
Let ,SS (map)  be a real-time lidar sweep and the point cloud 
map, respectively. The problem of lidar-to-map registration 
can be formulated as

( ( ), ) ,argmin g f x S )
p p i i

(map

x Si!

); E/ (7)

where p is the lidar pose, xi  is the ith 3D point in the lidar 
sweep, and S i

(map) )  is the 3D point in the point cloud map, 
which is associated with the ith 3D point in the lidar sweep. 
The associated index i)  is usually chosen from the closest 
point in the Euclidean distance. :f R Rp

3 3"  is the function 
that transforms a 3D point xi  in the lidar frame into the map 
frame based on the lidar pose p, and ( )g $  indicates a loss func-
tion measuring the misalignment between the points from the 
lidar sweep and the HD map. Usually, ( )g $  takes the form of 
the point-to-point, point-to-line, or point-to-plane distances 
between the associated points in the lidar sweep and the point 
cloud map.

To solve (7) and achieve high precision and recall, the fol-
lowing two major approaches are used:
■ Geometry-based matching: This approach calculates the 

high-precision 6-DOF pose by matching the lidar sweep to 
the point cloud map based on the ICP algorithm [17]. This 
approach usually works well in heavy traffic and challeng-
ing weather conditions, such as snow, because a point 
cloud map contains abundant geometry priors for lidar 
sweeps to match with; however, in geometry-degenerated 
scenes, such as tunnels, bridges, and highways, the ICP 
calculation could diverge because of the loss of geometric 
patterns, hence causing bad precision.

■ Laser reflectivity-based matching: This approach calcu-
lates the pose by matching a lidar sweep to a point cloud 
map based on laser reflectivity signals. The matching can 
be done in either the dense 2D image-matching method 
or the feature extraction-based ICP-matching method. 
For the first method, the laser reflectivity readings of the 

lidar sweep and the point cloud map are first converted 
into gray-scale 2D images [following the BEV-based 
representation (4)] and then the pose is calculated using 
image-matching techniques. Note that this method only 
calculates the x, y, and yaw components of the pose. To 
obtain the 6-DOF pose, the z, roll, and pitch components 
are estimated based on the terrain information in the HD 
map. For the second method, the region-of-interest 
objects, such as lane markers and poles, are first extract-
ed from the lidar sweep based on the laser-reflectivity 
readings [18]. The ICP algorithm can then be used to cal-
culate the lidar pose by matching the region-of-interest 
objects between the real-time lidar sweeps and the priors 
in the HD map. This approach usually outperforms 
geometry-based matching in the highway and bridge sce-
narios because those scenarios lack geometry features 
but have rich laser reflectivity textures on the ground 
(e.g., dashed lane markers). This approach does not work 
well in challenging weather conditions such as heavy 
rain and snow, where the laser reflectivity of the ground 
will change significantly.
To achieve the best performance, both of these two strategies 

can simultaneously be used to estimate lidar poses; however, 
lidar-to-map registration alone cannot 100% guarantee the preci-
sion and recall for pose estimation over time. To give an extreme 
example, if lidar is totally occluded by trucks driving side by side 
or front and back, the lidar-to-map registration component would 
fail. To handle extreme cases and make the localization module 
robust, the multisensor fusion component is required.

Multisensor fusion
The multisensor fusion component is used to estimate a ro-
bust and confident pose from the measurements of multiple 
sensors, including the IMU, GPS, odometer, and cameras as 
well as the poses estimated by the lidar-to-map registration 
module. The standard approach of multisensor fusion is to 
employ a Bayes-filter formalism, such as a Kalman, extended, 
or particle filter. Bayes filters consider an iterative approach to 
predict and correct the lidar pose and other states based on the 
vehicle motion dynamics and multisensor readings. In autono-
mous driving, the states tracked and estimated by Bayes filters 
usually include motion-related states such as pose, velocity, 
acceleration, and so on, and sensor-related states such as IMU 
bias and so forth.

Bayes filters work in two iterative steps: prediction and cor-
rection. In the prediction step, during the gaps between sen-
sor readings, the Bayes filter predicts the states based on the 
vehicle motion dynamics and the assumed sensor model. For 
example, by taking the constant acceleration approximation as 
the vehicle motion dynamics during a short period of time, the 
evolution of pose, velocity, and acceleration can be predicted 
by Newton’s laws. The IMU bias states can be predicted by 
assuming that it behaves as white noise.

In the correction step, when receiving a sensor reading or 
a pose measurement, the Bayes filter corrects the states based 
on the corresponding observation models. For example, when 
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an IMU reading is received, the states of acceleration, angu-
lar velocities, and the IMU bias are corrected. When a pose 
measurement is received, the pose state is corrected. Note 
that the states require correction because the prediction step 
is not prefect and there are accumulated errors over time.

Real-world challenges
The real-world challenges of the localization module are that 
it works in extreme scenes. For example, when an AV drives 
through a straight tunnel without a dashed 
lane marker, there are few geometric and 
texture features, causing the failure of the 
lidar-to-map registration. When an AV is 
surrounded by large trucks, lidar could 
be totally blocked, also causing the fail-
ure of the lidar-to-map registration. When 
the failure of the lidar-to-map registration 
lasts for several minutes, the lidar pose 
estimated by the multisensor fusion component will drift 
significantly and the localization module will lose precision.

3D Point cloud processing for perception

Overview of the perception module
As introduced in the “A Tour of an Autonomous System” sec-
tion, the perception module is the visual system of an AV that 
enables the perception of the surrounding 3D environment. 
The input of the perception module usually includes the mea-
surements from cameras, lidar, radar, and ultrasound as well 
as the ego-motion pose output from the localization module 
and the priors from the HD map. The outputs of the perception 
module are typically traffic light states and objects’ 3D bound-
ing boxes with tracks.

As discussed in the “A Tour of an Autonomous System” 
section, multiple sensing modalities are used to ensure the 
robustness of the perception module. Depending on the 
mechanism used to fuse those modalities, a perception mod-
ule can be categorized into late and early fusion. Late fusion 
combines modalities in a semantic space, which usually hap-
pens in the final step, and early fusion unites modalities in a 
feature space, which usually happens in an early or interme-
diate step.  

Figure 6(a) shows the standard framework of a late-fusion-
based perception module. To obtain objects’ 3D bounding boxes 
with tracks, a late-fusion-based perception module uses an 
individual pipeline to handle each sensor input. Each pipeline 
includes the detection and the association and tracking com-
ponents. The detection component finds bounding boxes, and 
the association and tracking component tracks bounding boxes 
across frames to assign a unique identity for each individual 
object. A late-fusion module unifies the bounding box informa-
tion from multiple pipelines and outputs a final 3D bounding 
boxes with tracks. In comparison, Figure 6(b) shows an early-
fusion-based perception module. It uses an early-fusion detector 
to take the outputs from all the sensing modalities and produces 
all of the 3D bounding boxes. It then uses an association and 

tracking component to associate 3D bounding boxes across 
frames and assigns an identity for each object. To estimate traf-
fic light states, a traffic light-state estimator extracts the traffic 
light regions from images according to the position priors in an 
HD map and then uses machine learning techniques to analyze 
the image and identify the traffic light state.

The late-fusion-based approach is much more mature, while 
the early-fusion-based approach is believed to have bigger 
potential [8]. The industry has adopted the late-fusion-based 

approach for decades because it modular-
izes the tasks and makes each sensor pipe-
line easy to implement, debug, and manage. 
The early-fusion-based approach carries the 
spirit of end-to-end learning and enables 
the mutual promotion of multiple sensing 
modalities in a high-dimensional feature 
space; however, there are still significant 
challenges in this research direction, and 

many companies still use the late-fusion-based approach.
A robust perception module usually includes multiple 

intermediate components, such as lane detection, 2D and 3D 
object detection, semantic segmentation, and object tracking 
to achieve the final goal. Among those components, 3D object 
detection is particularly interesting and challenging because it 
must handle real-time lidar sweeps and can directly produce 
the 3D bounding boxes for all of the objects in the scene. 
Recently, this task has drawn much attention when combined 
with the power of deep learning [8]. In the next sections, we 
focus on 3D object detection.

3D object detection
The task of 3D object detection is to detect and localize ob-
jects in the 3D space with the representation of bounding 
boxes based on one or multiple sensor measurements. 3D ob-
ject detection usually outputs 3D bounding boxes of objects, 
which are the inputs for the component of object association 
and tracking. Based on the usage of sensor measurements, we 
can categorize 3D object detection into lidar- [see Figure 4(a)] 
and fusion-based detection [see Figure 4(b)]. Qualitative per-
formances are illustrated in the supplementary material that 
accompanies this article on IEEE Xplore.

Lidar-based detection
Let S  be a real-time lidar sweep. A lidar-based detector aims 
to find all of the objects in the sweep, that is,

( ),ho Si i
O

1 ==" , (8)

where [ , ]o y bi i i=  is the ith object in the 3D scene with yi  as 
the object’s category, such as the vehicle, bikes, and pedes-
trians, and bi  as the corners of the bounding box. Now the 
detection function ( )h $  is typically implemented with deep 
neural network-based architectures.

The main difference between 2D and 3D object detection 
is the input representation. Different from a 2D image, a real-
time lidar sweep could be represented in various ways, leading 

A late-fusion module 
unifies the bounding box 
information from multiple 
pipelines and outputs a 
final 3D bounding boxes 
with tracks. 
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FIGURE 6. A perception module takes multiple sensing modalities and outputs traffic light states and objects’ 3D bounding boxes with tracks. Depending 
on the mechanism used to fuse modalities, a perception module is categorized into (a) late fusion, which fuses in a semantic space, or (b) early fusion, 
which fuses in a feature space. 
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to corresponding operations in subsequent components. For 
example, PointRCNN [19] adopts the raw-point-based repre-
sentation (1) and then uses PointNet with multiscale sampling 
and grouping to learn pointwise features, fully convolutional 
network [20] takes on the 3D voxelization-based representa-
tion (2) and uses 3D convolutions to learn voxel-wise features, 
PIXOR [21] assumes the BEV-based representation (4) and 
then uses 2D convolutions to learn pixel-wise features, and 
LaserNet [6] employs the range-view-based representation (3) 
and then uses 2D convolutions to learn pixel-wise features. 

Some other methods consider hybrid representations. 
VoxelNet [22] proposes a voxel feature encoding (VFE) layer 
that combines the advantages of both the raw-point-based 
representation and the 3D voxelization-
based representation. VFE first groups 3D 
points according to the 3D voxel in which 
they reside, then uses PointNet to learn point-
wise features in each 3D voxel, and finally 
aggregates pointwise features to obtain vox-
el-wise feature for each 3D voxel. The benefit 
of VFE is that it converts raw 3D points to a 
3D voxelization-based representation and simultaneously learns 
3D geometric features in each 3D voxel.

Similar to 2D objection detection, there are usually two 
paradigms of 3D object detection: single- and two-stage 
detection. Single-stage detection directly estimates bounding 
boxes, while two-stage detection first proposes coarse regions 
that may include objects and then estimates bounding boxes. 
Single-stage detection directly follows (8). To implement the 
detection function ( ),h $  a deep neural network architecture 
usually includes two components: a backbone, which extracts 
deep spatial features, and a header, which outputs the estima-
tions. For a backbone, all of these methods use 2D/3D CNNs 
with a multiscale, pyramidal hierarchical structure. One off-
the-shelf backbone structure is feature pyramid networks [23]. 
A header is usually a multitasking network that handles both 
category classification and bounding box regression. Typically, 
it is small and efficient. Some off-the-shelf header structures 
are a single-shot detector [24] and other small CNNs. The two-
stage detection implements the detection function ( )h $  in two 
stages, that is,

( ),r h Si i
R
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where ri is a set of parameters that describes the ith proposed 
region in the 3D space. The proposal-generation stage (9a) 
proposes several 3D regions that may include objects in-
side, and the bounding box-estimation stage (9b) extracts 3D 
points from those proposed regions and estimates the precise 
object positions.

For example, PointRCNN is a recent work that follows the 
two-stage detection [19]. In the proposal-generation stage, 
PointRCNN uses PointNet++ as the backbone and recom-
mends bin-based localization to offer regions. Bin-based local-

ization first finds the bin associated with the center location 
of an object and then regresses the residual. In the bounding 
box-estimation stage, PointRCNN use canonical transforma-
tion to align 3D points in each proposed region and PointNet to 
estimate the parameters of 3D bounding boxes.

In summary, the input representation plays a crucial role in 
lidar-based detection. The raw-point-based representation pro-
vides complete point information, but lacks the spatial prior. 
PointNet has become a standard method used to handle this 
issue and extract features from the raw-point-based represen-
tation. The 3D voxelization-based and BEV-based representa-
tions are simple and straightforward but result in a lot of empty 
voxels and pixels. Feature pyramid networks with sparse con-

volutions can help address this issue. The 
range-view-based representation is more 
compact because the data are represented 
in the native frame of the sensor, leading to 
efficient processing, and it naturally models 
the occlusion. But, objects at various ranges 
would have significantly different scales 
in the range-view-based representation, as 

they usually requires more training data to achieve high perfor-
mance. VFE introduces hybrid representations that take advan-
tage of both the raw-point-based and 3D voxelization-based 
representations. The one-stage detection tends to be faster and 
simpler and naturally enjoys a high recall, while the two-stage 
detection tends to achieve higher precision [25].

Fusion-based detection
A real-time lidar sweep provides a high-quality 3D represen-
tation of a scene; however, the measurements are generally 
sparse and only return instantaneous locations, making it dif-
ficult for lidar-based detection approaches to estimate objects’ 
velocities and detect small objects, such as pedestrians, at 
range. On the other hand, radar directly provides motion in-
formation and 2D images provides dense measurements. It is 
possible to naively merge detections from multiple modalities 
to improve overall robustness, but the benefit of this approach 
is limited. 

Following the end-to-end fashion in deep neural networks, 
early fusion is believed to be a key technique to significantly 
improve detection performance; however, it remains an unre-
solved problem to design an effective early-fusion mecha-
nism. The main challenges are 1) the measurements from 
each modality come from different measurement spaces; for 
example, 3D points are sparsely scattered in a continuous 3D 
space, while images contain dense measurements supported on 
a 2D lattice, 2) the measurements from each modality are not 
perfectly synchronized; lidar, cameras, and radar capture the 
scene at their own sampling frequencies, and 3) the sensing 
modalities have unique characteristics. The low-level process-
ing of the sensor data depends on the individual sensor modal-
ity, but high-level fusion needs to consider the characteristics 
across multiple modalities.

Some existing early-fusion-based detection systems 
include MV3D [8], F-PointNet [26], PointFusion [27], 

Bin-based localization first 
finds the bin associated 
with the center location 
of an object and then 
regresses the residual.



84 IEEE SIGNAL PROCESSING MAGAZINE   |   January 2021   |

ContinuousConvolution [28], and LaserNet++ [29]. Each of 
these works has shown that adding image data can improve 
detection performance, especially when lidar data are sparse; 
however, the benefit is not substantial and there is no consen-
sus on a system prototype or a basic operation. This makes 
it difficult for the industry to overturn previous late-fusion-
based approaches.

In summary, it remains an open problem to design an early-
fusion-based detection system. Most designs are based on the 
concatenation of intermediate features from both images and 3D 
point clouds, allowing the networks to figure out how to merge 
them. Thus far, there has been no specific design created to han-
dle the unsynchronization issue of multiple sensors, which may 
be implicitly handled by learning from large-scale training data.

Data sets
High-quality data sets are required to train any of the afore-
mentioned machine learning models. KITTI [30] is the most 
commonly used autonomous-driving data set, which was re-
leased in 2012 and has been updated several times since then. 
Most 3D object detection algorithms are validated on KITTI; 
however, KITTI is a relatively small data set and does not 
provide detailed map information. Several autonomous-
driving companies have recently released their data sets, 
such as nuScenes’ (https://www.nuscenes.org/), Argoverse’s 
(https://www.argoverse.org/), Lyft’s Level 5 AV data set 
(https://level5.lyft.com/dataset/), and Waymo’s Open data set 
(https://waymo.com/open). 

Evaluation metrics
To evaluate detection performance, standard evaluation 
metrics used in academia are the precision-recall (PR) 
curve and average precision (AP); however, there is no 
standard platform to evaluate the running speed of each 
model. On the other hand, industry considers more detailed 
evaluation metrics to check the detection performances. 
For example, practitioners would check the performances 
at various ranges, shapes, sizes, appearances, and occlu-
sion levels to get more signals. They would also check the 
influences on subsequent modules, such as object tracking, 
future trajectory prediction, and motion planning to obtain 
system-level metrics.

Real-world challenges
With the growth of deep learning, the perception module has 
achieved tremendous improvements. Some practitioners no 
longer consider it the technical bottleneck of autonomous driv-
ing; however, the perception module is still far from perfect. 
In the next sections, we describe a series of challenges in the 
perception module.

High cost
A self-driving vehicle is usually equipped with one or more 
lidars and computing devices, such as GPUs and other special-
ized processors, which are expensive. Their high cost makes 
it formidable to maintain a scaled fleet of AVs. It remains 

an open problem to exploit information from real-time lidar 
sweeps using low-cost computation.

Tradeoffs between effectiveness and efficiency
A self-driving vehicle should react to its surroundings in real 
time. It would be meaningless to pursue a high-precision per-
ception module when it introduces too much latency; however, 
researchers tend to focus much more on the effectiveness than 
on the efficiency of an algorithm.

Training data deluge
A modern perception module heavily depends on machine 
learning techniques, which usually need as much training data 
as possible; however, it takes a lot of time and computational 
resources to handle large-scale training data. It remains a yet-
to-be-resolved problem to effectively choose a representative 
subset of training data from the entire data set, which would 
significantly accelerate product development.

Long-tail issues
There are countless traffic conditions where large-scale train-
ing data cannot cover all the possibilities. It remains an un-
resolved problem to find and handle corner cases, especially 
detecting objects that never appear in the training data.

Research conversion
In academia, research tends to design algorithms based on clean, 
small-scale data sets. It turns out that many effective algorithms 
work well for those clean, small-scale data sets but are ineffective 
on noisy, large-scale data sets. Meanwhile, some algorithms that 
work well on large-scale data sets do not work well on small-
scale data sets [6]. These discrepancies can reduce the usefulness 
of research results when applied to real-world problems. Industry 
should consider providing representative data sets and perhaps 
even a computational evaluation platform that allows for people 
to compare various methods at full industrial scale.

Evaluation metrics
Objects in a scene have various levels of interactions with an 
AV. Incorrect estimations of some objects would lead to much 
bigger consequences than that of other objects; however, the 
PR curve and AP give uniform weights to all of the samples. 
Additionally, the PR curve and AP do not clearly reflect corner 
cases, which have only a small sample size. Thus, improving 
the PR curve and AP do not necessarily lead to better behavior 
of an AV. It is often more important to slice the test data and 
look at the performance over subsets of high-impact cases in 
addition to overall AP. A standardized simulator could also be 
developed to provide some system-level metrics.

Summary and open issues
The field of autonomous driving is experiencing rapid growth. 
Many techniques have become relatively mature; however, an 
ultimate solution for autonomous driving has yet to be deter-
mined. At the current stage, lidar is an indispensable sensor 
used for building a reliable AV, and advanced techniques for 
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3D point cloud processing and learning are critical building 
blocks for autonomous driving. In this article, we surveyed re-
cent developments in the area of 3D point cloud processing and 
learning and presented their applications to autonomous driv-
ing. We described how 3D point cloud processing and learning 
makes a difference in three important modules in autonomous 
driving: map creation, localization, and perception.

With the rapid development of 3D point cloud processing 
and learning, the overall performances of the map creation, 
localization, and perception modules in an autonomous sys-
tem have been significantly improved; however, quite a few 
challenges remain ahead. Here we briefly mention a few 
important open issues from a big-picture perspective. 

How should we make processing and learning 
algorithms scalable and efficient?
Now we are still in the developing phase, and AVs are tested 
in a limited number of canonical routes or over a small area. 
In the near future, AVs may be tested on a city/country scale, 
which needs a city/country-scale HD map. This requires scal-
able algorithms that create and update HD maps. Now an AV 
is usually equipped with a 64-line lidar, which still produces 
relatively sparse point clouds. In the near future, lidar might 
have many more lines and produce much denser point clouds. 
This requires more efficient algorithms to achieve lidar-to-
map localization and 3D object detection in real time.

How should we make processing and learning 
algorithms robust enough to handle corner cases?
We can collect large amounts of real-world sensor data and 
generate significant amounts of simulated sensor data, but 
we need to deliberately select the most representative data to 
improve the generality of the algorithms. At the same time, 
one has to face the fact that all learning algorithms depend 
on training data, which can never cover all of the possibili-
ties. To address this issue, one key research area is to improve 
the uncertainty estimation of an algorithm because this allows 
for a system to react conservatively when the learned compo-
nents are not confident. This requires reasoning both about the 
known uncertainty from the training data and also the more 
challenging uncertainty from cases that are not covered by the 
training data.

How should we develop processing and learning 
algorithms with a faster iteration speed? 
We want more data and more complicated algorithms to 
achieve better performance for autonomous driving. Mean-
while, we want efficient and practical algorithms to accelerate 
product development, which is also critical. Practitioners in in-
dustry should collaborate closely with researchers in academia 
to increase the research conversion rate.

How should we evaluate processing 
and learning algorithms? 
Currently, most of the processing and learning algorithms are 
evaluated on specific model-level metrics to meet the crite-

ria of the corresponding tasks; however, these model-level 
metrics often do not fully correlate with system-level metrics 
that reflect the overall behavior. Along these same lines, the 
research community often focuses on improving the average 
performance, but there needs to be an increased focus on im-
proving the rare long-tail cases that are really critical for a 
real-world system.

Acknowledgment
This article has supplementary downloadable material avail-
able at https://doi.org/10.1109/MSP.2020.2984780, provided by 
the authors.

Authors
Siheng Chen (schen@merl.com) received his bachelor’s 
degree in electronics engineering from the Beijing Institute of 
Technology, China, in 2011, and he received his two master’s 
degrees in electrical and computer engineering and machine 
learning and his doctorate in electrical and computer engi-
neering, all from Carnegie Mellon University. Currently, he is 
a research scientist at Mitsubishi Electric Research 
Laboratories, Cambridge, Massachusetts, USA. Previously, 
he was an autonomy engineer at Uber Advanced Technologies 
Group, working on the perception and prediction systems of 
self-driving cars. Prior to joining Uber, he was a postdoctoral 
research associate at Carnegie Mellon University. He was the 
recipient of the 2018 IEEE Signal Processing Society Young 
Author Best Paper Award. His coauthored paper received the 
Best Student Paper Award at IEEE GlobalSIP 2018. His 
research interests include graph signal processing, graph neu-
ral networks, and 3D computer vision.

Baoan Liu (chensiheng1989@gmail.com) received his 
bachelor’s degrees in electrical and computer engineering and 
applied physics from Shanghai Jiao Tong University, China, in 
2011 and his doctorate in mechanical engineering from 
Carnegie Mellon University in 2016. He is the founder and 
chief technology officer of Precivision Technologies, Inc. 
(acquired by DeepMap Inc. in 2019), Pittsburgh, Pennsylvania, 
USA, where he leads the technology and product development 
of high-definition mapping and high-precision vehicle-local-
ization solutions for autonomous driving. 

Chen Feng (cfeng@nyu.edu) received his bachelor’s 
degree in geospatial engineering from Wuhan University, 
China, his master’s degree in electrical engineering, and his 
Ph.D. degree in civil engineering in 2015, both from the 
University of Michigan, Ann Arbor, where he studied robotic 
vision and learning and attempted to apply them in civil engi-
neering. Previously, he was a research scientist in the 
Computer Vision Group at Mitsubishi Electric Research Labs, 
focusing on visual simultaneous localization and mapping and 
deep learning. In August 2018, he became an assistant profes-
sor jointly in the Department of Mechanical and Aerospace 
Engineering and the Department of Civil and Urban Engineering 
in the New York University Tandon School of Engineering, 
New York, USA, where his lab, AI4CE, aims to advance 
robotic vision and machine learning through multidisciplinary 



86 IEEE SIGNAL PROCESSING MAGAZINE   |   January 2021   |

use-inspired research that originates from civil/mechanical 
engineering domains. 

Carlos Vallespi-Gonzalez (cvallespi@uber.com) received 
his B.Sc. degree (honors) in software engineering from La 
Salle School of Engineering and received his M.Sc. degree in 
robotics from Carnegie Mellon University. Currently, he is a 
senior staff engineer and technical lead manager at Uber 
Advanced Technologies Group, Pittsburgh, Pennsylvania, 
USA, leading the R&D of perception algorithms deployed in 
Uber’s self-driving cars. Previously, he worked for more than 
10 years at the National Robotics Engineering Center in the 
automation of agricultural machinery, including the develop-
ment and deployment of fully autonomous tractors in orange 
orchards in Florida. He has authored or coauthored more than 
30 patents as well as several publications at major computer 
vision conferences. His research interests are in the fields of 
machine learning and computer vision. 

Carl Wellington (cwellington@uber.com) received his 
doctorate degree in robotics from Carnegie Mellon 
University in 2005. Currently, he is a director of engineering 
at Uber Advanced Technologies Group (ATG), Pittsburgh, 
Pennsylvania, USA. He was one of the founding members of 
Uber ATG when it began in 2015 and currently leads the per-
ception and prediction teams of Uber’s self-driving effort. 
Prior to that, he spent 10 years as an applied researcher at 
Carnegie Mellon’s National Robotics Engineering Center 
(NREC) developing perception systems for autonomous 
agricultural and military vehicles that ranged in size from 
small utility carts to large tractors and multiton unmanned 
ground vehicles. His work at the NREC included several 
large-scale field trials and multiple computer vision systems 
that have since become commercial products. His research 
interests include machine learning for robotic perception.

References
[1] A. Taeihagh and H. Si Min Lim, “Governing autonomous vehicles: Emerging 
responses for safety, liability, privacy, cybersecurity, and industry risks,” Transp. 
Rev., vol. 39, no. 1, pp. 103–128, Jan. 2019. doi: 10.1080/01441647.2018.
1494640.

[2] National Research Council, Technology Development for Army Unmanned 
Ground Vehicles. Washington, D.C.: National Academies Press, 2002.

[3] C. Badue, R. Guidolini, R. Vivacqua Carneiro, P. Azevedo, V. Brito Cardoso, 
A. Forechi, L. Ferreira Reis Jesus, R. Ferreira Berriel et al., Self-driving cars: A 
survey. Jan. 2019. [Online]. Available: arXiv:1901.04407

[4] M. Bansal, A. Krizhevsky, and A. S. Ogale, ChauffeurNet: Learning to drive by 
imitating the best and synthesizing the worst. 2018. [Online]. Available:
arXiv:abs/1812.03079

[5] C. Urmson, J. Anhalt, D. Bagnell, C. R. Baker, R. Bittner, M. N. Clark, J. M. 
Dolan, D. Duggins et al., “Autonomous driving in urban environments: Boss and 
the urban challenge,” in The DARPA Urban Challenge: Autonomous Vehicles in 
City Traffic, M. Buehler, K. Iagnemma, and S. Singh, Eds. Victorville, CA: George 
Air Force Base, 2009, pp. 1–59.

[6] G. P. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez, and C. K. Wellington, 
“LaserNet: An efficient probabilistic 3D object detector for autonomous driving,” in 
Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, 2019, 
pp. 12,677–12,686. doi: 10.1109/CVPR.2019.01296.

[7] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on point sets 
for 3D classification and segmentation,” in Proc. IEEE Int. Conf. Computer Vision 
and Pattern Recognition, 2017, pp. 77–85. doi: 10.1109/CVPR.2017.16.

[8] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3D object detection net-
work for autonomous driving,” in Proc. IEEE Int. Conf. Computer Vision and 
Pattern Recognition, 2017, pp. 6526–6534. doi: 10.1109/CVPR.2017.691.

[9] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm 
for model fitting with applications to image analysis and automated cartogra-
phy,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981. doi: 10.1145/358669.
358692.

[10] X.-F. Hana, J. S. Jin, J. Xie, M.-J. Wang, and W. Jiang, A comprehensive 
review of 3D point cloud descriptors. 2018. [Online]. Available: arXiv:1802.02297

[11] J. Peng and C.-C. Jay Kuo, “Geometry-guided progressive lossless 3D mesh 
coding with octree (OT) decomposition,” ACM Trans. Graphics, vol. 24, no. 3, 
pp. 609–616, July 2005. doi: 10.1145/1073204.1073237.

[12] S. Chen, D. Tian, C. Feng, A. Vetro, and J. Kovačević, “Fast resampling of 
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ccurate behavior anticipation is essential for autonomous 
vehicles when navigating in close proximity to other ve-
hicles, pedestrians, and cyclists. Thanks to the recent ad-

vances in deep learning and inverse reinforcement learning 
(IRL), we observe a tremendous opportunity to address this 
need, which was once believed impossible given the complex 
nature of human decision making. In this article, we summarize 
the importance of accurate behavior modeling in autonomous 
driving and analyze the key approaches and major progress that 
researchers have made, focusing on the potential of deep IRL 
(D-IRL) to overcome the limitations of previous techniques. We 
provide quantitative and qualitative evaluations substantiating 
these observations. Although the field of D-IRL has seen recent 
successes, its application to model behavior in autonomous driv-
ing is largely unexplored. As such, we conclude this article by 
summarizing the exciting pathways for future breakthroughs.

Introduction
Consider the example shown in Figure 1. If you are driving 
the blue car and want to turn right at the intersection, you 
will try to predict the behavior of the yellow car considering 
aspects such as the yellow car’s speed and acceleration, the 
distance the yellow car is from intersection, and the amount of 
time it would take for you to turn. You will make this decision 
intuitively in a split second, based on years of driving experi-
ence with similar instances as well using your intuition of hu-
man social behavior. We pose the question: How do we teach 
driverless cars to make these same predictions, judgments, 
and decisions?

Social prediction is an extraordinary feat that human 
drivers routinely employ to assist their decision making 
while traveling in close proximity to other vehicles, with 
conflicting objectives and incomplete information regard-
ing the objectives of other people in the scene [1]. As such, 
prediction is a pivotal component in self-driving cars. Rec-
ognizing this, in August 2017, Sam Anthony, Harvard 
neuroscientist, chief technology officer, and cofounder 
of Perceptive Automat (an autonomous vehicle software 
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company) said, “Self-driving cars should learn human 
intuition and human social behavior before they can become 
a part of urban life” [2]. Later, in July 2018, he mentioned 
that one of the key challenges for safety in self-driving cars 
is the inability of machine learning algorithms to look at 
a person on the road and, irrespective of whether they are 
walking, driving a car, or riding a bike, predict their future 
behavior [3].

A major hindrance to making accurate future predictions 
comes from the tradeoffs that humans make between arbitrary 
complex factors (i.e., their surroundings, the route, behavior, 
risk, resource, and goal-oriented factors) when making their 
own decisions. Through experience as humans, we have mas-
tered this process over our lifetime, and we seamlessly adapt 
our behavior. To date, making such predictions autonomously 
has eluded the machine learning and autonomous driving com-
munity. However, recent developments in areas such as IRL 
have the potential to address this limitation.

Behavior modeling in autonomous driving: A review

Model-based learning and supervised learning
The main modules in a generalized autonomous driving frame-
work can be broadly categorized as sensor fusion, localization, 
prediction, and motion control. The sensory inputs are captured 
and fused to localize and predict the future trajectory of the 
agents in the local neighborhood. Utilizing these predictions, 
the future trajectory of an autonomous vehicle is generated 
and subsequently passed to the motion control subsystem to 
generate the control commands. The prediction module in an 
autonomous car uses behavior-modeling techniques, and these 
algorithms can be broadly categorized into model- and learn-
ing-based approaches.

In model-based approaches, the factors that inform human 
behavior are hand engineered and combined to optimize a pre-
defined objective, such as proximity to other vehicles, the num-
ber of lane changes, or the risk of taking a particular trajectory. 
In contrast, in learning-based systems, the underlying factors that 
influence human sociological factors are recovered from the data.

Among model-based approaches, Li et al. [4] uses a trajec-
tory-planning scheme that samples trajectories from the global 
reference path leading to the goal state. A velocity profile gener-
ates the speed for each state along the generated path. Finally, 
the best path is chosen based on a cost function considering 
safety and comfort. The trajectory-generation algorithm of [5]
computes a course by minimizing the distance to the goal state, 
the distance to the centerline path, and maximizing the proxim-
ity to the obstacles. This was extended in [6] by augmenting the 
proximity cost to discourage picking paths that are close to dan-
gerous drivers, cyclists, and pedestrians. Despite these attempts, 
it is infeasible to hand engineer a cost function that can consider 
all of the factors that influence the future behavior of people in 
the vicinity of an autonomous vehicle.

As opposed to model-based systems, learning-based sys-
tems try to automatically recover these factors from the data. 
A popular family of learning-based algorithms is supervised 
learning. These algorithms apply the past observed trajecto-
ries of the autonomous agent(s) in the local neighborhood and 
learn to predict the future trajectory of the autonomous agent. 
The process is data driven, as the model minimizes the dis-
tance between the predicted and ground-truth trajectories 
using a predefined loss function, such as the mean square error 
(MSE) [7].

In [8], the authors propose the utilization of social pool-
ing to capture interdependencies between neighboring vehi-
cles in motion. The authors encode the past trajectories of 
the autonomous vehicle as well as neighboring agents using 
long short-term memory (LSTM) networks [9], and to cap-
ture the interdependencies of nearby agents they pool out 
hidden states of LSTM based on their spatial configuration 
in the scene. These states are subsequently passed through 
a series of convolutional and pooling layers, and the future 
trajectory is generated by a decoder LSTM. The frame-
work is trained to minimize the negative log-likelihood loss 
between the predicted and ground-truth trajectories. In [10], 
the authors extend this encoder–decoder LSTM framework 
for joint trajectory prediction and maneuver classification. 
They illustrate that maneuver-dependent trajectory predic-
tion is comparatively more resilient than predicting the tra-
jectory alone.

Most recently, Zhao et al. [1] proposed a framework that 
encodes the past trajectories of neighboring agents using 
LSTMs and captures the scene context using convolutional 
neural networks (CNNs). Then, this information is fused and 
passed to a decoder LSTM to generate the future trajectory of 
the autonomous agent. This framework is learned through 
a combination of MSE and adversarial loss, which is achieved 
through a generative adversarial network (GAN) learning 
process [11].

FIGURE 1. A sample driving scenario. The blue car is waiting to turn right 
at an intersection while there is a car coming from the opposite direction. 
The driver in the blue car should anticipate the future behavior of the yel-
low vehicle before determining its next action.
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In addition to [1], which has achieved favorable results 
on both highway driving and pedestrian trajectory data sets, 
it is worth noting that supervised learning systems such as 
Soft + Hardwired Attention [12] and Social GAN [13] have 
been proposed to automatically recover human social navi-
gation behavior in crowded environments. However, these 
systems were developed and evaluated using pedestrian tra-
jectory data.

Generative adversarial imitation learning
Despite their reasonable success, supervised learning ap-
proaches cannot recover the underlying factors that influence 
human social behavior [14], as they oper-
ate using a predefined cost function, which 
does not fully capture human reasoning. 
There exists another class of algorithms, 
that being generative adversarial imitation 
learning (GAIL) [15], which seeks to direct-
ly mimic the expert’s policy and has been 
extensively applied for autonomous driving 
tasks [16]–[18].

Let the decision-making process of the 
pedestrians be modeled as a Markov deci-
sion process (MDP) [19]. The MDP [ , , , ]M S A Rx=  is com-
posed of state space S: a set of possible actions; A: a transition 
matrix; :x  a reward function; and R: a policy. r  defines the 
selection of an action, given a particular state. We are pre-
sented with a set of demonstrations [ , , , ],D N1 2 fg g g=  where 
each demonstration ig  is composed of state ( )st  and action 
( )at  pairs, [ , , , ].s s si

T0 1 obsfg =  Then the GAIL objective is 
denoted by

( , ) [ ( , )] [ ( , )],min max log logV w D s a D s aE Ew w wEi = +i r ri

(1)

where policy ri  is a neural network parameterized by ,i  which 
directly generates the policy imitating ,Er  and Dw  is the dis-
criminator network parameterized by w, which tries to distin-
guish state–action pairs from ri  and .Er [ ( , )]f s aEr  denotes the 
expectation of f over the state–action pairs generated by policy .r

Numerous works [16]–[18] have utilized GAIL for pre-
dicting trajectories in simulated highway driving scenarios. 
In [17], the authors use eight features including vehicle speed, 
length, lane curvature, and distance-to-lane markers as state 
features and, employing the GAIL formulation, they pre-
dicted the relevant actions given this state representation. The 
authors in [16] propose a system to leverage variability among 
different expert demonstrations. They apply the information-
maximization theorem to automatically discover and disen-
tangle latent factors in the underlying expert demonstrations. 
In our previous work [18], we propose the use of neural memo-
ry networks (NMNs) [20] to capture relationships at a subtask 
level and determine how they are temporally linked in a given 
expert demonstration.

Similar to supervised methods, GAIL does not attempt to 
recover the reward function. Instead, it attempts to directly 

mimic the expert’s policy. Hence, its applicability to environ-
ments with data constraints and its generalizability to new 
environments remain questionable [21].

IRL
IRL, however, has shown promise in being able to address 
the deficiencies of supervised and imitation learning. Unlike 
GAIL, which directly tells the learner how to act, IRL recovers 
the underlying reward function, which provides a better under-
standing regarding modeled behavior [21]. In an IRL frame-
work, given a set of demonstrations [ , , , ],D N1 2 fg g g=  we 
recover reward function R followed by the demonstrators in the 

samples. Then, using the recovered reward 
function, a machine can imitate natural hu-
man behavior.

IRL-based behavior-prediction tech-
niques segregate the underlying semantics 
of the scene such that the goal or intent of 
the agents can be recovered from the mod-
eled reward function. This makes the sys-
tem more tractable and able to generalize to 
new environments [21] while demonstrating 
more accurate predictions into the distant 

future [22], [23].
One of the most popular approaches used for solving IRL 

problems is maximum entropy (MaxEnt)-IRL [24], where the 
expert behavior is modeled as a distribution to the one of the 
highest entropy [14]. The MaxEnt formulation assumes that the 
reward function can be calculated as a weighted linear combi-
nation of features ( ),sU  where U  is a function that outputs the 
features of the state s and the set of weights :i

( ( )) [ ] ( ) .R s siU U= R (2)

Capitalizing on the merits of IRL, several works [25]–[27]
have applied it for behavior prediction. In [25], the authors first 
cluster the trajectories in the training set and train a multiclass 
classifier to label the cluster identity of a given trajectory. The 
authors utilize hidden Markov models to transform the observed 
trajectories in each cluster into a set of finite states. Then they 
recover the reward matrices Ri  for each cluster i using an IRL 
framework. In the test phase, given an observed partial trajec-
tory, they first predict the cluster identity, and using the recov-
ered reward matrix of that particular cluster and the Viterbi 
algorithm [28], they find the most probable sequence of states 
for its future trajectory.

In [26], the authors investigate the tradeoff between social 
accessibility and task-related constraints for navigation. For 
each demonstrated trajectory, they define an acceptability-
dependent criteria based on its social acceptability. Then, com-
bining this feature together with other task-related features 
such as acceleration, steering, velocity, and deviation from 
lane centers, they apply the MaxEnt algorithm to learn differ-
ent acceptability-dependent behaviors.

The authors in [27] address the exploding state-space prob-
lem in IRL. They propose to replace the RL inner loop in IRL 

One of the most popular 
approaches used for 
solving IRL problems 
is maximum entropy 
(MaxEnt)-IRL, where the 
expert behavior is modeled 
as a distribution to the one 
of the highest entropy.
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with deep Q-networks to extend the IRL framework to larger 
state spaces.

Despite these capabilities, the original MaxEnt-IRL 
framework [24] and subsequent works [25]–[27] assume that 
the reward function can be calculated as a weighted linear 
combination of the features [21]. This linear mapping from 
features to the reward severely restricts the reward structure 
that can be modeled [23].

D-IRL
The recent works of Wulfmeier et al. [14] extend IRL to a 
deep learning setting, lifting the MaxEnt-IRL constraints 
and permitting a nonlinear mapping, which allows more flex-
ibility for the learned reward structure. Hence,

( ( )) ( , ( )),R s f siU U= (3)

where f is a nonlinear function. The authors of [14] try to maxi-
mize the log-likelihood of the demonstrated trajectories:

( ) ( , ),logL P
D

i

i

i g i=
!g

% (4)

where ( , )P ig i  is the probability of the trajectory ig  in dem-
onstration D and

 [ ]
( ( ))

,L R s
ED

D
di
d

n n
di

d U
= -  (5)

where Dn  and [ ]E n  are the state visitation frequencies from the 
demonstrated and inferred reward functions, respectively. Al-
gorithm 1 illustrates the process of refining the reward network 
in the MaxEnt-deep-IRL (MED-IRL) framework proposed in 
[14], where c  is a discount factor for the value-iteration algo-
rithm (see Algorithm 2), and a  is the learning rate of the deep 
NN (DNN). In each iteration i of the algorithm, they first evalu-
ate the reward based on the state features ( )sU  and the current 
reward network parameters .ii  Then, using the current reward 
function, they apply value iteration [24] to solve the forward 
RL problem, determining the current policy ir  based on the 
current approximation of the reward ( ( ))R si U  and the transi-
tion matrix .x  The value-iteration algorithm is illustrated in 
Algorithm 2. Within Algorithm 1, line 5 computes the gradient 
with respect to the reward, which determines how to update the 
reward network parameters (line 6). The process is presented 
in Figure 2. 

Recently, MED-IRL has been applied for autonomous 
driving tasks [14], [23], [29]. Wulfmeier et al. [14] demon-
strated the utility of fully convolutional neural (FCN) net-
works for mapping the lidar scans of urban environments to 
traversability maps, which are automatically learned through 
MED-IRL. The proposed multiscale fully convolutional 
network (MSFCN) architecture (see Figure 3) employs a 
pooling-based substream to capture spatial invariant features 
from lidar and a fully convolutional network (FCN) stream, 
which preserves the location information from the input data. 
The proposed system was able to learn end-to-end mapping 
from raw inputs to a reward map, utilizing more than 25,000 
trajectories from more than 120 km of driving.

In [23], Zhang et al. couple low-level lidar scan features 
together with kinematic features to augment the perfor-
mance of the MED-IRL framework. The network archi-
tecture used in [23] is shown in Figure 4. The authors in 
[23] argue that, in motion planning, human drivers consider 
kinematic aspects such as the vehicle’s current velocity and 
past trajectory in addition to evaluating the spatial attributes 
of the environment, such as the distance to obstacles. Hence, 
they propose to augment the MED-IRL framework of [14] to 
incorporate this information in two stages. In the first stage, 
they apply a four-layer FCN to encode a color-coded point 
cloud. In the second stage, the authors utilize two feature 
maps encoding each grid cell, that is, the x and y positions 
of the grid cell in a vehicle centered, world-aligned frame. 
Another three feature maps are generated encoding kine-
matic information: ,xT ,yT  and the curvature of the input 
trajectory. Their evaluations demonstrated greater robust-
ness in predictions compared to both supervised learning 
and MaxEnt-IRL systems.

In [29], the authors refine the MaxEnt [24] formula-
tion, considering both linear and nonlinear (MED-IRL) 
settings to maximize the entropy of the joint distribution 
over short data pieces. They show that long demonstrations 

Algorithm 1. The MED-IRL.

Input:
D:  Demonstrations; S: state space; A: set of possible actions;  

:x  transition matrix; :c  discount factor for the value-iteration algorithm; 
and :a  learning rate of the deep neural network.

Output: Reward network parameters i)

1: for i M1iteration to=  do
2:   ( ( )) ( , ( ))R s f si i

s S6iU U= !  //  forward pass in the 
reward network

3:  _ ( , , , , )Value Iteration R S Ai ir x c=  // planning step
4:  [ ] _ ( , , , )compute SVF S AE i in r x=

5:   [ ]
R
L

Ei
D
i

D
i

d

d
n n= -  // gradient calculation

6:   _ , ,back propagate
R
Li i

i
D
i

1i i
d

d
a=+ c m //  reward network 

update
7: end
8: return .i

Algorithm 2. The value iteration.

Input:
R: Current approximation of the reward function; S: state space; A: set 

of possible actions; :x  transition matrix; and :c  discount factor.
Output: z

1: V(s) 3=- repeat
2: ( ) ( )V s V st =

3: ( , ) ( , ) [ ( )]Q s a r s a E V s( , , )s a s= + x ll

4: ( ) ( ( , ))maxV s Q s aa i=

5: until ( ( ) ( )) ;max V s V ss t 1 e-

6: return ( | ) .a s e ( , ) ( )Q s a V sz = -
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are hard to use in a model-free IRL setting, as the predic-
tion error is accumulated over long time horizons. How-
ever, this system is validated in simulations of highway 
driving where the environment is simplified compared to 
complex urban driving.

Considering that the aforementioned systems do not 
account for the motion of the neighbors when predicting future 
motion, most recently, we proposed a novel MED-IRL frame-
work for pedestrian trajectory prediction. The trajectories of the 
agent of interest and the neighboring trajectories are encoded 

Conv + ReLu Conv + ReLu Conv + ReLu Conv + ReLu

Upsampling

Conv + ReLuConcatmax-pool

Conv + ReLu Conv + ReLu

Reward

FIGURE 3. An illustration of the FCN architecture used by [14] as the reward network. By using a two-stream architecture, with an FCN-based mainstream 
and a pooling-based substream, we propose capturing spatially variant and invariant features, respectively. conv: convolutional; concat: concatenated; 
ReLu: rectified linear unit.
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FIGURE 2. The schema proposed in [14] for training DNNs using MaxEnt-IRL. Given a set of demonstrations, a DNN is utilized to approximate the reward 
function. Then we calculate the difference between the state visitation frequencies from the demonstrated trajectories and from the inferred reward function. 
This difference acts as the network’s loss and we backpropagate its gradients, updating the network.
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using LSTMs. Then we develop a combination of soft and hard-
wired attention [12] to aggregate the encoded trajectory infor-
mation to a context vector.

As the reward network, similar to [14] and [24], we utilize 
an FCN. We first generate an empty map G of the environ-
ment and then assign values ht

kt  from the pedestrian of interest 
k and h j

nu  from the neighbors to grid G based on the Cartesian 
coordinates that the specific hidden state comes from (i.e., 
based on the position of the trajectory). Then, using the FCN, 
we map G to a reward map R. This architecture is illustrated 
in Figure 5.

Experimental evaluations
In this section, we report the evaluation results of current state-
of-the-art supervised learning, GAIL, linear-IRL (L-IRL), 
and D-IRL systems on the publicly available Next Generation 
Simulation (NGSIM) trajectories US-101 [31] data set and a 
portion of the nuScenes data set [32].

Data sets
The NGSIM US-101 [31] data set contains trajectories of real 
freeway traffic captured from fixed overhead cameras placed 
over a 640-m span of US-101, recorded at 10 Hz over a 45-min 
period. This data set consists of more than 6,000 vehicle an-
notations and provides varying traffic conditions where the 
traffic flow varies from mild to moderate to congested.

In addition, we use trajectories from the nuScenes data set 
[32], which is captured in multiple cities, from multiple sensors 
including six cameras, a lidar, five radars, a GPS sensor, and an 
inertial measurement unit sensor. The complete data set contains 
15 h of driving data covering 242 km with dense traffic and 
highly challenging driving situations. The data set is divided into 
1,000 scenes by the database authors, and to ensure a compatible 
size between the two evaluations, we use only scenes 61, 69, and 
234. To generate the trajectories, we used object-bounding box 
annotations, and the center of the bounding box is taken to be the 
object position at each time step.

We report the results in terms of the root-MSE (RMSE) 
of the predicted trajectory with respect to the ground-truth 
future trajectory over different prediction horizons ranging 
from 1 to 5 s. Similar to [17], we simulate the behavior predic-
tion through a trajectory-prediction task where we select each 
car, iteratively, to be the autonomous car and predict the future 
behavior of this car, exploiting the past behavior of neighbor-
ing vehicles.

Evaluated models
The following models were assessed:
■ Supervised learning: we use the models of [8] [convolu-

tional social (CS)-LSTM] and [1] [Multi-Agent Tensor 
Fusion (MATF)-GAN].

■ GAIL-gated recurrent unit (GRU): we consider the GAIL 
model from [17].

■ L-IRL: we use the L-IRL model proposed in [22].
■ D-IRL: to demonstrate the utility of D-IRL models, we use 

the models proposed in [14] (D-IRL), [23] [deep kinematics 
(DK)-IRL], and [30] [deep neighborhood (DN)-IRL].
For all of the considered systems, similar to [1], the neighbors 

appearing in the 640-m span are studied in the reasoning and 
prediction process. In the original works of [14] and [23], the 
authors utilize terrain maps captured using lidar. As this infor-
mation is not available in the NGSIM US-101 data, we use the 
semantic segmentation of the scene, which indicates the travers-
able lanes, and for the nuScenes we use the traversability maps 
generated through lidar.

For the GAIL-GRU baseline, we follow the policy net-
work architecture of [17], which uses five feedforward layers 
that decrease in size from 256 to 32 neurons, and an addi-
tional GRU layer consisting of 32 neurons. We use the imple-
mentation released by the authors (https://github.com/sisl/
gail-driver). 

For the D-IRL and L-IRL systems, we consider a grid 
size of 120 # 120 and map the x, y coordinates to grid cells. 
As they generate a probability distribution over the cells, we 

FCN (Stage 1) CNN (Stage 2)

Reward

Gradient Backpropagation
Reward Approximation

Kinematics

FIGURE 4. The two-state architecture proposed in [23]. We captured environmental context from input terrain maps in the first-stage network, and the 
resulting feature maps are concatenated with the kinematic context in the second-stage network, which outputs a reward representation. The difference 
between the state visitation frequencies from the demonstrated trajectories and the learned policy is used to compute the gradients for backpropagation.
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sample 1,000 trajectories from the distribution and 
measure the average RMSE between the ground 
truth and samples. We map predictions back to the 
image coordinate space for clear comparison. For the 
D-IRL baseline, we strictly adhere to the recommen-
dations of the authors and used the FCN architecture 
introduced in [14]. This takes the semantic segmenta-
tion map as the input and generates the reward map 
purely based on the environment.

For the DK-IRL baseline, we follow the two-stage 
architecture of [23] and used the FCN model from 
D-IRL as the network for the first state. For the sec-
ond stage, following [23] we generate two feature maps 
encoding each grid cell, that it, the x and y positions 
of the grid cell in a pedestrian centered, world-aligned 
frame. Another three feature maps are generated 
encoding the kinematic information: ,xT ,yT  and the 
input trajectory curvature. We use the codebase released 
by the authors (https://github.com/yfzhang/vehicle
-motion-forecasting), which also provided an imple-
mentation of the D-IRL framework in [14].

For the DN-IRL baseline, as per [30] we con-
sider the trajectories of the 10 closest neighbors in 
the front, left, and right directions. If there are more 
than 10 neighbors in any direction, we choose the 
closest nine and the mean trajectory of the rest. If 
there are less than 10 neighbors, we create a dummy 
trajectory such that we have 10 neighbors for each 
direction and set the dummy trajectory hardwired 
weights to zero. For all the LSTMs, we use a hid-
den-state dimension of 50 units.

Results
Quantitative evaluations of the performance of the 
considered frameworks are presented in Table 1. To 
clearly demonstrate the utility of the D-IRL frame-
work, we perform the trajectory predictions under 
different prediction horizons, estimating the trajec-
tories from 1- to 5-s ahead. For each trajectory, we 
use the coordinates (positions) for the previous 3 s as 
the observed portion of the trajectory. We evaluated 
the performance for different prediction horizons, 
predicting trajectories from 1 s ahead to 5 s ahead. 
We report the RMSE as the error metric (lower is 
better). For clarity, supervised learning methods 
are shown with a blue background, the GAIL-GRU 
method with an orange background, the L-IRL 
method with a yellow background, and the D-IRL 
methods with a green background.

From Table 1, we observe that the performance 
of the supervised learning methods degrades when 
predicting behavior into the distant future. This is 
caused by deficiencies in the supervised learning 
structure, as these models try to directly map inputs 
to targets without paying attention to the end goal 
or intent of the driver. Furthermore, the linear IRL 
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system fails to generate satisfactory results due to constraints 
with the learned feature-to-reward mapping structure.

With the introduction of the nonlinear reward mapping from 
the D-IRL framework, we observe a slight performance increase 
with the DK-IRL methods compared to the L-IRL method of 
[22]; however, these methods fail to outperform the MATF-
GAN system. This is a result of the lack of input information that 
DK-IRL frameworks receive regarding the neighborhood con-
text, which is a highly influential factor when navigating in con-
gested environments. However, the LSTM-based neighborhood 
embedding scheme in the DN-IRL framework is able to capture 
a notion of the neighborhood, resulting in superior performance. 
We observe a substantial performance increase, especially when 
predicting behavior into the distant future.

Due to the architectural differences between the GAIL-GRU 
and DN-IRL methods, their performance is not directly com-
parable. Further evaluation is necessary with identical network 
architectures to compare their relative strengths and weaknesses. 
However, such comparisons are currently constrained by the 
nonpublic availability of such advanced GAIL architectures.

Qualitative results of the DN-IRL method and the recov-
ered reward representation for four examples from the NGSIM 
data set [31] are given in Figure 6. By analyzing the predic-
tions in Figure 6 we observe that the DN-IRL method achieves 
good performance when predicting lengthier trajectories. Fur-
thermore, we observe that the DN-IRL method, by virtue of 
its neighborhood modeling, is capable of predicting complex 
maneuvers such as lane changes and overtaking.

Limitations and open research challenges
Although MED-IRL provides flexibility and robustness for 
behavior anticipation, it has yet to be widely adopted for auton-

omous driving systems. Despite great potential for generating 
realistic hypotheses of human behavior, there are several open 
research questions requiring further study.

To the best of our knowledge, the only D-IRL framework 
that considers complex, dynamic environments with multiple 
agents in motion is presented in [30]. Yet, in [30], the tem-
poral nature of the agent’s motion is ill-represented through 
the current formulation of the reward network. Furthermore, 
the hardwired attention formulation of [30] is perhaps less 
impactful in a driving context than it is for pedestrian motion, 
for which [30] is originally proposed. In addition, the type 
of neighbor, i.e., a car, truck, motorbike, or pedestrian, may 
also be important, yet it is not considered. Hence, further 
investigation is required to determine effective ways to learn 
the spatiotemporal contextual factors that impact an agent’s 
behavior when there are large numbers of different types of 
mobile agents.

Another interesting pathway for investigation is a methodol-
ogy to capture subtle differences among different expert dem-
onstrations via the reward network formulation. There are often 
clear differences in expert behavior due to varied user prefer-
ences and domain knowledge, even though all experts perform 
the same task. Li et al. [16] learns these differences by condi-
tioning the learned low-level actions on a latent variable and 
discriminates expert demonstrations based on their structure in 
the GAIL setting. In our previous work, we investigate using 
NMNs to capture these factors in GAIL [18] and supervised 
learning settings [33]. The viability of these methods in the 
MED-IRL setting is an open question. In addition, MED-IRL 
assumes a fixed transition model ;x  however, this formulation 
may limit the robustness of learned policies when there are 
changes in dynamics such as significant environmental varia-
tions (i.e., changes in weather or traffic conditions).

The work of Fu et al. [21] investigates applying an adver-
sarial IRL (A-IRL) framework to disentangle the policy and 
reward function. A-IRL has been formulated by combining 
GAIL and guided cost learning (GCL) [34]. Compared to 
GAIL, it learns both the reward function and the policy, and 
compared to GCL, it learns in an adversarial learning set-
ting. Although the evaluations in [21] demonstrate increased 
robustness in high-dimensional environments with significant 
domain shifts between demonstrations, further investigation 
is required to enable the method to mitigate suboptimality in 
the given samples when the demonstrators do not follow opti-
mal behavior.

In the current formulation of the MED-IRL algorithm, 
value iteration (see Algorithm 2) is used to solve the forward 
RL problem in the loop. Numerous works have demonstrated 
that value iteration has a very slow convergence rate [23], [35]. 
In the work of Zhang et al. [23], the authors utilized a tech-
nique called annealed softmax where they artificially increase 
the probability of the most likely action being chosen. How-
ever, more investigation is required to determine the best ways 
to speed up the convergence of value iteration.

In addition, little effort has been made to leverage the multi-
modal data captured by autonomous vehicles. In [14] and [23], 

Table 1. The evaluation results for NGSIM US-101 [31] and nuScenes 
[32]. 

Results for the NGSIM US-101 Data Set

Prediction Horizon

Method 1 s 2 s 3 s 4 s 5 s
CS-LSTM [8] 0.61 1.27 2.09 3.1 4.37
MATF-GAN [1] 0.66 1.34 2.08 2.97 4.13
GAIL-GRU [17] 0.69 1.51 2.55 3.65 4.71
L-IRL [22] 1.12 2.29 2.31 3.38 4.45
D-IRL [14] 1.35 2.57 2.83 3.69 4.88
DK-IRL [23] 1.09 2.05 2.27 2.91 4.4
DN-IRL [30] 0.54 1.02 1.91 2.43 3.76

Results for the nuScenes Data Sets

Prediction Horizon

Method 1 s 2 s 3 s 4 s 5 s
Social GAN [13] 0.93 1.49 2.67 3.32 5.89
GAIL-GRU [17] 1.39 2.02 2.98 4.05 5.87
L-IRL [22] 1.44 2.68 3.57 3.59 5.51
D-IRL [14] 1.61 2.93 3.12 4.21 5.19
DK-IRL [23] 1.23 2.53 3.03 3.52 4.94
DN-IRL [30] 0.75 1.25 2.35 2.59 4.55
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the terrain maps are captured using lidar scans; however, sys-
tems can be designed to exploit the complementary informa-
tion available through sources such as red-green-blue, infrared 
and thermal cameras, and radar sensors, which are readily 
available in a typical autonomous driving setting. These sen-
sors could provide information at different granularities and 
different ranges, enabling better neighborhood modeling for 
decision making.

The lack of availability of well-annotated public bench-
marks poses another hinderance. Only a limited number of 
data sets, such as nuScenes [32] and KITTI [36], have annota-
tions relating to other agents in the scene, including pedestri-
ans and cyclists. Hence, introducing public benchmarks with 
richer annotations could promote the swift implementation 
and evaluation of behavioral prediction systems for real-world 
autonomous driving systems.

Conclusions
In this article, we presented an overview of the current state-
of-the-art techniques applied for behavior prediction in autono-
mous driving. We reviewed popular approaches, including both 
model-based and supervised learning and GAIL, IRL, and 
D-IRL methods. We quantitatively and qualitatively evaluated 
these frameworks on two public driving benchmark data sets 
and demonstrated the utility of D-IRL, especially when mak-
ing predictions into the distant future. Despite the undoubted 

potential of D-IRL methods, there are several shortcomings at 
present, and a number of promising research avenues for future 
breakthroughs were discussed to further advance the field and 
realize the goal of fully autonomous vehicles.

Authors
Tharindu Fernando (t.warnakulasuriya@qut.edu.au) 
received his B.Sc. (special degree in computer science) and 
Ph.D. degrees from the University of Peradeniya, Sri Lanka, 
and Queensland University of Technology (QUT), Brisbane, 
Australia, respectively. He is currently a postdoctoral research 
fellow in the Speech, Audio, Image, and Video Technologies 
research program with the School of Electrical Engineering 
and Computer Science at QUT, Brisbane, Australia. His 
research interests focus mainly on human behavior analysis 
and prediction. He is a Member of IEEE.

Simon Denman (s.denman@qut.edu.au) received his 
B.Eng. degree in electrical engineering and his Ph.D. degree in 
the area of object tracking from Queensland University of 
Technology (QUT), Brisbane, Australia. He is currently a 
senior lecturer with the School of Electrical Engineering and 
Computer Science at QUT, Brisbane, Australia. His research 
interests include intelligent surveillance, video analytics, and 
video-based recognition. He is a Member of IEEE.

Sridha Sridharan (s.sridharan@qut.edu.au) received his 
B.Sc. degree in electrical engineering and his M.Sc. degree in 

–20
–90 –70 –50 –30 –10 10 30 50 70 90

–10

10

20

0

x 
(f

t)

y (ft)

(a)

–20
–90 –70 –50 –30 –10 10 30 50 70 90

–10

10

20

0

x 
(f

t)

y (ft)

(b)

–20
–90 –70 –50 –30 –10 10 30 50 70 90

–10

10

20

0

x 
(f

t)

y (ft)

(c)

–20
–90 –70 –50 –30 –10 10 30 50 70 90

–10

10

20

0

x 
(f

t)

y (ft)

(d)

FIGURE 6. The qualitative results of the DN-IRL method: (a) a lane following behavior is shown in the ground truth and a higher probability in the prediction 
is given for this behavior; (b)–(d) predictions for scenarios where an overtaking behavior exists in the ground truth. The observed part of the trajectories is 
shown in black. The autonomous agent is indicated by the red car, and the neighboring vehicles are denoted by black vehicles. The ground-truth future trajec-
tory is given in blue, while the predictions are in red. In the probability map, the colors from blue to yellow indicate low to high probability.
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T his article focuses on the trends, opportunities, and chal-
lenges of novel arithmetic for deep neural network (DNN) 
signal processing, with particular reference to assisted- and 

autonomous driving applications. Due to strict constraints in 
terms of the latency, dependability, and security of autonomous 
driving, machine perception (i.e., detection and decision tasks) 
based on DNNs cannot be implemented by relying on remote 
cloud access. These tasks must be performed in real time in em-
bedded systems on board the vehicle, particularly for the infer-
ence phase (considering the use of DNNs pretrained during an 
offline step). When developing a DNN computing platform, the 
choice of the computing arithmetic matters. Moreover, func-
tional safe applications, such as autonomous driving, impose 
severe constraints on the effect that signal processing accuracy 
has on the final rate of wrong detection/decisions. Hence, after 
reviewing the different choices and tradeoffs concerning arith-
metic, both in academia and industry, we highlight the issues in 
implementing DNN accelerators to achieve accurate and low-
complexity processing of automotive sensor signals (the latter 
coming from diverse sources, such as cameras, radar, lidar, and 
ultrasonics). The focus is on both general-purpose operations 
massively used in DNNs, such as multiplying, accumulating, 
and comparing, and on specific functions, including, for exam-
ple, sigmoid or hyperbolic tangents used for neuron activation.

Introduction
The use of DNNs as a general tool for signal and data pro-
cessing is increasing in both the automotive industry and aca-
demia, proposing a set of algorithms for most of the autono-
mous driving tasks. The effort in computing these artificial 
intelligence (AI) algorithms is an open challenge in the field 
of computing platforms. In particular, when considering strict 
requirements, such as lowering the power consumption, maxi-
mizing the throughput, and minimizing the latency, the com-
putational complexity becomes more critical. Moreover, with 
modern achievements in sensor components, the complexity 
and requirements scale further, with data coming in higher vol-
umes and dimensions and at higher speeds [1].

Digital Object Identifier 10.1109/MSP.2020.2988436 
Date of current version: 24 December 2020

Novel Arithmetic in Deep Neural Network 
Signal Processing for Autonomous Driving

Challenges and opportunities

©SHUTTERSTOCK.COM/MONOPOLY919



98 IEEE SIGNAL PROCESSING MAGAZINE   |   January 2021   |

This survey work is focused on the trends, opportunities, 
and challenges of the adoption of DNN signal processing 
techniques for autonomous driving and the needs of signal 
processing acceleration as well as the relevant computing 
arithmetic. Indeed, autonomous driving is a safety-critical 
application, as also specified in functional safety standards, 
such as International Organization for Standardization 26262, 
with strict requirements in terms of real time (both through-
put and latency) [1], [2]. In levels 1L  and 2L  of the Society 
of Automotive Engineers autonomous driving scale [3], only 
assistance to the human driver is needed. Therefore, signal 
processing based on deterministic algorithms is still enough; 
e.g., fast Fourier transform-based processing of frequency-
modulated continuous-wave radar was done in [1]. Instead, for 
high autonomous driving levels, from 3L  to ,5L  the com-
plexity of the scenario and need for signal processing, not 
only for sensing but for localization, navigation, decisions, 
and actuation, is so high that in recent state-of-the-art DNNs, 
signal processing is proposed to be used on board [1], [2], 
[4], [5]. This trend is confirmed by the rise of the Autonomous 
Systems Initiative within the IEEE Signal Processing Society 
[6]. DNNs have reached state-of-the-art status in several sig-
nal processing domains, such as image processing, segmen-
tation, classification, tracking [7]–[10], computer vision [11], 
and related areas [12]–[14].

In the automotive field, while sensor raw data processing 
(from cameras, lidar, radar, and ultrasonics) can be still per-
formed using classical signal processing techniques, DNNs 
are emerging as more appropriate solutions to solve complex 
and high-level tasks, such as data fusion, classification, and 
planning in harsh, unstructured, and continuously changing 
environments. Tasks such as scene understanding (e.g., image 
segmentation, region-of-interest extraction, subscene classifica-
tion, and so on) must be done on board vehicles since cloud-
based computing scenarios (where signal processing is done on 
remote cloud servers and on board, there is only a client unit 
generating requests to the server) suffer from several issues: pri-
vacy, authentication, integrity, connection latency and conten-
tion, and even communication unavailability in uncovered areas 
(highway tunnels, etc.). Onboard DNN signal processing can 
be done only if a low-computational complex algorithm is used 
and performing hardware (HW) is adopted. Hence, onboard 
computing units for DNNs should be optimized in terms of the 
ratio between the signal processing throughput performance and 
resources (memory, bandwidth, power consumption, and so on) 
[15]–[17]. This is the trend that big players, including Google, 
NVIDIA, and Intel, are following as they try to enter the autono-
mous driving market. Tesla recently announced its full self-driv-
ing (FSD) chip. This concept is also the core of the automotive 
stream in the Horizon 2020 European Processor Initiative (EPI) 
(embedded high-performance computing for autonomous driv-
ing, with BMW Group as the technology’s main end user [17]), 
where this article’s authors are involved.

To address the preceding issues, new computing arithme-
tic styles are appearing in the state of the art [18]–[26] to 
overcome the classic fixed-point (INT) versus IEEE Standard 

754 floating-point duality in the case of embedded DNN sig-
nal processing. Just as an example, Google is proposing Brain 
Floating-Point Format (BFLOAT) 16, which is equivalent to 
a standard single-precision floating-point value with a trun-
cated mantissa field. BFLOAT16 is supported in the Google 
Cloud tensor-processing unit (TPU) and TensorFlow and Intel 
AI processors. Intel is also proposing Flexpoint [18], [19], a 
16-bit-block floating-point format aiming to replace Float32. 
NVIDIA’s Turing architecture supports, in its tensor cores, 
Float16 to Float16 or Float32 matrix multiply–add operations 
as well as integer 4 (INT4) or INT8 to INT32 matrix multi-
ply–add operations, the latter for inferencing workloads that 
tolerate quantization [24]. The Tesla FSD chip exploits a neu-
ral processing unit using eight-by-eight-bit integer multiplica-
tion and 32-bit integer addition. Transprecision computing for 
DNNs is also proposed in the state of the art by academia [20] 
and industry, e.g., IBM and Greenwaves in [21]. Recently, a 
novel way to represent real numbers, called Posit, has been 
proposed [25], [26]. Basically, the Posit format can be thought 
of as a compressed floating-point representation, where more 
mantissa bits are used for numbers around one, with fewer 
stepping away from one, within a fixed-length format with 
variable-size fields (the exponent bits adapt accordingly to 
maintain the format fixed in length). 

Review of state-of-the-art DNN signal 
processing in autonomous driving
Autonomous driving is deeply bounded to vehicle navigation, 
including vehicle self-localization, motion, mapping, and in-
teraction. A relevant survey on trends and technologies for au-
tonomous driving is presented in [27]. The localization task is 
aimed at knowing the vehicle’s pose (position and orientation) 
as it is referred to a relative or absolute coordinate system. Tra-
ditional approaches to localization include satellite communi-
cation, such as GPS. However, these are typically weak radio 
signals that can be easily occluded by trees and buildings in a 
metropolitan scenario. There exist other types of equipment, 
such as inertial measurement units, that, combined with GPS, 
real-time kinematics, and Kalman-based predictors, can solve 
this problem, but they increase the implementation cost. Since 
the task of constantly knowing the vehicle’s position is critical, 
one cannot rely only on these signals.

The mapping task introduces a further level of context 
awareness. With a map-matching approach, a vehicle is able 
to know not only its position but its surroundings. An impor-
tant mapping technique is simultaneous localization and 
mapping (SLAM) [28], which enables a vehicle to bypass or 
minimize the need for satellite navigation. SLAM considers 
the surroundings as a probability distribution of points rather 
than a snapshot of the context in time, building a world model 
by making use of lidar sensors or similar devices. The typi-
cal output of these sensors is point clouds that represent the 
surrounding environment and must be processed to give more 
information about the area. In [29], a way to classify lidar 
images using DNNs is presented. In [30], a benchmark chal-
lenge for DNNs for the German Traffic Road Sign Recognition 
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Benchmark (GTRSB) is proposed, and in [31], there are some 
advanced DNN techniques, such as data augmentation and 
region-of-interest extraction, to maximize DNN recognition 
and detection accuracy, reaching top-level accuracy on road 
sign recognition and detection benchmarks. Moreover, with 
advanced developments in computer vision, vehicles can be 
equipped with cameras whose signals can be processed by 
DNNs as well. For example, in [32]–[34], a semantic segmen-
tation of city landscapes challenge is presented, providing 
benchmarks for DNNs to prove their ability to identify the 
main components of a road (such as lanes, other vehicles, and 
pedestrians) from image or video signals. On the industry side, 
with the advent of companies including Tesla and Google’s 
Waymo, the use of DNNs in processing lidar and camera sig-
nals has become more central.

Low-precision DNNs
Academia and industry have proposed multiple solutions to 
the problem of reducing the number of bits used to represents 
DNNs’ weights, compressing the size from 32 to 16, eight, four, 
and even one bit, resulting in little to no degradation in perfor-
mance when tested with common DNN tasks and benchmarks. 
As an emerging trend in the state of the art, the literature is 
starting to explore the possibility of using the newly introduced 
Posit representation to halve the weights’ size while maintain-
ing the same accuracy and to further reduce the weights’ size 
while sacrificing little to no DNN precision. A very interesting 
work has been presented in [35], where network weights have 
been binarized, dramatically reducing the network footprint 
and increasing the training and inference speed. On the indus-
try side, NVIDIA has led the reduction of weight bits with its 
TPU, introducing integer weight types, such as eight- and four-
bit integers. In [36], a novel method is introduced to train neu-
ral networks (NNs) with extremely low precision (e.g., one bit), 
weights, and activations at runtime. In [37], the authors studied 
the training of NNs using low-precision fixed-point computa-
tions and evaluated the impact of different rounding techniques.

The aim of this article is to develop an NN accelerator 
based entirely on Posits, while also embedding look-up tables 
(LUTs) for low-bit Posits, such as four–12-bit Posits. In this 
way, we ensure a homogeneity of representations that is lost 
in the NVIDIA approach due to the discontinuity introduced 
when switching from floating-point half precision to eight- or 
four-bit integers.

Alternative representations for real numbers
In this section, we review the most interesting representa-
tion for real numbers, which could be used as an alternative 
to the floating-point representation (the IEEE 754 standard, 
2008, which will be referred to simply as Float from now on). 
In the following, we will use a homogeneous representation 
for the different number representation “Type Bits[,Exp],” 
where Type is the name of the representation (Float, Posit, 
and Fixed), Bits is the number of bits, and Exp is the num-
ber of bits used for the exponent. For fixed-point Exp repre-
sentations, the scaling factor to be applied to the number is 

considered to be a signed integer (e.g., Fixed16,8 represents 
a value with eight bits in the integer part and eight bits in the 
fractional part). For Float when Exp is missing, the standard 
value is assumed: 11, eight, and five for Float64, Float32, and 
Float16, respectively, corresponding to binary64, binary32, 
and binary16 of the IEEE standard.

BFLOAT16
The research on DNNs has demonstrated that 16-bit Floats 
could be enough for many classification problems. From this 
research came the idea to give HW support to the standard 
half precision (Float16,5) too, in addition (or as an alternative) 
to Float32. The problem is that pretrained DNN models are 
usually available with Float32, and thus, lowering them to five 
bits of exponent could introduce alterations to the classifica-
tion and affect the overall classification performance. For this 
reason, the BFLOAT16 format (Brain Float 16-bits, namely, 
Float16,8 in the present notation) has been recently introduced 
with eight bits of exponent instead of five. Having the same 
size of the exponent of Float32, the use of BFLOAT16 intro-
duces a loss of numerical precision but no loss of dynamic 
range. Also, the conversion with Float32 is bitwise.

Flexpoint
Flexpoint numbers [18] are characterized by a shared ten-
sor exponent used for all number representations in a given 
NN layer (e.g., a 16-bit Flexpoint plus a five-bit shared ex-
ponent). Moreover, the magnitude of the common exponent 
is dynamically adjusted according to the required numerical 
range during training. The Flexpoint approach, although in-
teresting and powerful, cannot be used as a drop-in replace-
ment for Floats: changes are required to the DNN software 
(SW) libraries. This also makes the reuse of pretrained DNNs 
cumbersome.

Type-3 uniform numbers: Posits
Type-3 uniform numbers are the third proposal of universal num-
bers offered, again, by Gustafson. They can be exact (Valids) 
or inexact (Posits). Posits are particularly interesting because 
they are a drop-in replacement for Floats, while Valids are not. 
Posits will be presented and deeply investigated in the next 
section. Before that, we discuss, in the next two subsections, 
two further representations that are somehow related to Posits.

Universal coding of real numbers using bisection
The bisection method proposed by Lindstrom in [38] is based 
on Elias codes. It encodes each real number in a binary string 
based on bisecting intervals, starting from the base interval 
( , ).inf inf- +  Each bit of the string is the result of a comparison 
with a value contained in a given interval. The framework pro-
posed as universal coding enables building new number systems 
by defining a generator function to produce the various inter-
vals and a so-called refinement operator to compute the average 
value between two numbers. Theoretically speaking, this encod-
ing is very interesting due to the possibility to rapidly prototype 
and verify the representation. However, the encoding is quite 
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inefficient, involving elaborate expressions in its computations, 
thus becoming HW-unfriendly. This suggests that this particular 
encoding is not so interesting in the high-performance HW ac-
celerator topic discussed here, although Posit numbers can also 
be generated using this powerful encoding technique.

Logarithmic numbers and the Kulisch accumulator
As pointed out by Johnson, a researcher at Facebook AI 
Research, the problem in [39] with floating-point opera-
tions in HW is that the transistors needed to perform multi-
plication and division occupy the main part of the floating-
point unit (FPU), which is significantly more complex than 
for addition/subtraction. To overcome this problem, the 
logarithmic number system (LNS) was proposed decades 
ago in [40]. The LNS consists of representing a number as 

,y 2x=  i.e., in a pure logarithmic way. This makes multipli-
cation and division a matter of just adding and subtracting 
logarithmic numbers.

However, this requires huge HW LUTs to compute the sum 
or difference of two logarithmic numbers [39]. This has been one 
of the main bottlenecks for the format since handling these tables 
can be more expensive than basic HW multipliers. To avoid com-
mon fused multiplication and adding complexity, the Kulisch 
accumulation can be used. The idea is to not accumulate with 
a floating-point-type but instead, maintain an accumulator in a 
fixed-point type. As a drawback, this approach leads to a signifi-
cant increase in logic circuitry and power consumption, due to 
the bit count requirements of the Kulisch accumulator. Although 
this approach is really promising and can be combined with the 
Posit philosophy, it has not yet been demonstrated that logarith-
mic numbers are more effective than Floats for DNNs. Thus, 
more research is clearly needed before resorting to this solution.

A deeper investigation of Posits
Posit numbers have been proposed by Gustafson in [26]. The 
format is a fixed-length representation for real numbers, and it 
has two parameters: the total number of bits (totbits) and the 
number of exponent bits (esbits). It is composed of a maximum 
of four fields (see Figure 1):

■ one-bit sign field S
■ variable-length regime field R (1.rebits)
■ exponent field E, which has a predetermined maximum 

length of esbits (field E can even be absent)
■ variable-length fraction field F (it can be absent, too).
With the adopted notations, PositN,E refers to a Posit with N 
total bits and E esbits.

Both the total number of bits and the maximum size of 
the exponent field (esbits) are decided empirically a priori, 
depending on the application. These two lengths are those 
that fully characterize the Posit representation. The regime 
field length is determined by the number of consecutive zeros 
after the sign bit ended by one or, vice versa, by the number 
of consecutive ones ended by one zero. In the former case, the 
regime value is negative. After having determined the regime 
length, the associated value k can be retrieved according to 
the procedure illustrated in Figure 2. The bits that follow the 
regime field are, if present, the ones associated to the expo-
nent. Their number can be, at maximum, equal to the esbits 
(the a priori predetermined maximum number of exponent 
bits). When the field is missing, the exponent e is assumed to 
be zero. When fewer bits than esbits are present, the value of 
e can be obtained by filling the missing bits with zeros before 
decoding it (see Figure 3).

If there are additional bits after the exponent field, they 
are the ones associated to the fractional part of the mantissa. 
If the Posit is negative (the first bit is equal to one) before 
decoding it to retrieve k, e, and f, the two’s complement of 
its remaining bits must be computed. Therefore, let p be the 
integer represented by the Posit bit string, k the correspondent 
integer indexed by the regime bits into a run-length table (see 
Figure  2), e the unsigned integer associated to the exponent 
field E, and .f f f f0 n1 2f=  [the fractional part of the mantissa 
m ( ),m f1= +  associated to the F field]; the expression that 
maps the bit set to the real value is

,

( ) · · ( ),
,

sign
x

p

p u f

0 0

2 1

if
NaR, if 2

otherwise
p ( )

k e

1totbits

#

=

=

=-

+

-*

7 6 5 4 3 2 1891012 11131416 151718192022 21232426 2527282931 30

S Regime (1…rebits) Exponent (0…esbits) Fraction (0…)

FIGURE 1. The 32-bit Posit data type.

Binary

Numerical Meaning, k

0000

–4

0001

–3

001x

–2

01xx

–1

10xx

0

110x

1

1110

2

1111

3

FIGURE 2. The mapping table between the regime bits and k value for a five-bit string. Amber bits represent the regime bits, and brown ones terminate 
the regime run.
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where

.u 22esbits

=

Notably, it is possible to prove that for PositN,0, the num-
bers in the range [ , ]1 1-  are encoded as signed fixed points 
across N 1-  bits. This property is important for the level-1 
(L1) operations discussed later. Figure 3 provides an example 
of Posit16,3 (16 b, with a maximum of three exponent bits) and 
its decoding procedure.

Posit advantages over Floats and industrial adoption
As shown in [26], the main advantages of Posits over IEEE 
floating points are represented by less waste of representations 
(such as unique-zero and not-a-number bit configurations) and 
higher decimal accuracy when compared to the same bit length 
floating point. Moreover, the simplicity of the Posit number 
systems theoretically facilitates a more HW-friendly imple-
mentation, simplifying circuitry and thus reducing area occu-
pation and power consumption. Even if the Posit format is rela-
tively new, it has already attracted the attention of researchers 
from Facebook, IBM, Google, Microsoft, Intel, Bosch, Huawei, 
Fujitsu, Qualcomm, Kalray, Micron, Altair, Etaphase, Posit 
Research, Rex Computing, Stillwater Supercomputing, and 
Comma, as reported by Gustafson during a recent talk [41].

SW and HW implementations of Posits

SW implementations
Having SW implementation of Posit arithmetic is useful to test 
the applicability of the type to existing libraries and algorithms 
to compare performance against traditional floats and in the 
absence of proper HW support for Posit operations.

SoftPosit
This is a library endorsed by the Next Generation Arithmetic 
committee. Among its positive factors, it is multiplatform, sup-
porting C, C++, Julia, and Python. However, it presents hard-
coded Posit configurations and nonmodern implementation 
without templatized classes for the various configurations. It 
also lacks support for tabulated Posits.

Beyond Floating Point
Beyond Floating Point is one of the first C++ Posit arithmetic 
libraries developed. However, it is still incomplete and does not 
support Posit tabulation.

StillWater
StillWater is a complete library with modern C++ features and 
class templatization, although it is computationally heavy and 
missing Posit tabulation.

cppPosit 
This library (available in [42]), developed by the authors of the 
present work, exploits some of the modern C++ features, such 
as templates (i.e., generic programming), and traits. It supports 
Posit tabulation and logic separation between the front-end 

interface and back-end underlying type used for computation: 
the front end is the Posit number expressed in its packed form, 
while the back end enables choosing different approaches for 
performing mathematical operations.

The library identifies four operational levels, with increas-
ing computational cost. At level 1 (called L1), operations are 
just bit manipulation of the bits of the encoding. The cost is the 
same as integer operations performed in the arithmetic logic 
unit (ALU). At level 2 (L2), Posit data are extracted to fields 
(sign, regime, exponent, and fraction), with no need to com-
pute the exponent completely. Computations are performed in 
these fields, and the cost includes encoding and decoding of 
the format. At level 3 (L3), we have the unpacked version that 
is completely built (including the sign, exponent, and fraction). 
In addition to L2 operations, here, there is the need to build the 
full exponent. At level 4 (L4), the unpacked version is used to 
perform the operations in either SW or HW floating point or 
using fixed-point representations. The most efficient level is, 
of course, L1 since it comprehends operations that only require 
bit manipulation of the Posit representation, which can be 
computed on existing ALUs without having to wait for Posit-
processing units. Table 1 reports the most important L1 opera-
tions provided by the library. The library offers the possibility 
to use different back ends for Posit operations:
■ a fixed-number back end (using a quire-like approach)
■ a tabulated back end (see the section “The LUT Approach”)

03 2 14567891012 11131415

03 2 14567891012 11131415

S R E F

0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1

S R E

0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

(a)

(b)

FIGURE 3. Two examples of Posit16,3, that is a 16-bit Posit with esbits =
3. (a) The associated real value is ( / )256 2 1 13 256· ·3 5+ +-  (13/256 is the 
value of the fraction, and 1 +  13/256 is the value of the mantissa). The fi-
nal value is therefore . ( / ) . .1 907348 10 1 13 256 2 0042 10·6 6# #,+ + +- -

(b) The associated real value is: ( )256 2 1 0· ·12 4+ ++  (since the fractional 
part of the mantissa is missing, we set it to zero). The final value is 
therefore . .2 2 1 2676506 10·96 4 30#,+  The second example enables us 
to clarify that 1) the fractional part can be missing and 2) the exponent 
field can be shorter than its maximum size (in that case, the missing bits 
are assumed to be zero: the exponent four comes from reconstructed 
exponent field 100).
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■ a floating-point back end: either SW (SoftFloat) or HW (FPU).
Each L3 operation in the cppPosit library undergoes three dif-

ferent phases: 1) decode, 2) operation back end, and 3) encode. 
Each of these phases requires different functionalities in the pro-
cessor architecture:
■ Decode: mostly bit manipulation; the core function that is 

used here is the count-leading zeros (CLZ) built-in function.
■ Back end:

• Fixed: requires big-integer (64–128 bit) support
• Float: requires an FPU
• SoftFloat: requires 32/64-bit integer manipulations

■ Encode: bitwise operations.
Table 2 shows a summary of the requirements support for 

two common architectures (both have been used for the bench-
marks executed in the next sections; respectively, they are Intel 
i7560u and ARM Cortex A72). The two architectures do not dif-
fer in terms of HW requirements for the aforementioned phases. 
However, speaking about big-integer support, the Intel instruc-
tion set architecture (ISA) offers a single instruction (mulq) to 
perform a 64–128-bit integer multiplication; on the other hand, 
the ARM ISA requires the execution of two instructions.

HW implementations of the Posit processing unit
Some work has already been done to implement Posit units 
on field-programmable gate arrays (FPGAs) to provide effi-
cient and optimized HW implementation of Posit arithmetic. 
In [44], an algorithmic flow and architecture generator for 
Posit numbers is proposed, including a Float-to-Posit con-
verter unit and base arithmetic units. For the converter, the 
flow follows two major parts: floating-point unpacking and 
Posit construction. The first part works as any FPU, while the 
other determines the impact of the design on the HW. This 

has been implemented on a Xilinx Virtex-6 device, resulting 
in roughly 600 FPGA slices for a 32-bit Posit adder and 300 
for a 16-bit Posit adder.

In [45], a Posit core generator, called Poisson Generator
(POSGEN), is proposed. In addition, the FPGA design has been 
enriched with an extension of the Basic Linear Algebra Sub-
programs (BLAS) library for the Posit numbers, called Posit 
BLAS, to connect the FPGA through the Intel Open Comput-
ing Language libraries. The results show that the maximum 
frequency reached by the proposed implementation matches the 
state-of-the-art floating-point cores (FloPoCo) floating-point 
implementation. However, the area consumed by the POSGEN 
implementation is much higher than the FloPoCo one.

Another Posit arithmetic core, called the Posit arithmetic 
unit, generator is presented in [46], where generators for the 
Posit adder and multiplier are proposed. The design results 
show a reduction in the area occupation, referring to [44] for 
both the adder and multiplier as well as a reduction in power 
consumption for eight-bit Posits. For 16-bit Posits, the results 
are overturned in favor of the other implementation as well as 
for 32-bit Posits. Moreover, from the comparison between the 
Posit realization and the standard IEEE floating point, it is evi-
dent that a 32-bit Posit adder occupies less area and has a lower 
delay than a 32-bit Float adder. The 32-bit multiplier, instead, 
occupies the same area but with a higher delay. Finally, a 16-bit 
adder occupies a higher area with a higher delay.

In [47], another Posit arithmetic core generator has been 
introduced, called PACoGEN. The work presents different gen-
erators for HW description language adder/subtractor and multi-
plier/division cores. An interesting aspect of this implementation 
is the pipelined Posit arithmetic architecture, aimed at increasing 
the throughput of the unit and trying to produce a new result at 
each clock cycle (when at regime), making the three phases of an 
operation independent (Posit data extraction, core arithmetic pro-
cess, and Posit construction). Design results show that the pro-
posed implementation has a lower area (LUT) $ period (ns) when 
compared to proposals in the literature, such as [46]. However, 
when the design is compared to standard floating-point ones, the 
results show that 32-bit Posit adder/multiplier units occupy more 
area than some 32-bit floating-point ones.

An accelerator for Posit-based BLAS operations is pro-
posed in [48]. The work presents a modular framework for 
Posit arithmetic with the common three-step dataflow: Posit 
data extraction, operation, and construction. The implementa-
tion consists in a Posit adder, multiplier, and Posit accumula-
tor. The proposed BLAS library enables vectorized operations, 
such as element-wise addition, subtraction, and multiplication, 
as well as the dot product and vector sum. Experimental results 
show a consistent speedup obtained when using the vectorized 
approach compared to an SW implementation.

When considering FPGA implementation of Posit arith-
metic units, we need to consider the area occupation (thus, 
the power consumption) of the realized design and compare it 
to an FPU realization. Having a 32-bit HW Posit unit makes 
sense if the area of the realized Posit unit is less than the FPU 
one. If this does not hold, it still makes sense to have a 16-bit 

Table 1. The cppPosit’s most important L1 operations.

Operation Approximated Requirements
2x No esbits = 0
x/2 No esbits = 0

x1- No esbits = 0, [ , ]x 11! -

1/x Yes esbits = 0
FastSigmoid Yes esbits = 0
FastTanh [43] Yes esbits = 0
FastELU Yes esbits = 0

The table shows whether the operation produces an exact or approximated result 
and reports the requirements to be fulfilled. For instance, notice how x1-  can be 
computed using fast bit manipulations only when [ , ].x 1 1! -

Table 2. The requirements support of Intel and ARM  
for the cppPosit library.

Requirements
Intel Seventh Generation 
(Kaby Lake) ARM v8

CLZ built in ü ü
Big integer ü (one single instruction) ü (two instructions needed)
FPU ü ü
Integer manipulation ü ü
Bitwise operations ü ü
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HW Posit unit if its area is less than a 32-bit FPU one since 
16-bit Posits achieve similar performance to 32-bit Floats in 
different application fields (in the “Benchmark Data Sets and 
Examples of Achievable Results” section, we show that in 
DNNs, even a Posit8 can match the performance of a Float32).

Posit-based DNNs for signal processing
Nonlinear activation functions are a very important part of 
DNNs. Their efficient implementation is therefore crucial. In 
the next sections, we will see how some widely used activation 
functions can be efficiently computed when using Posits.

DNN activation functions
In this section, we present special implementations of well-
known mathematical functions and algorithms adapted to 
the Posit format. When considering these implementations, 
it is crucial to build them mostly with L1 operations (see the 
“cppPosit” section).

Sigmoid
The sigmoid function

( )x
e1

1sigmoid x=
+ -

has a very efficient approximation when using a Posit format 
with zero exponent bits, consisting only in a manipulation of 
the representation’s bits. This discovery is due to Yonemoto 
and Gustafson [26]. Although this formula is appealing in 
NNs since it leads to faster training, there are intrinsic limi-
tations when reducing the total number of bits (precision). 
Indeed, the sigmoid function does not exploit the dynamic 
range of the Float or Posit format enough since its codomain 
varies in [0, 1]. For this reason, we have developed a fast ap-
proximation of the hyperbolic tangent (see the next section).

Hyperbolic tangent
To solve said problem, an expression for the hyperbolic tangent 
has been derived using a linear combination of the sigmoid 
function:

( ) ( ) .tanh x x2 2 1sigmoid$ $= -

This leads to a fast and approximated version of the hyperbolic 
tangent (FastTanh, from now on) when using the aforemen-
tioned fast sigmoid approximation:

FastTanh( ) 2 FastSigmoid(2 ) 1.x x$ $= -

To have an L1 expression, we initially restrict the domain 
to negative numbers only. The doubling operation and sig-
moid function are L1 when using zero exponent bits, and the 
result of the first term of the expression is contained in the 
unitary range. This means that computing ( )y1- -  is also 
an L1 operation, according to Table 1. Finally, thanks to Tanh 
symmetry, we can also extend back the domain to positive 
numbers. Figure  4 shows the time comparison between the 
fast approximated version and the exact version of the hyper-

bolic tangent. As we can see, the FastTanh approximated ver-
sion is six times faster than the exact Tanh version. Moreover, 
we computed the mean square error (MSE) between the two, 
resulting in .MSE 2 947 10 3$= -  in the entire Posit interval.

A similar approach can be applied to the extended linear 
unit (ELU) activation function. This function solves the com-
mon problem of vanishing gradients of sigmoid-like functions, 
such as the hyperbolic tangent, and the effects of the flattening 
of the rectified linear unit (ReLu) for negative numbers:

ELU( )
1, if 0

otherwise
.x

e x
x

x #
=

-'

Starting from the Sigmoid function, we can obtain the nega-
tive argument case as follows, where each step of the ensuing 
equation can be executed as an L1 operation with contained 
approximation:

( )
( )

.x
x

2
2

1 1ELU
Sigmoid

$
$

=
-
-c m

If we switch from the Sigmoid to the fast-approximated 
version already exploited with the hyperbolic tangent, we 
can get a fast approximation of the ELU (called FastELU). 
Table 3 shows an example of accuracy and timing improve-
ments when using the approximated ELU function in place 
of the exact one. We trained a LeNet-like [49] model with the 
different activation functions until negligible improvements 
in the validation accuracy were obtainable. Then, we tested 
the three previously mentioned trained models with the dif-
ferent Posit types, reporting the accuracy and processing time. 
As we can see, the approximated FastELU model outperforms 
the ReLu model in terms of accuracy and, in particular, the 
type Posit8,0 shows lower degradation in terms of accuracy 
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FIGURE 4. The time comparison in various repetitions of ,60 000+  execu-
tions of Tanh and FastTanh for Posit16,0 [benchmarks were executed on 
an Intel seventh-generation (Kaby Lake) i7-7560U processor with two 
cores at 2.4 GHz]. The latter appears to be roughly six times faster, with a 
computed mean square error of . .2 947 10· 3-
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with FastELU/ELU rather than ReLu. In terms of timing, 
the FastELU and ReLu are comparable with PositN,0, both 
being L1 operations, while ELU is costlier. More mathemati-
cal details about FastTanh and FastELU can be found in [50].

The LUT approach
When using a low number of bits, the application of LUTs 
quickly becomes appealing. In theory, one could profile a spe-
cific application (i.e., computing the histogram of the most-
used values and the most significant range) and then create an 
ad hoc series of values. For this set of values, one has only to 
compute the four LUTs for the four elementary operations plus 
the tabulation of significant unary functions (exponential, log, 
trigonometric functions, square root, square, and so on). There 
also exist some optimized soft mathematical libraries in the 
Sun Cephes collection ([51]). The collection consists of more 
than 400 mathematical functions entirely implemented in C
and mostly delivered in different arithmetic precisions (32-, 64-, 
80-, 96-, 144-, and 336-bit operands).

LUTs for Posits
The Posit LUT size depends on the overall number of Posit bits. 
Without any optimization, a table for a binary operation for 
x-bit Posits is a square one, with the number of rows and col-
umns equal to .R C 2 1x= = -  Each table entry occupies b
bits, depending on the underlying type used to hold the Pos-
it number. The overall occupation for a naive table is thus 

.S R C b$ $=  For an eight-bit Posit represented across an eight-
bit unsigned integer type, a single table occupies 64 kilobits. 
To reduce the table size, the symmetry of addition/subtraction 
operations can be exploited to halve the table size and number. 
Moreover, multiplication and division tables can be discarded 
by exploiting logarithm properties, thus using just the addition/
subtraction tables.

Multiply and accumulate
The task of multiplying two numbers and summing the result 
into an accumulator is very common during DNN operations 
(such as convolution or matrix multiplication). The presence 
of an HW multiplier–accumulator is crucial since it helps in 
reducing by one the number of roundings involved in the com-
putation at each step. The authors of [52] present the imple-

mentation of an exact multiply-and-accumulate (MAC) func-
tion for low-precision Posits and other floating/fixed-point 
types, resulting in eight-bit Posit matching and even overcom-
ing 32-bit Floats.

Fused/exact dot product
When dealing with low-bit number representations, the dot prod-
uct is a critical operation. The dot product is intensively used in 
DNNs during convolution operations, and overflows can occur 
with high probability during the accumulation of term products. 
To avoid most of these overflows, two solutions can be adopted.

Fused dot product
While a MAC technique computes the product result, rounds it, 
adds it to the accumulator, and then rounds it again, a fused dot 
product (FDP) (also known as fused multiply–add) computes the 
entire expression at the maximum available precision, typically 
using an accumulator that has twice the bits of the single oper-
ands. In [26], the potentiality of Posits for overcoming round-
ing issues when using fused operations is shown, such as the 
possibility to use 32-bit Posits for high-performance computing 
instead of 64-bit Posits, thus increasing the computation speed 
and reducing the power consumption and storage requirements.

Exact dot product
The exact dot product technique makes use of the concept of 
quires (a very-high-bit-count scratch area) as the accumulator, 
deferring rounding only at the very last operation, thus mini-
mizing rounding errors. The concept of quires was introduced 
by Kulisch in [53] to minimize the number of transistors used to 
build a fixed-size register inside a processor. A quire is a very-
high-bit-count fixed-size scratch area used to perform arithme-
tic operations at the maximum possible precision given by that 
fixed-size type. If the quire is properly dimensioned, the round-
ing error will affect only the very last operation when convert-
ing the result back to the original low-precision type. To prevent 
the quire from underflow or overflow during these operations, 
we need to dimension it depending on the Posit configuration 
(https://posithub.org/docs/Posits4.pdf). Suppose that to have 
a totbits–bit Posit, the maximum possible value for the Posit 
will be ,maxpos u 2totbits= -  while the minimum possible value 
will be / ,1minpos maxpos=  where ;u 22esbits

=  each number is, 

Table 3. The comparison of different activation functions when applied to an NN for traffic sign classification.

GTRSB

Activation FastELU ReLu ELU

Accuracy (%) Time (ms) NCT1 Accuracy (%) Time (ms) NCT1 Accuracy (%) Time (s) NCT1

Posit16,0 94 5.8 — 92 5 — 94.2 6.4 —
Posit14,0 94 4.6 0.79 92 4.3 0.86 94.2 5.2 0.81
Posit12,0 94 4.6 0.79 92 4.3 0.86 94.2 5.1 0.79
Posit10,0 94 4.6 0.79 92 4.2 0.84 94.2 5 0.78
Posit8,0 92 4.6 0.79 86.8 4 0.8 91.8 5 0.78

Benchmarks were executed on an Intel seventh-generation (Kaby Lake) i7-7560U processor with two cores at 2.4 GHz.
1NCT: normalized computing time. (Posit computing times are normalized against the Posit16,0 computing times.)
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then, an integer multiple of minpos. Suppose we need to per-
form the dot product { , } { , };maxpos minpos maxpos minpos$

we’ll need the quire to be able to accommodate the value 
/ .maxpos minpos2 2  After some transformation, we can com-

pute the maximum value to hold as

.2(4 8) 2totbits esbits$ $-

Moreover, one bit has to be reserved for the sign, and more 
bits must be held to handle the sum (e.g., Gustafson chooses 30 
more bits to guarantee the absence of overflows). Practically, 
for example, this means that with an eight-bit Posit (esbits = 0), 
we will need one 64-bit quire register; for a 16-bit Posit (esbits
= 1), we will need a 256-bit quire register (four 64-bit regis-
ters); and for a 32-bit (esbits = 2) Posit, we will need a 512-bit 
quire register (eight 64-bit registers).

Kalray massively parallel processor array approach
To address the challenges of high-performance embedded 
computing with time predictability, Kalray has been refining a 
homogeneous manycore architecture, called the massively par-
allel processor array (MPPA), based on very-long instruction 
word (VLIW) cores. On the third-generation MPPA processor 
[54], each VLIW core is paired with a coprocessor designed 
for 2D data processing, especially the mixed-precision tensor 
operations of deep learning inference. In particular, each copro-
cessor implements matrix multiply–accumulate operations on 
INT8/32 and Float16/32, where we use the forward slash to de-
scribe the two bandwidths of the multiplicand and accumulator. 
Exploitation of INT8/32 operations relies on TensorFlow Lite 
quantization support [55], while exploitation of the Float16/32 
arithmetic through standard frameworks is the same as for 
NVIDIA general-purpose GPUs. However, unlike the NVID-
IA tensor cores, the Kalray MPPA-3 coprocessors per-
form exact dot–product processes inside the Float16.32 matrix 
multiply–accumulate operations by applying Kulisch’s princi-
ples on an 80 e+  accumulator [56].

Following [52], the Posit8 numbers have been identified 
by Kalray as an effective compressed representation for the 
Float32 network parameters: instead of rounding the Float32 
parameter values to Float16 values, the results of rounding can 
be restricted to Posit8,0 or Posit8,1 numbers, with the primary 
benefit of reducing by half the memory capacity and bandwidth 
required by the network parameters. Kalray focuses on the 
Posit8,0 and Posit8,1 numbers because they are exactly repre-
sented as Float16 numbers and thus can benefit from the exact 
Float16/32 dot–product operator of the MPPA-3 coprocessors. 
Conversely, the Posit8,2 numbers include eight values of mag-
nitude 65,536 and larger that are out of range of the Float16 
numbers, while the Posit8,3 numbers overflow even the range 
of the BFLOAT16 numbers. Evaluation of the HW costs and 
application benefits of using Posit8,0 numbers as a compressed 
format for Float32 network parameters is ongoing. This evalua-
tion should lead to the inclusion of new arithmetic instructions 
to expand Posit8,0 to Float16 in the MPPA Internet Protocol 
delivered to the Horizon 2020 EPI.

Preliminary results obtained by comparing the use of Float32, 
Float16, and Posit8,E (with an E from zero to three) for data stor-
age (while computation is still done in Float32) during the infer-
ence phase using network models for both the classification task 
[e.g., SqueezeNet, Alexnet, Visual Geometry Group (VGG)-16, 
VGG-19, GoogleNet and a custom convolutional NN (CNN) 
on the Modified National Institute of Standards and Technology 
(MNIST) database, and Canadian Institute for Advanced Research 
(CIFAR)-100] and detection task [e.g., You Only Look Once 
(YOLO) v3] show that Posit8,1 or Posit8,2 offers the best perfor-
mance, with an accuracy loss below 1% versus Float32 but a data 
compression of factor four. This will lead to reduced complexity 
for the data transfer and storage that are dominating DNN applica-
tions. It should be noted that 1) the networks were pretrained using 
Float32 and 2) the used data sets in the reported results had thousands 
of images. Indeed, the ImageNet Large Scale Visual Recognition 
Challenge 2012 data set has been used for classification and 
the Visual Object Classes Challenge 2012 data set for detection.

Vectorization of Posit operations 
(tested on random images)
While in the absence of proper HW support for Posits (i.e., 
a posit processing unit), we can still accelerate DNN core 
functions and operators using already-existing HW accelera-
tors. This is the case of the ARM Scalable Vector Extension 
(SVE) single instruction, multiple data engine. We have also 
ported our cppPosit library to provide a vectorized version of 
Posit functions exploiting the ARM SVE library. When talking 
about vectorized functions, L1 operations are the easiest ones 
to vectorize. In fact, since they rely only on integer arithmetic 
and logic, we can effortlessly exploit the native ARM SVE vec-
torization of integer operations. Benchmarks were executed on 
a HiSilicon Hi1616 CPU with a 32-bit, 2.4-GHz ARM Cortex-
A72 processor, using the ARM SVE Instruction Emulator.

Table 4 shows some timing results between the vectorized 
and nonvectorized approaches. Furthermore, we have provided 
an interface between the Posit floating-point back end and ARM 
SVE types to vectorize L3/4 operations, as well. This enabled 
implementation of the Posit-accelerated version of convolution 
and pooling operations. Table 5 provides an example of the 
timing results with 3 # 3 convolution and maximum-pooling 
operations. Finally, Table 6 gives the vectorization performance 
in terms of processing time on the low-precision inference on 
Posit8,0. The performance was obtained on the tiny-DNN library 
on various very-deep NNs. All benchmarks have been executed 
on the ARM instruction emulator. As reported, the processing 
time with SVE vectorization enabled dramatic speedups. Note 
that, in terms of absolute values, the processing time is quite 
large. Clearly, this is due to the fact that SVE-enabled HW is not 
available at the time of writing, and all benchmarks are executed 
inside the ARM SVE instruction emulator.

DNN signal processing performance: 
Accuracy and complexity
In [52] and [57], Carmichael et al. show an architecture using 
Posits in DNNs called Deep Positron, using an exact MAC 
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technique on eight-bit low-precision formats. The architecture 
has been tested on the MNIST, Fashion–MNIST, and other data 
sets, reporting no drop in accuracy with regard to Float32. An-
other approach to deep learning with low-bit numbers has been 
tested in [39], using logarithmic numbers with a residential NN 

(ResNet)-50 architecture on Imagenet, resulting in a 0.9 percent-
age point drop when shifting from Float32 to logarithmic rep-
resentation. We have integrated the cppPosit library in a DNN 
C++ library called tiny-DNN [58] that is capable of supporting 
various computing arithmetic, such as BFLOAT16, Flexpoint, 
and Posits. Then, we tested the accuracy of different network 
models in image classification benchmarks, such as MNIST, 
Fashion–MNIST, CIFAR-10, and GTRSB, using the FDP tech-
nique. For the MNIST data set, we registered a drop of 0.9 per-
centage points when testing the model from Float32 to Posit8. 
For GTRSB, we registered a drop of 0.2 percentage points, in-
stead. For other Posit configurations with 16, 14, 12, and 10 bits, 
we registered no drop in accuracy from Float32 to the Posit type.

Benchmark data sets and examples 
of achievable results
We have considered different standard data sets, such as the one 
shown in Figure 5, and standard CNN architectures, including 
the one in Figure 6. In particular, for the MNIST and GTSRB 
benchmarks, we trained customized CNN variants of the one 
reported in Figure 6, including Posit-related optimizations to the 
convolutional and activation layers. For the Fashion–MNIST 
benchmark, we used a pretrained model with a starting accuracy 
of 95%. For CIFAR-10, we used the VGG-16 pretrained model 
[59]. All the networks were initially trained using Float32 and 
then evaluated on the corresponding test sets, converting each 
Float32-trained model using different Posit configurations. Fur-
thermore, to provide a fair timing–accuracy tradeoff compari-
son, the Float32 model has been tested exploiting the SoftFloat 
library for SW-emulated floating-point numbers.

MNIST, Fashion–MNIST, and CIFAR-10
Table 7 presents the results obtained on three well-known 
classification benchmarks: MNIST, Fashion–MNIST, and 
CIFAR-10. MNIST is a digit-recognition problem, while 
Fashion–MNIST has been designed as a more complex drop-
in replacement for the MNIST data set, providing more general 
classes to be recognized (such as fashion products). Further-
more, CIFAR-10 consists in an even more complex task, bring-
ing three-channel images in the data set. As reported, the tests 
on the model with the different types show that Posits with 
zero exponent bits and sized from 12 to 14 bits can be a perfect 
replacement for Float32, while those with 10 and eight bits can 
replace Float32 with some drop in accuracy. The same holds 
for the Fashion–MNIST data set.

Note how the processing time [on an Intel seventh-gener-
ation (Kaby Lake) i7 processor] for a single-image inference 
of the VGG-16 model on a CIFAR-10 sample is expressed in 

FIGURE 5. The GTRSB data set example. 

Table 4. The L1 operations performance processing-time comparison 
between nonvectorized (naive) and vectorized (SVE-X) approaches. 

FastSigmoid (ms) FastTanh (ms) FastELU (ms)

Posit 8,0 16,0 8,0 16,0 8,0 16,0

Version
Naive 3.08 3.41 5.76 7.24 8.12 8.54
SVE-128 0.73 1.51 1.32 2.65 1.29 2.6
SVE-256 0.59 1.05 1.18 1.83 1.16 1.79
SVE-512 0.43 0.62 0.69 1.09 0.69 1.05
SVE-1024 0.29 0.39 0.48 0.72 0.46 0.68
SVE-2048 0.22 0.28 0.36 0.5 0.35 0.47

Each timing result comes from the function computation on a vector of 8,192 items.

Table 5. The 3 × 3 convolution and pooling processing-time comparison 
on two common Posit configurations with 225 × 225 random images.

Maximum Pooling (ms) Convolution (ms)

Posit 8,0 16,0 8,0 16,0

Version
Naive 49.7 59.41 80.67 80.84
SVE-128 9.51 26.52 24.02 37.99
SVE-256 8.89 22.06 11.66 21.49
SVE-512 6.96 14.69 6.85 14.03
SVE-1024 5.12 11.84 6.38 12.88
SVE-2048 4.13 9.76 3.65 8.81

The naive approach is the nonvectorized one. The other approaches are with incre-
mental SVE–vector registers.

Table 6. The image processing time for various very deep  
NN models using Posit8,0.

Version
Alexnet 
Time(s)

ResNet-34 
Time(s)

VGG-16 
Time(s)

VGG-19 
Time(s)

ResNet-150 
Time(s)

Naive 40.06 146.07 590.68 675.32 779.7
SVE-128 2.76 10.07 40.74 46.57 53.77
SVE-256 2.64 9.61 38.88 44.45 51.32
SVE-512 2.54 8.93 36.12 41.3 47.68
SVE-1024 2.44 8.92 36.06 41.23 47.6
SVE-2048 2.34 8.9 35.97 41.13 47.48

For this benchmark, random red–green–blue 224 × 224 images are employed.
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seconds, highlighting the infeasibility of this model for tradi-
tional CPU architectures. However, we are moving toward 
GPU-enabled DNN libraries, as described in the “Conclusions 
and Road Maps” section. For comparison, an entire training 
epoch of 60,000 CIFAR-10 samples on a Resnet-50 architec-
ture takes only approximately 30 s on a dual-GPU (Tesla T4) 
configuration, thus only 0.5 ms for the forward and backward 
passes (including the weight update). It should also be noted 
that to make the comparison fair, we evaluate, in Tables 6 and 7, 
the SW implementation of Posits (using our developed cppPosit 
library) against an SW implementation of Floats (the SoftFloat 

library). From Tables 6 and 7, we can observe that moving from 
SoftFloat32 to Posit8,0, we get (roughly) the same classification 
accuracy on all considered data sets but with a reduction in the 
computing time of roughly a factor of three.

Automotive benchmarks: The traffic 
sign recognition problem
In this section, we report the results obtained on a classifi-
cation benchmark related to assisted/autonomous driving. 
Benchmarks were executed on an Intel seventh-generation 
(Kaby Lake) i7-7560U processor with two cores at 2.4 GHz. 
The GTRSB is a baseline benchmark for road sign recogni-
tion, which is very interesting as an automotive task. Table 8
shows that, in this case also, Posits from 12 to 16 bits, and 
even 10 bits, can be a perfect replacement for Float32, while 
Posit8,0 performs well with a little drop in accuracy. We have 
also started an activity to assess the performance of Posits 
using the YOLO approach [60], [61] and Apollo [62] (http://
apollo.auto/) heterogeneous framework, and the achieved 
results confirm what we already obtained with the GTRSB, 
MNIST, and Fashion–MNIST data sets. Moreover, we began 
an activity to assess Posit performance in semantic segmenta-
tion tasks (such as pixel- and instance-level classification [33], 
[34]) on famous data sets, such as CityScapes (see Figure 7). 
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FIGURE 6. The LeNet-5 architecture as described in [49]. Some customization has been added to the network to better fit our goals: the activation func-
tion has been changed to FastTanh (as described before) for the MNIST data set and to a fast approximation of the ELU for the GTSRB data set. The input 
size of the first layer has been extended to hold the 64 64 3# #  color images of the GTSRB data sets.

Table 7. The accuracy and processing time obtained on MNIST, Fashion–MNIST, and CIFAR-10 data sets.

Type MNIST Fashion–MNIST CIFAR-10

Accuracy (%) Time (ms) NCT1 Accuracy (%) Time (ms) NCT1 Accuracy (%) Time (s) NCT1

SoftFloat32 99.4 8.8 — 95 41.9 — 93.75 7.75 —
Posit16,0 99.4 5.2 0.59 95 13.6 0.32 93.75 2.55 0.32
Posit14,0 99.4 4.6 0.52 95 13.5 0.32 93.75 2.49 0.32
Posit12,0 99.4 4.6 0.52 95 13.5 0.32 93.75 2.44 0.31
Posit10,0 99.3 4.6 0.52 95 13.4 0.32 93.75 2.4 0.3
Posit8,0 98.5 3.8 0.43 94 13.4 0.32 85 2.34 0.3

The processing time is evaluated as the mean per-sample inference time on the test set of the relative data set.
1Posit computing times are normalized against SoftFloat32 computing times.

Table 8. The accuracy–processing time tradeoff obtained on the 
GTRSB data set.

Type

GTRSB

Accuracy (%) Time (ms) NCT1

SoftFloat32 94 15.86 —
Posit16,0 94 6.37 0.4
Posit14,0 94 5.21 0.32
Posit12,0 94 5.08 0.32
Posit10,0 94 5 0.31
Posit8,0 93.8 4 0.25

1Posit computing times are normalized against SoftFloat32 computing times.
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The results we are obtaining are in line with those from the 
MNIST, Fashion–MNIST, and GTRSB data sets.

k-nearest neighbors results
The k-nearest neighbors (k-NN) algorithm is ubiquitous in 
pattern-recognition problems. It can be used to segment 
images and to compute the normal vectors to each point 
of a point cloud obtained by a lidar sensor mounted on 
a car. The k-NN algorithm finds the k nearest neighbors 
of a given point from those in a given data set. We have 
compared the performance of the k-NN when using Posits 
and Floats and, again, found that the accuracy of Posit16,0 
is very close to that of Float32 (see Figure 8) and that 
a Posit8,0 outperforms Float16. These results have been 
obtained on a single data set, scaling it multiple times to 
reduce the dynamic range of the input data (thus enabling 
low-precision data types to be competitive with Float32). 
More details can be found in [63]. The obtained results 
confirm that Posits are powerful in a number of machine 

learning applications, meaning that 
implementing Posit-based HW ac-
celerators will be beneficial for nu-
merous different applications.

Next experiments
We are working toward the implemen-
tation of other fast approximated func-
tions (e.g., the ELU). We are currently 
porting our cppPosit-based tiny-DNN 
library on the ARM instruction emula-
tor used within the Horizon 2020 EPI 
[64] to exploit the SVE-2 as much as 
possible (providing a vectorization 
back end for the cppPosit library). We 
are also planning to test our SW on 
available simulators, such as GEM5, 
SESAM, and MUSA, to provide useful 
feedback to the ongoing EPI processor 
codesign process. 

Conclusions and road maps
In this article, we have reviewed the 
state of the art of DNN signal pro-

cessing for autonomous driving applications and the quest for 
novel representations of real numbers that must be both effi-
cient and reliable. We have seen how Posit is a suitable drop-in 
replacement for the IEEE 754 standard, and we have assessed 
its potentialities in autonomous driving applications. Imple-
mentations with both SW libraries and HW–SW embedded 
systems, from academia and industry, have been discussed. 
The achieved results when combining Posit arithmetic with 
DNNs are promising in terms of the tradeoff between accuracy 
and processing time. From this and related works, it is clear 
that the current challenges are 1) the development of real-time 
and low-power accelerators for performing DNN inference at 
the edge, 2) the development of methods for DNN verification 
and validation for the high coverage rates required by standards 
for safety-critical applications, and 3) moving toward a GPU-
enabled DNN library, such as Tensorflow, to build, train, and 
evaluate even more complex models once they are integrated 
with our cppPosit library. Furthermore, we plan to test our 
approach on GPU-enabled ARM devices, such as NVIDIA 

FIGURE 7. The CityScapes data set example of the semantic segmentation of a road in Stuttgart, Germany. 
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Jetson boards; mobile devices that do not employ GPUs; and 
even without the FPU.
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T he rapid evolution of autonomous vehicles (AVs) has ex-
posed the need for fast-paced development and testing 
processes of a variety of perception, planning, and control 

algorithms. To expedite development, the AV industry and re-
searchers leverage virtual vehicle environments to simulate a 
range of test scenarios that may otherwise be costly or difficult 
to conduct on a real test track. However, the various virtual en-
vironments may have different results depending on the fidelity 
of various simulation features, such as vehicle dynamics, sen-
sor simulation, and environment recreation. This tutorial article 
examines a proposed framework for constructing, parameter-
izing, and validating a virtual vehicle environment using an ex-
isting AV data set. First, an overview of several open source and 
commercially available simulation tools, including their associ-
ated workflows, for scene and scenario creation is presented. 
Next, various open AV data sets are examined to inform the 
data set selection for the validation framework. Then, an exam-
ple workflow of recreating a real-world scene from the selected 
data set in a simulation tool with various emulated sensors pa-
rameterized to match the data set is demonstrated. Finally, an 
example AV-perception algorithm is subjected to data streams 
from virtual and real-world environments and suggested met-
rics for analyzing the results are discussed.

Introduction
One of the primary focus areas for advancing the capability of 
AVs is to develop, train, and test AV algorithms using imagery 
and sensor data under a variety of environmental and driving 
conditions. A main challenge of this focus area is the sheer vol-
ume of testing and validation needed to complete many of the 
edge cases presented by AV operation. As a start, millions of 
miles have been driven by AVs, and a large amount of data has 
been collected on test tracks, closed roads, and public roads 
by various AV entities. For example, real-world data sets, such 
as the KITTI Vision Benchmark Suite [1], the Berkeley Deep 
Drive (BDD) [2], the Lyft Level 5 AV data set [3], the Waymo 
Open Dataset [4], and the nuScenes data set [5] have been col-
lected by vehicles instrumented with a variety of sensors, such 
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as cameras, lidars, radars, Global Navigation Satellite System 
(GLONASS), and inertial measurement units (IMUs). These 
data sets have been used for benchmarking and as a toolset for 
training and testing AV algorithms, yet, researchers realize that 
there are still many arbitrary and/or dangerous situations that 
cannot be covered by the current extensive testing and data col-
lection efforts. Some data sets, including the INTERACTION
data set [6], have tried to address these situations but still lack 
vehicle data such as real latitude, longitude, raw image data, or 
vehicle sensor streams typically used for testing and validation.

To address these challenges, researchers have developed 
open source virtual environments using game engines such as 
Unreal Engine and Unity. These virtual environments, such 
as CARLA, LGSVL Simulator, SYNTHIA [7], and Virtual 
KITTI [8], aim to provide a flexible platform for developing 
and testing AV algorithms under a variety of possible traffic, 
lighting, weather, and other environmental and driving condi-
tions. Although these virtual environments can be photoreal-
istic, they are primarily used to generate scenarios for on-road 
edge cases, computer vision development, and machine learn-
ing (ML) applications; none of them have yet emulated a full 
suite of high-fidelity or physics-based AV sensors (e.g., cam-
eras, lidars, and radars).

In addition to open source environments, several compa-
nies including AVSimulation, Cognata, dSPACE, ESI, IPG 
Automotive, Metamoto, MSC Software, and Siemens offer 
commercial toolchains for the development and validation of 
customers’ AV algorithms. In contrast to most open source 
toolchains, many of these environments offer full sensor sup-
port and characterization as well as a high level of scenario 
customization. Furthermore, these tools often contain sup-
port for hardware-in-the-loop (HIL) (e.g., controller-in-the-
loop, camera-in-the-loop, and sensor-in-the-loop), have full 
development suites, and can have high levels of simulation 
photorealism. Established ties to other commercial tools are 
also common, including software packages such as Aimsun, 
MATLAB/Simulink, GT-Suite, rFpro, SUMO, and VISSIM, 
which can help streamline workflow and cut development 
time for researchers, computer scientists, and engineers. A 
selection of both open source and commercial toolchains 
are covered in this article, as both solutions work to archive 
answers and results to varying research goals and challenges 
for AV testing and development as well as academic pursuits.

All of these tools have highlighted a significant need 
for R&D into the ability to generate synthetic sensor data 
streams (in addition to synthetic imagery) from virtual 
environments injected into AV controllers or a full AV on 
a dynamometer. The AV research community has begun to 
investigate whether artificial intelligence (AI) drivers and 
ML perception algorithms can be trained on purely synthet-
ic data, a combination of synthetic and recorded data, or if 
only real-world data are acceptable. Furthermore, whether 
AI algorithms developed to drive the vehicle in a virtual 
environment translate to controlling the vehicle in the real 
world where dynamics and perception are noticeably differ-
ent must also be determined.

To answer these questions and bridge the gap between vir-
tual environments and existing real-world data sets, there is 
a need to develop a framework that not only creates a “digi-
tal twin” of the real-world environment but also emulates the 
data streams of a full suite of sensors that are commonplace 
on AVs to increase fidelity and accuracy. This would enable 
realistic autonomous driving simulations in virtual environ-
ments. Moreover, it is important to evaluate how similarly or 
differently various perception and control algorithms respond 
to synthetic data injection versus data feeds from real-world 
sensors. All of these improvements depend on the ability of 
the aforementioned tools to continuously improve and serve 
as the centerpiece of AV testing and development.

Current state of selected simulators
When choosing a simulator for AV algorithm testing and de-
ployment, there are several factors to be considered. Looking 
specifically at vision-based perception and controls validation, 
the sensors made available from the data sets and the graph-
ics performance are critical in determining the proper envi-
ronment. Proper instrumentation and realistic feedback from 
sensor streams ensure that perception and control algorithms 
are being thoroughly tested. The resulting algorithms are more 
robust and can be deployed in real situations on a shorter time-
line. Other factors, such as weather, environment photorealism, 
and ties to external hardware, are also important to consider. 
For example, tools may have additional capabilities that allow 
for the support of real-world sensor inputs (i.e., cameras) that 
can be integrated with the simulation. Rapidly testing various 
configurations in both hardware and software can also shorten 
development time and push algorithms faster to market. On the 
front end of development, the ability to leverage map-genera-
tion packages such as open tools (i.e., OpenDRIVE [9], Open-
CRG [10], and OpenSCENARIO [11]) and other map tools can 
impact synthetic environment selection. Regarding cloud capa-
bilities, some tools may offer either local or cloud computing 
or a combination of both. A simple overview of all the available 
tools presented and their supported sensor types can be found 
in Table 1 and are further discussed in the next sections.

MSC software virtual test drive 
Virtual test drive (VTD) is a vehicle simulation package devel-
oped by VIRES Simulationstechnologie [12], which was later 
bought by MSC Software. Several open standards and tools 
developed by VIRES that were mentioned previously, such as 
OpenDRIVE, OpenCRG, and OpenSCENARIO, are fully sup-
ported in this environment. These associated open standards and 
tools allow support for road networks, road surfaces, and dynam-
ic content, respectively. VTD includes support for a variety of 
sensors including cameras, radars, and lidars. In a sample work-
flow, road design and population could be done using the Open 
toolchain (i.e., OpenDRIVE, OpenCRG, and OpenSCENARIO) 
and customized using the VTD Road Designer. Road Designer 
includes road designs for Europe, the United States, and China 
with extensive libraries of objects and textures. Using v-Traffic 
and v-Scenario simulation modules, the scenario can be further 
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customized with traffic, pedestrians, or other simulation assets. 
v-IG provides real environmental effects such as weather, camera 
effects, and real-time ray-tracing for the simulated environment. 
Finally, v-Task Control provides the core module responsible for 
task management, simulation control, and playback ability. VTD 
also provides cosimulation ability, with support for commonly 
used external tools such as MATLAB/Simulink.

dSPACE Automotive Simulation Models 
Automotive Simulation Models (ASM) is a vehicle simula-
tion package offered by dSPACE, Inc. [13]. Included with a 
significant MATLAB/Simulink integration, dSPACE supports 
GLONASS/IMU, cameras, lidars, and radars. In a typical work-
flow, a Simulink vehicle model can be virtually instrumented 
with a chosen set of sensors and vehicle characteristics to pro-
vide realistic vehicle dynamics. Next, the Simulink model links 
with dSPACE ModelDesk, where the user can parameterize the 
vehicle, associated simulation objects, the road network, and 
the scenario under test. Then, ModelDesk communicates with 
MotionDesk to visualize the vehicle, objects, and road in the 
scene performing the scenario under test. The environmental 
conditions and superficial objects can be further edited in Mo-
tionDesk. Finally, virtual sensors can be added to the vehicle 
and parameterized in MotionDesk, which streams sensor feed-
back to the Simulink model. As ASM is a dSPACE product, it 
leverages all of the additional hardware and software native to 
the dSPACE family, including the SCALEXIO HIL systems, 
MicroAutoBox controllers, and other dSPACE products.

CARLA
CARLA is an open source simulation tool built in the Unreal 
Engine environment [14]. The CARLA simulator includes sen-
sor support for cameras, lidars, depth, semantic segmentation, 
obstacles, collision, and lane invasion. Several additional tools 
for map generation are available, including a CARLA stand-
alone graphical user interface (GUI) or other external tools 
such as VectorZero’s RoadRunner [15]. Because of the tool’s 
integration with Unreal Engine, heavy customization is pos-
sible using Unreal Editor and associated asset libraries. In a 
typical workflow, the map is first generated using RoadRunner 
or Carla’s GUI, ported to Unreal Engine for asset population 
or environment customization, and then compiled for use with 
the Python application programming interface (API). The API 
allows for interfacing to the host vehicle, the placement of sen-

sors, and the execution of user scripts. The CARLA build in-
cludes a breadth of python classes for the API and gives a solid 
basis on which to generate user libraries.

Metamoto
Metamoto provides another option for a simulation platform, 
which includes a Designer, Director, and Analyzer tool [16]. 
All three tools can run in either Windows 10 or a web-based 
client using cloud computing. Currently, Metamoto provides 
support for GLONASS, IMU, cameras, lidars, and radars; 
this includes support for customer sensor models using actual 
sensor firmware. In a sample workflow, the Designer tool 
would be used to instrument the vehicle, add dynamic assets 
to the static environment, or add driving maneuvers. Using 
the Director tool, the test can be scheduled, the environment 
can be customized by time of day, weather, and so forth, and 
other scenario variables can be customized and parameter-
ized. The Analyzer tool can then be used to debug and replay 
data for postprocessing, benchmarking, and algorithm results 
analysis. Because Metamoto offers a pay-as-you-go service, 
all simulations run in the Metamoto cloud; simulations of 
higher complexity (several sensors or actors) require heavier 
computation and, in turn, a higher overall cost.

Cognata
Cognata Studio is another tool available for AV development, 
with a heavy focus on software-in-the-loop. Cognata currently 
supports GLONASS, IMU, cameras, lidars, and radars in simu-
lation [17]. In a typical workflow using Cognata Studio, Open-
DRIVE or satellite data would be imported into the tool to gen-
erate the backbone of the simulation. Using these standard data 
sources, Cognata’s tool can use AI to rapidly generate digital 
twin static environments. On this generated static backbone, as-
sets such as AI drivers, pedestrians, vehicle cameras, or vehicle 
lidar sensors can be added. In the simulation step, the vehicle can 
be tested and visualized in a high-definition environment based 
on custom pass/fail criteria and user-developed rules. Leverag-
ing the company’s partnership with NVIDIA, Cognata aims to 
target the Drive Constellation platform with their future work.

IPG Automotive CarMaker
CarMaker/TruckMaker is a simulation tool developed by 
IPG Automotive [18]. IPG has a dedicated Simulink interface 
that includes libraries for global navigation sensors, lidars 

Table 1. A summary of sensor emulation available in different virtual environment simulators.

openDRIVE GLONASS IMU Camera Lidar Radar Cloud Only
MSC VTD Y N N Y Y Y N 
dSPACE ASM Y Y Y Y Y Y N
CARLA Y Y N Y Y N N 
Metamoto Y Y Y Y Y Y Y 
Cognata Y Y Y Y Y Y N 
IPG CarMaker Y Y Y Y Y Y N 

VTD: Virtual test drive; ASM: automotive simulation models.
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(realistic and ideal), and radars (realistic and ideal). The tool’s 
integration with Simulink allows engineers and researchers 
to leverage existing vehicle models and hardware, including 
external toolchains such as dSPACE and National Instruments 
[19]. Map generation leverages HERE’s ADAS RP as well as 
IPG Road, while simulation is handled with an IPG GUI and 
Simulink [20]. The typical workflow for IPG with an empha-
sis on the transition from the real to virtual environment using 
CarMaker will be thoroughly discussed in later sections.

Summary
Simulators commonly used for AV algorithm development 
and testing were summarized in the previous sections. The 
previous discussion of toolchains is not exhaustive, however, 
as the simulator landscape is rapidly changing and evolving. 
Referencing the Autonomous Vehicle Landscape report, the 
number of listed simulators grew from 19 to 29 between Feb-
ruary and August 2019 [21], [22]. The aforementioned plat-
forms were specifically chosen due to their popularity as well 
as their capability in sensor emulation. In addition, many of 
the previously mentioned tools follow a similar workflow. 
Development tools (e.g., MATLAB/Simulink) or perception 
stacks (e.g., RTMaps) were omitted, as they do not fall into 
the category of a true total simulation platform. Other simula-
tion platforms, such as LGSVL Simulator, NVIDIA DRIVE 
Constellation, Pro-SiVIC, rFpro, and SCANeR were omitted 
due to our unfamiliarity with these toolchains; however, they 
may be included in future research.

Current state of data sets
With the rise in interest for autonomous capability in vehicles, 
the need to effectively test associated vision and control algo-
rithms increases. The high complexity of mimicking human 
driving decision making poses a difficult task for developers 
and engineers. To address this need, test vehicles are being in-
strumented with an array of sensors such as cameras, lidars, 
and radars to collect vast amounts of data for public use. These 
data sets aim to bridge the gap between safe autonomous driv-
ing and effective controls development by teams of computer 
scientists, engineers, and researchers. In addition, many teams 
have developed associated software development kits (devkits) 
to help accelerate development in their respective data sets. 
These data sets are presented in Table 2 and discussed in the 
following sections. Note that specifications and configurations 
of sensors may vary drastically among different data sets, and 
readers should reference specific data providers in the next 
sections for more detailed information.

KITTI
The KITTI Vision Benchmark Suite was recorded with a Volk-
swagen Passat station wagon in Karlsruhe, Germany [23]. The 
data set includes recorded data from two gray-scale cameras, two 
color cameras, one lidar, and one real-time kinematic GPS and 
IMU unit each. In the raw data set provided, the data are sepa-
rated into the categories “city,” “residential,” “road,” “campus,” 
“person,” and “calibration.” In each frame, the data set provides 
the raw data (cameras, lidar, and GPS/IMU) and object annota-
tions in the form of 3D bounding boxes captured at 10 Hz. Gray-
scale and color camera data are provided in.png format, lidar data 
are in binary format, and GPS/IMU and calibration data are pro-
vided as text files, while the 3D object labels are given in XML 
format. The KITTI data set also includes a raw data devkit [24]
to parse the associated files using C++ or a MATLAB wrapper.

BDD
The BDD data set is a collection of more than 100,000 anno-
tated crowdsourced videos. Most of the data are taken with a 
camera mounted on the dash of a multitude of vehicles, result-
ing in a diverse array of data. The data include multiple cities, 
weather and lighting conditions, times of day, and different 
scene types. Similar to the KITTI data set and many of the 
data sets discussed in this article, the BDD raw data are anno-
tated with image tagging, road object bounding boxes, drivable 
areas, lane markings, and full-frame instance segmentation. In 
total, the data set includes bounding box annotation for 10 cat-
egories as well as if the object is occluded or truncated [2].

Waymo
The Waymo Open Data Set [4] is a subset of data taken from 
Waymo’s instrumented fleet of self-driving vehicles. The data 
include lidar and camera data from 1,000 20-s segments cap-
tured at 10 Hz. The resultant data include labels for vehicles, 
pedestrians, cyclists, and signs; these include labels and bound-
ing boxes on both lidar and camera data. In addition, the data 
set includes a diverse array of scenarios, weather conditions, 
and times of day. The provided code repository for development 
leverages Python and TensorFlow to parse and use the data set.

Aptiv nuScenes
The nuScenes data set is a large-scale data set developed by 
Aptiv Autonomous Mobility using two Renault Zoe vehicles 
[5]. Each vehicle is instrumented with GPS, one IMU unit, six 
cameras (see Figure 1), five radars, and one lidar (see Figure 2). 
A total of 1,000 driving scenes was collected in Boston and 
Singapore, with each scene cut to 20 s. A subset of 10 scenes is 

Table 2. Publicly available data sets and their attributes.

Size (GB) GLONASS IMU Camera Lidar Radar Location 
KITTI 180 1 1 4 1 0 Karlsruhe 
BDD 1,800 0 0 1 0 0 New York, Berkeley, and San Francisco
Waymo 1,000 0 0 5 5 0 25 U.S. cities 
nuScenes 400 1 1 6 1 5 Boston and Singapore 
Lyft 41.6 0 0 7 3 0 Phoenix 
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available in a mini data set, 850 for the training data set with full 
annotation, and 150 test scenes with no annotation. All of the 
objects in the nuScenes data set come with a semantic category 
as well as a 3D bounding box and attributes for frame. Twen-
ty-three separate object categories are annotated, for a total of 
1,166,187 annotations. A Python devkit and a full tutorial are 
also available (https://github.com/nutonomy/nuscenes-devkit), 
which allow the user to parse and manipulate the raw data as 
well as develop custom user libraries [25].

Lyft
Using the same format and devkit as the nuScenes data set, the 
Lyft Level 5 AV data set uses a fleet of Ford Fusion vehicles 
[3]. Each vehicle is instrumented with seven cameras and three 
lidar units, with slight variations in individual camera and li-
dar parameters depending on the vehicle deployed. The data 
set also includes human-labeled 3D bounding boxes of traffic 
agents and a semantic map. Because it leverages the nuScenes 
data set devkit, the same scripts and methods described in the 
nuScenes documentation can be utilized to parse and use the 
Lyft data. The training set is currently the only subset of data 
available for public use, but the testing and validation sets will 
be released at a later date.

Summary
A nonexhaustive list of publicly available data sets and their 
characteristics were discussed in the previous sections. These 
data sets were chosen due to their availability, general popularity 
in research, and overall usability. In addition, many of these data 
sets can be used for synthetic environment generation due to 
their variety of sensor data and data density. As such, some other 
data sets, e.g., the INTERACTION data set [6] and those refer-
enced in the Autonomous Vehicle Landscape [22], were omitted.

Evaluation metrics
In the context of autonomous driving, the ability of an algo-
rithm to detect and track objects in the driving environment 
is critical. A good replica of the real-world scene should yield 
very similar object detection and tracking results when the 
same algorithm is applied. Hence, to evaluate how well the 
virtual environment and its emulated sensors represent real-
world scenarios, results of the same perception algorithm ap-
plied to detect and track objects in the real-world data set and 
the simulated environment are compared based on some com-
monly used object detection and tracking metrics summarized 
in this section.

FIGURE 2. An example of (a) lidar and (b) radar data streams overlaid on a 
front camera from the nuScenes data set [5], [25]. 

(b)

(a)

FIGURE 1. The captured camera output from six cameras mounted on the nuScenes development vehicle using the nuScenes devkit provided by libraries 
[5], [25]. 
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Fundamentally, all object detection evaluation metrics use 
the following measures as their basis: true positive (TP) and 
false positive (FP), which represent the number of positive 
detections that correctly and incorrectly match the real-world 
objects, respectively. Similarly, true negative (TN) and false 
negative (FN) denote the number of negative detections (i.e., 
nondetections) that correctly and incorrectly match the real-
world situation, respectively. To define how well the predic-
tion matches the ground truth, metrics such as the intersection 
over union (IoU), defined as the ratio of the intersection of the 
detection and the ground-truth bounding boxes to the union 
of the two bounding boxes [26], [27] as well as the 2D center 
distance on the ground plane in meters [5] have been defined. 
These metrics are primarily used as a threshold for determin-
ing TP, FP, TN, and FN, which are then used to calculate the 
other metrics described in the following sections.

Object detection metrics
Detection results can be measured using basic metrics such as 
accuracy (A), recall (R), and precision (P). Accuracy is the ra-
tio of correctly predicted results to the total observations, i.e., 

( ) / ( ).A TP TN TP TN FP FN= + + + + Recall denotes the ra-
tio of the number of true positives to the number of real (actual) 
positives, i.e., / ( ).R TP TP FN= + Precision typically denotes 
the ratio of the number of true positives to the number of pre-
dicted (detected) positives, i.e., / ( );P TP TP FP= +  howev-
er, some defined have precision as / ( ),P TP TP FP FN= + +

which accounts for both the precision and recall metrics men-
tioned previously [28].

Average precision (AP) denotes the area below the preci-
sion-recall curve with precision monotonically decreasing 
[26], [29]. AP can be calculated based on a single IoU threshold 
(e.g., IoU .0 5= [26] or IoU .0 75= [27]); the higher the IoU, 
the stricter the metric is. AP can also be calculated based on 
multiple IoU thresholds, also known as the mean AP (mAP). 
For example, the COCO data set calculates its mAP based on 
an IoU . : . : .0 5 0 05 0 95=  (i.e., an IoU from 0.5 to 0.95 with a 
step-size of 0.05) [27].

With the recent advances in sensing and computing tech-
nologies, many detection algorithms can now detect and 
locate objects in the 3D environment [5]. As a result, evalua-
tion metrics have also evolved from 2D to 3D. For example, 
the 2D center distance on the ground plane used by nuScenes 
[5] is only possible when the detection is in 3D. Also, instead 
of a 2D, area-based metric, IoU can now be a 3D, volume-
based metric.

The CLassification of Events, Activities, and Relationships 
(CLEAR) workshop defined some additional metrics used for 
object detection and tracking [30], [31]. As shown in [1], the 
multiple object-detection precision of frame t is defined as 
the ratio of OverlapRatio to the number of mapped objects 
in frame t. It evaluates the alignment between the annotated 
and predicted bounding boxes. OverlapRatio in [2] is defined 
similarly to the concept of the sum of IoU, where G( )

i
t  denotes 

the ith ground-truth object in the tth frame and D( )
i
t  denotes 

the detected object for G( )
i
t [30]:
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The Multiple Object-Detection Accuracy (MODA) metrics  
assesses the accuracy of the detection performance. As shown 
in [3], it compares false positives mt and missed targets fpt to the 
total number of ground-truth objects in frame t. Here, cm and 
cf are cost functions for the missed targets and false positives:
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Object-tracking metrics
To evaluate the ability of an algorithm to accurately track the 
movement of objects, the multiple object-tracking precision 
(MOTP) and multiple object-tracking accuracy (MOTA) met-
rics were further defined by CLEAR [31]. As shown in [4] and 
[5], MOTP evaluates the ability of the algorithm to estimate 
precise object positions, and MOTA assesses the performance 
of the algorithm to correctly detect the number of objects and 
keep consistent trajectories. Here, ct denotes the number of 
matches found for time t. For each of these matches, dt

i  denotes 
the distance between the object i and its corresponding detec-
tion. Finally, mmet denotes the number of mismatch errors for 
frame t. MOTP and MOTA have been adopted by the Waymo 
Open Dataset as their tracking metrics [4]:
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Summary
Several commonly used metrics in object-detection and track-
ing challenges were summarized in the preceding sections.  
The use of these metrics can be dependent on the algorithms 
being evaluated. For algorithms that detect and locate objects 
in images, object-detection metrics such as AP and mAP can 
be used. These metrics can be calculated in an area-based (2D) 
or volume-based (3D) manner depending on the sensors and 
data streams used. For algorithms that track objects through 
the sequence of multiple images, on the other hand, object-
tracking metrics such as MOTP and MOTA can be used.

General workflow for synthetic environment 
creation and validation
The purpose of this article is to develop an overview of a frame-
work and workflow that enables the emulation of a full suite 
of sensors and the generation of synthetic sensor data streams 
in virtual environments (via one of the discussed simulators), 
which replicates real-world scenarios using real data sets. As 
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mentioned in the following sections, this article discusses the 
approach in a step-by-step fashion. 

Selection of a real-world data set for virtual 
environment replication
The question of which real-world data set to use for virtual 
environment and sensor feedback generation is important be-
cause it will help inform which simulators are acceptable for 
full scene generation or which data set is best suited for a user’s 
available simulators. Choosing the correct data set for scene 
generation is threefold. First, data sets can provide limited sen-
sor data or a full suite of sensors, including object-detection/
perception sensors (e.g., cameras, radars, and lidars) and posi-
tion sensors (GPS and IMU) [5]. Typically, it is best to find 
the most complete data set possible that covers the available 
sensor suite in the chosen simulation tool. Second, the cho-
sen simulation tool must be able to appropriately model all of 
the chosen sensor streams for effective and more complete al-
gorithm baselining. Finally, choosing a complete data set can 
save time for scene generation; for example, a data set with 
several cameras gives the scene creator a stronger basis upon 
which to build the virtual environment.

Generating the digital twin virtual environment
All of the simulation tools mentioned in this article have a pri-
mary interface for the development and testing of the virtual 
environment and the generation of the road network. With 
the GPS feedback or mapped location data provided from a 
chosen data set, a virtual digital twin environment can then 
be generated using a mapped database and software package, 
such as HERE’s map database and development tools [32], or 
data from a 3D mapping service provider like 3D Mapping So-
lutions [33]. These services often have the ability to directly 
import into the simulator of choice, but the fidelity of the im-
ported road network and the amount of adjustment and cleanup 
needed to achieve an acceptable scenario vary greatly.

Developing driving scenarios
After generating the scene, the user must place and define all of 
the simulation actors that range widely from cars and trucks to 
pedestrians, animals, and other moving objects. Replicating these 
objects as they are in the scene can be a very difficult step in the 
process, as these actors not only have to be present in the scene 
but also have a number of other variables and attributes that need 
to be correctly calibrated. These parameters include proper object 
type, size, color, surface properties, location, orientation, and ve-
locity. Note that, although behavioral models such as car follow-
ing, collision avoidance, and lane changing could be considered 
in this step, they are not necessary for this application because 
most real-world data sets provide detailed object locations frame 
by frame and thus can be manually replicated by the user.

Simulating full-suite synthetic sensors for 
collecting data in the virtual environment
All of the aforementioned toolchains include a full suite of syn-
thetic sensors that can be deployed onto the vehicle in the vir-

tual environment. Often the simulators have multiple levels of 
fidelity in the sensor models (e.g., ideal, statistical, probabilis-
tic, physics based, and so on). These sensors, including lidars, 
radars, cameras, GLONASS, IMU, and ultrasonics, among 
others, can be used to collect synthetic data in the virtual envi-
ronment based on the created road network, generated scene, 
and scenario built and deployed earlier. Figure 3 shows an ex-
ample of synthetic versus real-world lidar data point clouds.

Shaping and restructuring synthetic sensor feeds
The synthetic sensor data from a simulator can then be re-
structured to match the configuration and delivery intervals of 
the sensor feeds in the real-world data sets. To complete this 
restructuring, custom code often needs to be written to unpack 
and repack synthetic data into the appropriate format.

Comparing real-world and synthetic data
Following the virtual environment generation, sensor deployment, 
data collection, and data restructure, real-world and synthetic data 
can be compared side by side using a variety of metrics to evalu-
ate how the data collected by sensors in the real world compare 
to those collected virtually by their synthetic clones. Comparison 
can also be done by applying existing perception algorithms and 
controls on both the real-world and the synthetic data streams, 
and the results of these tests can be further evaluated.

Example workflow and use case
The detailed steps of a workflow (see Figure 4) that we used 
previously are described in the following sections as an ex-
ample use case to better illustrate the workflow for using real-
world data sets and virtual environments for perception algo-
rithm evaluation.

Selection of scenes from the nuScenes data set
The nuScenes data set has the variety of sensors needed for a 
full AV, including data streams of lidars, radars, and cameras. 
It also includes a devkit that provides a suite of prebuilt Python 
functions to parse through scenes as well as a template for user 
functions and full tutorials on how to use and manipulate the 
data. Using these functions, one specific scene in the Boston 
Seaport was chosen for recreation. As shown in Figure 1 in the 
“Current State of Data Sets” section, this scene has a slew of 
different object classes available for recreation and validation 
in the virtual environment.

Generation of the environment using HERE and IPG
Using IPG CarMaker’s HERE ADAS RP interface, it is pos-
sible to import road descriptions and basic geometry to lay the 
initial road backbone for the virtual simulation. Starting with 
the aforementioned example, the location of the Boston scene 
was found using the nusc.renderegoposesonmap() function 
in nuScenes, as displayed in Figure 5. Next, the Carmaker-
ADAS RP interface is leveraged to export the Boston scene 
from HERE’s map database to IPG’s scenario editing tool, IPG 
Road. Note that the electronic horizon functionality of HERE’s 
ADAS RP package was not utilized in this example; only the 
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map import feature was used. Then, in IPG Road, the initial 
backbone was manually populated by the user with additional 
assets that are parameterized to match the desired environ-
ment, as depicted in the selected nuScenes scene. In this case, 
the assets included pedestrians, a dog, parked vehicles, one 
moving truck, a stop sign, buildings, trees, and various objects 
surrounding the road and sidewalk. For the purpose of this ex-
ample, the standard actor models provided by IPG were given 
user-defined locations, trajectories, and paths that were used to 
approximate the behavior of the actors in the scene.

Recreation of sensor behavior in the virtual environment
To begin sensor replication for proper testing, it is critical 
to replicate exact sensor placement on the vehicle as well as 
sensor parameters to best leverage the capability of the IPG 
toolchain. For this scene, the behavior of the front camera and 
the single lidar must be replicated and tested. Looking in the 
IPG environment, the sensors can be easily parameterized, as 
shown in Figure 6. For each real-world sensor and its synthetic 
replicate, conducting a visual one-to-one comparison to quan-
tify the similarities/differences of the data streams is helpful, 
as presented in Figure 7.

Moreover, the response of existing perception algorithms 
such as sign, lane, and object-detection algorithms to virtual 
and real-world data streams can be evaluated. Referencing the 
nuScenes documentation, the lidar parameters are a 20-Hz 
capture frequency, 32 channels, a 360° horizontal field of 
view (FOV) with a +10 to −30° FOV, an 80–100-m range with 
±2-cm accuracy, and up to 1.39 million points per second. The 
camera parameters are red green blue, a 12-Hz capture fre-

quency, a 1/1.8-in CMOS sensor, 1,600 × 900 resolution, auto 
exposure, and JPEG compressed. The virtual and real-world 
data streams using these parameters are presented in Figure 7.

Testing of vision algorithms for synthetic baselining
For the purpose of comparing synthetic and real-sensor data 
streams, a selection of sensor(s) and perception algorithms 
must be made. In this example, we compared real data from 
the front camera module in the nuScenes data set to a synthetic 
front camera in the virtual environment of IPG CarMaker. With 
the sensor data streams selected, the perception algorithm was 
applied to detect and classify objects in these two data streams. 
In this example, You Only Look Once (YOLO) was chosen 
because of the availability of Darknet at https://www.pjreddie
.com/darknet/yolo/, an open source framework for constructing 
a neural network architecture, as well as the final weights of 
the YOLOv3-416 model trained on Microsoft’s COCO data 
set [27], [34]. In addition to the pretrained weights, the Dark-
net framework includes integration with NVIDIA CUDA for 
faster calculation on GPU and OpenCV to facilitate the input 
of various image formats and video stream to the model [35].

An open source variant of Darknet available on GitHub 
enabled the ability to provide a video to the model and receive 
an output video stream with the objects detected, classified, 
and localized using a bounding box [36]. By making slight 
alterations to the source code, the framework was able to out-
put the object class, bounding box location, and classification 
confidence in a file format suitable for further data analysis. 
Leveraging these features, a comparison of the perception 
results from the real video stream with the synthetic video 

(a)

(b)

FIGURE 3. (a) A lidar emulation in the IPG CarMaker environment using a ray-tracing algorithm. (b) A real-time data stream capture from a Velodyne 
HDL-32 lidar on an Oak Ridge National Laboratory (ORNL) vehicle. 
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stream generated in CarMaker was possible (see Figure 8). 
Metrics such as the AP and mAP with different 2D area-based 
IoU thresholds can be used to evaluate the detection results.

Conclusions
This article served as a tutorial for developing a framework 
to evaluate simulators and their sensor emulation in the vir-
tual environment. With a review of commonly used data sets 
and simulators for testing and developing autonomous driving 
applications, this article outlined the process of selecting real-
world data sets to generate a digital twin in the virtual environ-

ment, described options for simulation tools to emulate a full 
suite of AV sensor data streams, and discussed object-detection 
and tracking metrics that can be used to evaluate how AV-per-
ception algorithms respond to virtual versus real-world sensor 
data streams. In the future, the validation framework could be 
expanded in the following directions:
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■ Quantitative analysis of perception algorithm results: 
Although our team used visual inspection to analyze the 
synthetic and real-world data streams from lidar and cam-
era units, a quantitative evaluation has not been per-
formed. Going forward, we will examine the quantitative 
metrics further and determine how they clarify the valida-
tion of the simulation. 

■ HIL applications: Our team will evaluate virtual and real-world 
data streams ingested by Oak Ridge National Laboratory’s 
(ORNL’s) sensor processing unit and bench-top vehicle control-
ler. The data will then be used as real-time inputs to the 
AV-perception algorithms that affect vehicle control.

■ Other perception and control algorithms: This article touched 
on the use of object-detection algorithms in both virtual and 
real environments. In addition, the evaluation could potential-
ly expand to other algorithms such as object segmentation, 
drivable areas, traffic signal-state detection, traffic sign detec-
tion and recognition, lane detection, path planning, dynamic 
behaviors of automated vehicles, and so forth.
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An Efficient Algorithm for Maneuvering Target Tracking

Maneuvering target tracking is an 
important technology in engineer-
ing applications [1]–[3]. The tradi-

tional methodologies for designing it can 
be divided into two categories: model-
based and model-free algorithms. Al-
most all tracking algorithms are model 
based. The main idea behind model-
based tracking algorithms is to choose 
a representation that fits the actual state 
trajectories of the target movement and 
then to estimate the state based on the 
noisy observations recorded by sensors. 
The Kalman filter and its extensions are 
the most popular methods to estimate the 
state of a system. However, the stability 
and convergence rate of these algorithms 
depend directly on the accurate initial 
state estimation, unknown parameters, 
and covariance matrices of the process 
and measurement noise.

This article introduces a simple and 
effective algorithm for maneuvering 
target tracking. An easy trick is used 
to modify the representation such that 
each state variable is described by an 
independent difference model [e.g., the 
autoregressive (AR) and the AR-moving 
average (ARMA) models]. Then, the 
target state variable is estimated using 
a regularized least-squares optimiza-
tion algorithm. While the proposed ap-
proach is simple, it is inherently stable, 
as it can be implemented by forward-

filtering the observation signal with a 
finite-impulse response (FIR) filter and 
backward-filtering the result with the 
same FIR filter; it depends only on a 
single parameter whose optimal value is 
obtained using an L-curve function, and 
its computational complexity is linear.

Introduction
Almost all maneuvering target tracking 
models assume that the target motion 
and its observation can be represented 
by the following state space model [4]:

,
,

x f x u w
y h x

k k k k k

k k k k

1

h

= +

= +
+

^
^
h

h) (1)

where xk  is the state vector containing 
the terms of interest for the system, e.g., 
the target position ,pk^ h  velocity ,vk^ h
and acceleration ;ak^ h uk  is the con-
trol input (e.g., the braking force and 
the throttle setting); yk is the observa-
tion; and wk and kh are process and 
measurement noise, respectively. The 
control input is typically deterministic 
and unknown. Therefore, it is naturally 
modeled with an unknown, determinis-
tic process from measurement data dur-
ing tracking.

Another approach, which is more 
popular than deterministic modeling, 
is to represent the control input as a 
random process. This method includes 
three groups [4]. In the first, the control 
input is modeled as white noise, such as 
the constant-velocity (CV) model and 

the constant-acceleration (CA) model. 
In the second, the control input is rep-
resented as a Markov model with a time 
correlation. This group includes the 
Singer model, which is the best known 
and most commonly used facsimile that 
covers the CV, the CA, and many other 
models [4]. In the last group, a semi-
Markov jump process is employed to 
model the control input.

The linear counterpart of the target 
motion is described as [4]

,
x F x G w
y H x

k k k k k

k k k k

1

h

= +

= +
+' (2)

where Fk  is the state transition matrix, 
which applies the effect of each state pa-
rameter at time k on the system state at 
time ;k 1+ Gk is the process noise gain 
matrix; and Hk is a matrix that relates 
the state variables to the measurements. 
We desire to estimate the true target 
state or the motion parameters (the po-
sition, velocity, and acceleration) from 
the observations. As an example of an 
application, consider a simple tracking 
problem in which a truck moves along 
a straight line. The driver may apply an 
acceleration input or a braking input to 
the system, which can be considered as 
a function of an applied force fk^ h and 
the mass of the truck (m). According 
to Newton’s second law of motion, the 
control input is / .u f mk k=  The relation-
ship between the position and the veloc-
ity of the truck during the time period 
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Ts  (the elapsed period between time ep-
ochs k 1- and k) and the driver’s input 
is given by the following equation:

,
p p v T

m
f T

v v
m

f T
2k k k s
k s

k k
k s
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which can be written in the following 
linear form:

.x
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k
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= ++ ; >E H

In this case, the state vector xk

can be considered as ,x x x, ,k k k
T

1 2= =6 @
, .p vk k

T6 @  Finally, we can equip the truck 
with a GPS unit that can provide an es-
timate of the target position according 
to the model

.y x ,k k k1 h= +

In the CV and CA models, the control 
input is considered to be white noise. 
Another approach is to model the con-
trol input (the target acceleration) as a 
Markov model.

The Singer acceleration model
In his seminal paper [5], Singer proposed a 
zero-mean, first-order stationary Markov 
process for modeling the target accelera-
tion ak  with the following autocorrelation:

( ) ,R a a eE | |
a k k

2x v= =x
a x

+
-" ,

where 2v  is the variance of the target ac-
celeration and a  is the reciprocal of the 
maneuver (acceleration) time constant. 
It is worth noting that as the maneuver 
time constant x increases, the accelera-
tion becomes a white noise jerk model, 
and the Singer model reduces to the CV 
model. In cases where the maneuver 
time constant decreases, the acceleration 
becomes white noise, and the Singer 

model reduces to the CA model. In other 
instances, the Singer model corresponds 
to motion between these models.

The target acceleration is described 
by the following linear time-invariant 
model:

,a a wk k k1 b=- ++

where wk  is zero-mean white Gauss-
ian noise with variance ,12 2v b-^ h

e Tsb = a-  and Ts  is the sampling period. 
The state–space representation of the dis-
crete-time Singer model is of the form [5]
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where the exact value of mi  is a function 
of a  and Ts  and can be found in [5, eq. 
(19)]: see the boxed equation at the bot-
tom of the page. The aim is to estimate 
the unobserved underlying state vector 
xk  from observation .yk

Motivation
In fact, for linear dynamical systems 
subject to Gaussian noise with known 
model parameters, the Kalman filter is 
the optimal estimator in the minimum 
mean-square error (MMSE) sense [6]. 
However, the model parameters are usu-
ally unknown in real applications. There-
fore, the stability and the convergence 
rate of this algorithm depend directly 
on the accurate initial state estimation, 
model parameters, and covariance ma-
trices of the process and measurement 
noise. Moreover, the algorithm depend-
ently estimates the state variables (the 
target position, target velocity, and target 
acceleration). This means that, in some 
applications that require the estima-
tion of only one parameter, the estima-
tion algorithm may require unnecessary 

parameters to be approximated, as well. 
In particular, the target velocity and tar-
get acceleration can be found from the 
target position.

Moreover, the observation for the 
velocity and acceleration are commonly 
not recorded by sensors. Tracking sen-
sors usually measure the target position. 
Therefore, there is a need for a new es-
timation algorithm that provides better 
accuracy, with the capability of sepa-
rable variable estimation. In the deriva-
tion that follows, we consider the Singer 
model, as it is the basic and most popu-
lar model-based tracking algorithm. We 
propose a simple and effective algo-
rithm for estimating the target state of 
the representation.

The proposed approach
In this article, we propose an efficient al-
gorithm for maneuvering target tracking. 
The basic idea of the proposed algorithm 
is to modify the model such that each 
state variable is described by an inde-
pendent dynamic representation. The 
desired state variable is then estimated 
using a regularized least-squares method 
for only one unknown. While the pro-
posed approach is simple, it depends only 
on a single parameter whose optimal val-
ue is obtained using an L-curve function. 
In the derivation that follows, we propose 
a solution to the target tracking problem 
in discrete time, where a simple trick is 
used to convert the problem into an in-
dependent difference model. In “Maneu-
vering Target Tracking in Continuous 
Time,” we tackle the same problem for 
continuous-time systems by following 
an approach parallel to that used in the 
discrete-time case. 

Let us define the forward shift op-
erator ,zi which represents the opera-
tion for shifting a signal to the left by i
samples (i.e., ) .z x xi

k k i= +  Using it, (3) 
can be expressed as
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In the following, for simplifying the 
notation, we drop the 1` _ from z1` _
and simply refer to z1` _ as .z` _ After 
some simplifications, (4) can be ex-
pressed in the following form:

.

x
x
x

z T

z

T

z
m
m
m

w

1

0

0

1

0

1

1
,

,

,

k

k

k

s
s

k

1

2

3

2

1

1

2

3

#

a

a b

a

b

b

=

- -

-

-
- +

-
-

-

-R

T

S
S
S
S
SS

>

>

V

X

W
W
W
W
WW

H

H (5)

Equation (5) is equal to the equation at 
the bottom of the page.

Since the right-hand side depends 
only on ,wk  each state x ,i k  depends only 

on wk  but not the other states: ,x ,j k .j i!
Therefore, each state variable can be de-
scribed by an independent (AR/ARMA) 
model:
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( ) .z x m w,k k3 3b- = (6c)

According to (6a), the target position can 
be modeled by the following ARMA 
model:
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We tackle the problem of tracking maneuvering targets in 
continuous time and show that the proposed approach can 
be applied to both continuous and discrete-time models. 
Let us consider the continuous-time Singer model. Its dis-
crete-time representation, (3), is often obtained from [5]
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Defining the differentiation operator ,si  which represents 
/ ,d dti i  i.e., ( ) / ( ),s x t d dt x ti i i=  the continuous-time Singer 

model is expressed as
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Applying the proposed trick, we find
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After some simplifications, we find
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Substituting the differential operator si  with / ,d dti i  we 
obtain
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Finally, in the continuous-time domain, the target position 
can be modeled by
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which can be expressed as
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where ( ) ( / ) ( ) ( / ) ( ), ( )t d dt t d dt t t3 3 2 2i d a d d= +  is the delta 
function and ) denotes the convolution operator. The desired 
target position can be estimated using the following regu-
larized least-squares optimization algorithm:

( ) ( ) ( ) ( ) ( ) .argminx t y t x t t x t
( )x t

1 1
2

1
2

1

)m i= - +

Setting the derivative of the preceding equation with respect 
to ( )x t1  to zero, and after some simplifications, we find [13]

( ) ( ) ( ) ( ) ( ),x t t t t y t1 ) )d mi i= + - 96 @
where 9  denotes the deconvolution operator.
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Equation (7) can be expressed as [7]
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Inspired by [7], the following regular-
ized least-squares optimization algo-
rithm is proposed to estimate the desired 
target position:
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where N is the number of samples. In 
(8), the first term in the minimization is 
the difference between the measured lo-
cation and the unknown actual location 
of the target, and the second Lagrangian 
term denotes the process noise power 
(i.e., m  is used to tradeoff between the 
tracking model error and the MMSE).

Equation (8) can be expressed in the 
following matrix notation:
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The optimal solution is [7]
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When Ts  is sufficiently small so that 
,T 1s11  the values of ig are very 

small, and the target position can be 
simply approximated by an AR mod-
el, instead:
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.w
2v  In this case, the optimal solution 

is (the matrix C  is replaced by identity 
matrix) [7] 

,x I yT
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1
mY Y= +

-t ^ h (10)

where I is the identity matrix.
The proposed method is noncausal, 

as it uses all the available measure-
ments [see (8)] to estimate the desired 
state. In the following, we call the 
method a smoothing filter or a smooth-
er. The computational complexity of 
the proposed smoother is O(n) [7]. See 
Figure  1 for an example, where the 
gray crosses denote the noisy data ob-
tained by sampling the red, solid curve 
(the true target position). The observed 
data are the result of contaminating 
the true data with random noises that 
have signal-to-noise ratios (SNRs) of 
SNR =  20, SNR = 10, and SNR = 0 
in Figure 1(a)–(c), respectively.

In this example, the Singer model 
parameters are . ,1 6a = .T 0 01s = , and 

.1w
2v =  However, in real applications, 

the exact values of the model param-
eters are not available. Therefore, a 
nominal model is estimated and em-
ployed rather than the true model. The 
wrong estimated parameters were used 
to construct the nominal model. The 
nominal model curve is plotted with a 
yellow dash–dot curve. The proposed 
method was then harnessed to track the 
target position from the nominal model 
and the noisy observations. The only 
unknown parameter is .m  The optimal 
value of m  is related to the process 
noise power, ,w

2v  and the observa-
tion noise power, v

2v  (i.e., / )v w
2 2m v v=

[7, eq. (30)]. In other words, the hyper-
parameter m  plays the role of balanc-
ing the optimization between the two 
noise terms.

However, in real problems, the noise 
variances are unknown. We propose to 
use an L- or U-curve to estimate the op-
timization parameter. To this end, the 
following bicriterion problem is em-
ployed [7]:

w.r.t

, .

R

y x x

minimize 2

1 1C Y-

+

^ ^
^
h

h
h

Inspired by [7], the optimal regulariza-
tion factor, ,m  is obtained by plotting 

y x1C -^ h  versus x1Y  as m  varies 
across , .0 3^ h  The m  corresponding to 
the point at which y x x1 1C Y- +^ h
is minimized, i.e., the corner of the 
curve, is chosen as the optimal regu-
larization factor. The L-curves cor-
responding to the noisy position are 
given in Figure 1(d). The L-curve has a 
clear knee near x 4801 .Y  for SNR 
= 20, a clear knee near ,x 1 8501 .Y
for SNR = 10, and a clear knee near 

,x 5 7001 .Y  for SNR = 0. The op-
timal value of m  is 1.58, 6.31, and 15.85 
for SNR = 20, SNR = 10, and SNR =
0, respectively.

In Figure 1(e), we plot the sum of 
the norm of the residual term and the 
norm of the regularized term as m
varies across , .10 105 5-^ h  The m  cor-
responding to the minimum of this 
curve, which is equal to ,m  and that 
corresponds to the corner of the L-
curve is chosen as the optimal param-
eter. The optimal parameter was used 
to implement the proposed method. 
To verify the performance of the pro-
posed smoothing filter, we employed 
it for tracking the target position in 
the previous examples. The results 
of the target tracking using the pro-
posed smoothing filter (smoother) are 
illustrated with a black, dashed curve 
in Figure 1(a)–(c), demonstrating that 
the proposed smoothing filter is ac-
curate enough for tracking the target 
position.

A causal filter
The matrix M T T T1

mC C Y Y C C= +
-^ h

is a symmetric positive definite real ma-
trix and has a unique Cholesky decom-
position of the form ,M LL L LT T= =

where L is a lower triangular matrix 
with real and positive diagonal en-
tries. Therefore, (9) can be rewritten as 

.x yL LT
1 =t  Substituting LT  with JLJ, 

we obtain ,x yJLJL=t  where J is the ex-
change matrix (a “row-reversed/column-
reversed” version of the identity matrix). 
Therefore, the proposed smoothing fil-
ter can be implemented as a combina-
tion of forward-filtering the input signal 
y with a FIR filter x yLf =^ h and back-
ward-filtering with the same FIR filter 
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.x xJLJ f=t^ h  The filter’s output at time 
k, x ,k

f
1  is obtained as

L( , ) .x k k i y,k
f

i

k

k i1
0

1

= -
=

-

-/

The proposed FIR filter is inherently 
stable. We employed it to track the tar-
get position of the previous examples. 
The results are illustrated with the blue 
curve in Figure 1(a)–(c). The proposed 
filter uses only the current and past 
measurements to estimate the desired 
position, while the proposed smoother 
takes all the measurements (past, cur-
rent, and future) into account. That is 
why the proposed smoother has better 

performance than the proposed filter. 
In the following section, simulations for 
verifying the performance of the pro-
posed methods in comparison with the 
Kalman filter/smoother and the particle 
filter are given.

Experimental results
To verify the estimation performance of 
the proposed method in the target track-
ing application, we apply the approach 
to simulated data, which permits us to 
directly quantify the tracking error (no 
gold standard is available for tracking 
moving objects in real data). The per-
formance of the proposed algorithm 

is compared with the Kalman filter/
smoother and the particle filter using 
the noise-to-signal ratio (NSR) given 
by [7] 

,
x

x x
NSR

,

, ,

k
k

k k
k

1
2

1 1
2

=

- t^ h
/

/

where x ,k1  and x ,k1t  are the true target 
position and the estimated target posi-
tion, respectively. We consider four 
kinds of motion for objects (e.g., trucks, 
ships, and trains) in 2D [8], [9]: 
1) uniform
2) uniform acceleration

FIGURE 1. The tracked target position using the proposed smoothing procedure and the optimal-tradeoff L-curves. (a) SNR =  20. (b) SNR =  10.  
(c) SNR =  0. (d) The L-curves. (e) The sum of the norm of the residual and the regularized term.
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3) varying acceleration 
4) coordinated turn (CT). 
In this experiment, we set Ts to 1.

As an example, for the path of a uni-
form moving target with initial states 

[0 1 / 0 1 / ] ,m m s m m sx T
0 =  process no-

ise covariance Q = 1, and uniform acce-
leration motion with initial states x0 =

[ / . / / . / ] ,m m s m s m m s m s0 1 0 1 0 1 0 1 T2 2

the process noise covariance Q = 10 is 
respectively plotted in Figure 2(a) and 
(b), including the actual value (the red, 
solid curve) and the noisy value (the gray, 
dotted curve), the results of the Kalman 
smoother (the green dash–dot curve), 
the particle filter with 1,000 particles 
(the purple dot curve), and the proposed 
smoother (the blue, dashed curve). We 
did not include the results of the Kalman 
filter and the proposed filter to avoid an 
unreadably complex diagram. Figure 2(c)
shows the path of a CT model with a turn 
rate of . ,0 05X =  with initial states x0 =

[ , / , / ] ,m m s m m s1 000 200 1 000 200 T

and the results of the position tracking 
using the preceding methods.

Compared to other methods, the 
tracked results using the proposed 
method are closer to the true path. To 
compare the tracking performance of 
each method, Monte Carlo simulations 
with 100 replications were performed. We 
produced signals varying the power of .kh

The SNR was modulated from 0 to 40 dB. 
In this experiment, different process nois-
es with various powers . Q0 001 10# #^ h
are considered. We calculate the NSRs, 
considering those process noises, and re-
port the average value for each SNR. Fig-
ure 3(a) presents the results of the target 
tracking using the preceding procedures 
for uniform motion tracking. The results 
show that the NSR for the proposed 
smoother is smaller than the Kalman filter/
smoother and the particle filter. Figure 3(b) 
and (c), respectively, shows the results of 
target tracking algorithms for varying 
acceleration motion and the CT motion 
model. It is seen that, for these two mod-
els, the NSR for the proposed smoother is 
smaller than it is for the other processes. 
It is notable that this system is linear, and 
the particle filter is particularly suited for 
nonlinear, non-Gaussian systems.

Application to power line 
interference and baseline 
wander cancellation
This section focuses on a specific appli-
cation of the proposed method for power 
line interference (PLI) cancellation and 
baseline wander (BW) removal in biosig-
nal measurement systems. PLI and BW 
are always a problem in biosignal mea-
surement systems, in particular, electro-
cardiograms (ECGs).

PLI cancellation
The PLI (which may be considered as a 
sinusoid with a frequency of 50 or 60 Hz, 
depending on the geographic location) 
can be modeled by the following dynam-
ical representation [10]:

( )
,

cos
x x w

2
1

1
0

1
0k k k1

0~
=

-
++ ; ;E E

where [ , ] ,x x xk k k
T

1= - /f f2 s0 0~ r= , and 
f0 and fs  are the PLI and the sampling 

frequency. The biosignals contam-
inated by PLI can be represented as 

,y xk k kh= +  where xk is the PLI and 
kh  represents other undesired signals/

noise and assumed to be a zero-mean 
random term [10].

The proposed method can be used 
to track and remove the PLI from ECG 
recordings. To validate the proposed 
method, real ECG signals were taken 
from the Atrial Fibrillation Termina-
tion Challenge Database (http://archive
.physionet.org/physiobank/database/
aftdb/), which is a part of the Physi-
oNet project described in [11]. The data 
set contains 80 records that were origi-
nally provided for the 2004 PhysioNet/
Computers in Cardiology Challenge 
[12]. Each record, extracted from a two-
lead, 128-Hz sampling frequency Holter 
ECG recording, is 1 min in length. We 

FIGURE 2. An example of (a) uniform motion Q 1=^ h, (b) uniform acceleration motion Q 10=^ h,  and (c) the CT model . ;0 05X=^ Q 10= h. 
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FIGURE 3. The results of (a) uniform motion, (b) uniform acceleration motion, and CT (c) motion tracking using Monte Carlo simulations.
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FIGURE 4. ECG PLI denoising for record a01m from the 2004 PhysioNet/Computers in Cardiology Challenge. (a) The ECG record. (b) The noisy ECG. (c) 
The denoised ECG provided by the particle filter with 1,000 particles. (d) The Kalman smoother. (e) The proposed smoother. (f) The mean values of the 
NSR for ECG PLI cancellation as a function of the power of PLI corrupting the input signal.
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generated synthetic PLI (which was 
modulated with a 0.2-Hz sinusoid to 
represent respiratory-coupled changes 
in the PLI amplitude) and added it to 
clean ECG signals. The proposed trick 
was employed to modify the PLI model. 
Then, the PLI was estimated using the 
proposed method and removed from the 
ECG signals.

As a preliminary example, we plot 
a specific case (record a01m from the 
2004 PhysioNet/Computers in Cardiol-
ogy Challenge [12]) at the top of Fig-
ure 4(a). At the bottom of that figure, we 
show the spectral representation. At the 
top of Figure 4(b), we plot the same ECG 
but corrupted with PLI ( f 500 =  Hz). 
The results of the PLI cancellation using 
the particle filter with 1,000 particles, 
the Kalman smoother, and the proposed 
smoother as well as their spectral repre-
sentation are reported in Figure 4(c)–(e). 
The denoised ECG obtained with the 
proposed smoother is visually closer to 
the true ECG, compared to the denoised 
ECG derived through the particle filter 
and the Kalman smoother. The spectral 
representation of the signals is also pre-
sented and visually confirms the superi-
ority of the proposed smoother (see the 
spectrograms in Figure 4).

For quantitatively evaluating the per-
formance of the methods, we generated 
synthetic PLI with a variable SNR in 
the range of 0–30 dB and added it to 
ECG signals. The methods were then 
harnessed to estimate and remove the 
PLI from the ECG signals. The results 
of the tracking procedures are displayed 
in Figure 4(f). The values of the NSR 
show that the proposed method outper-
formed the particle filter and the Kal-
man smoother in PLI cancellation.

BW removal
BW is low-frequency additive noise af-
fecting ECG signals. It can be repre-
sented using the CV and CA models, 
and its state can be estimated with the 
proposed method. As an example, a seg-
ment of the record A00001m from the 
2017 PhysioNet/Challenge Training Set 
database [11] is shown in Figure 5(a). 
This record is affected by baseline drift 
and difficult to analyze. To remove the 
baseline drift, the BW was represented 

by the CA model and tracked using the 
Kalman smoother and the proposed 
smoother. After BW removal using the 
Kalman smoother and the proposed 
smoother, respectively, the same record 
is displayed in Figure 5(b) and (c). The 
BW has been successfully tracked and 
removed with the proposed smoother. 
The Kalman smoother leads to the dis-
tortion of P waves, while the proposed 
smoother does not, as highlighted using 
the ellipse in Figure 5(b) and (c).

Summary
This article proposed a simple and ef-
fective algorithm for maneuvering tar-
get tracking. The method is derived 

from a simple mathematical trick. The 
basic idea is to modify the model such 
that each state variable is described by a 
separate AR or ARMA representation. 
Then, the desired target state variable 
is estimated using a regularized least-
squares optimization algorithm. Com-
pared to other traditional methods (e.g., 
the Kalman filter and the particle filter), 
the proposed approach is inherently sta-
ble; it depends only on a single param-
eter whose optimal value is obtained 
using the L-curve function. It is simple, 
and its computational complexity is 
linear. Through comprehensive simula-
tions and two real applications, it has 
been shown that the proposed method 

FIGURE 5. An ECG from real data: a segment of record challenge/2017/training/A00001m from 
PhysioNet and the ECG after the BW removal using a Kalman smoother and the proposed smoother. 
(a) ECG record A00001m. (b) The BW removal using a Kalman smoother. (c) The BW removal using 
the proposed smoother.
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provides better estimation accuracy 
than the Kalman and particle filters for 
linear systems. Although the provided 
analyses and the proposed methodolo-
gies were given for linear systems, there 
are some improvements that can still be 
made. The extension of the proposed 
method to nonlinear systems can be 
considered as one of the future additions 
to this article.
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The Bussgang Decomposition of Nonlinear Systems
Basic theory and MIMO extensions

Many of the systems in various signal 
processing applications are nonlin-
ear due to, for example, hardware 

impairments, such as nonlinear ampli-
fiers and finite-resolution quantization. 
The Bussgang decomposition is a popu-
lar tool used when analyzing the per-
formance of systems that involve such 
nonlinear components. In a nutshell, the 
decomposition provides an exact proba-
bilistic relationship between the output 
and the input of a nonlinearity: the out-
put is equal to a scaled version of the 
input plus uncorrelated distortion. The 
decomposition can be used to compute 
either exact performance results or lower 
bounds, where the uncorrelated distor-
tion is treated as independent noise. This 
lecture note explains the basic theory, 
provides key examples, extends the theo-
ry to complex-valued vector signals, and 
clarifies some potential misconceptions.

Relevance
The origin of the decomposition is a 
technical report by Julian J. Bussgang in 
1952 [1]. Interestingly, the decomposi-
tion is not explicitly stated in his report 
but, rather, was a consequence of his 
results. In fact, it is mainly nontrivial 
extensions of his results that are utilized 
in current research; for example, appli-
cations to complex-valued multiple-

input, multiple-output (MIMO) systems 
are popular in the communication com-
munity. There is no standard reference 
that presents and proves those extended 
results, and it can be hard to differenti-
ate between which results are exact and 
which are mere approximations. This 
lecture note fills these gaps.

Prerequisites
This lecture note requires basic knowl-
edge of random var iables, l inear 
algebra, signals and systems, and esti-
mation theory.

Problem statement
Let us consider two jointly Gaussian con-
tinuous-time stationary random processes 

( )f t  and ( ).g t  One of the processes, say 
( ),f t  undergoes a nonlinear memoryless 

distortion represented by the function 
(·)U . The resulting non-Gaussian random 

process is ( ) ( ( )).F t U f t=  The problem 
at hand is to obtain the cross correlation 
between samples of the distorted process 

( )F t  and ( )g t  as well as ( )f t  in a tractable 
form. The aim is to analyze the impact of 
nonlinearities commonly encountered in 
signal processing applications. Two fur-
ther problems are to extend the results to 
MIMO systems and to generalize to the 
case of a non-Gaussian input process ( ).f t

Solution: Bussgang decomposition
In the original paper [1], Bussgang com-
puted the cross correlation of the two 

random variables obtained by sampling 
( )F t  and ( )g t  at specific time instances. 

Let ( )x tf R1 !=  and ( )y g t R2 !=

denote the zero-mean Gaussian random 
variables obtained by sampling at time 
t1  and t2 , respectively. Moreover, let 

( ) ( )z F t U x R1 != =  be the sampled 
output of the nonlinear distortion func-
tion. We then have the following main 
result from [1, Sec. III].

Theorem 1: The Bussgang theorem 
The cross correlation of ( )z U x=  and 
y  is

( )
( )

,

C U x y
x

U x x
xy

BC

E
E

E
Ezy

B

xy

2= =

=

_

" "
" ", ,

, ,
1 2 3444 44

(1)

where B  is called the Bussgang gain, 
and C xyExy _ " , is the cross correla-
tion of x  and y .

The Bussgang theorem shows that the 
cross correlation between two Gaussian 
signals is the same before and after one 
of them has passed through a nonlinear 
function, except for a scaling factor B . 
The value of B  depends on the choice 
of (·)U  but the theorem holds for any 
function. After the original paper [1], the 
Bussgang theorem was recognized as 
a special case of the Price theorem [2], 
which provides an alternative computa-
tion method for the Bussgang gain that 
we will return to later. In the remain-
der of this lecture note, we focus on the 
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sampled random variables ( ),x f t1=

( ),y g t2=  and ( )z F t1= . However, it is 
important to remember that the discrete-
time random variables are obtained 
from underlying continuous-time random 
processes, that the distortion is memory-
less, and that x  and z  are samples taken 
at the same time.

A consequence of Theorem 1 is that 
the output signal can be decomposed as

( ) ,z U x Bx h= = +  (2)

where h is a zero-mean random variable 
that is uncorrelated to both x  and y. This 
can be shown by multiplying both sides 
of (2) with x  or y, taking the expectation, 
and using Theorem 1. Hence, the classi-
cal relationship in (2) has given rise to the 
name Bussgang decomposition. The Buss-
gang decomposition in its elementary form 
shows that the output contains the useful 
part Bx  and the distortion part h. In other 
words, the output of a nonlinear function 
is equal to a scaled version of the input 
plus the uncorrelated distortion h. Note 
that h and x  are not independent. Since 

( )U x Bxh = -  is a deterministic function 
of x , the distortion term is non-Gaussian 
distributed and statistically dependent on 
x . Even if the Bussgang decomposition is 
named after Bussgang, the decomposition 
is not explicitly stated in [1].

The Bussgang decomposition can be 
viewed as the linear minimum-mean 
squared error (MMSE) estimate of z
given x , with h being the estimation error. 
Hence, the decomposition holds even if x
is not Gaussian distributed, but the Buss-
gang decomposition also guarantees that 
the distortion signal h is uncorrelated to 
any other jointly Gaussian random variable 
y, which does not hold when considering 
the non-Gaussian distributed x  and y.

Bussgang decomposition for  
complex random variables
The Bussgang theorem was extended to 
the complex case in [3]. We present this 
result and then provide a direct proof 
from [4] that uses the linear MMSE 
estimator. For notational convenience, 
in the remainder of this lecture note, we 
use | |C xEx

2_ " , to denote the power 
of a signal x  and we use C xyE *

xy _ " ,
to denote the cross correlation between 
x  and y .

Theorem 2: The complex  
Bussgang theorem
Consider the jointly circularly symmet-
ric complex Gaussian random variables 
x C!  and y C! . Let ( )z U x C!=  be 
the output of a deterministic function. 
The cross correlations C zyE *

zy _ " ,
and C xyE *

xy _ " , are then related as

| |
( )

.

C U x y
x

U x x
xy

BC

E
E
E

E*
*

*
zy

B C C

xy

2

zx x

= =

=

_ =

^ h" "
" ", ,

, ,
1 2 3444 444  

(3)

Proof
We begin by decomposing y  into two 
parts:

| | | |
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which is equivalent to computing an 
MMSE estimate of y  given x , with 
e  representing the estimation error. 
Hence, it follows that the second part, 

,e  in (4) is uncorrelated with x :
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Since x  and y  are jointly Gaussian, 
the fact that x  and e  are uncorrelated 
implies that they are also indepen-
dent complex Gaussian variables. By 
using the decomposition in (4), it 
follows that

| |
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by using that  the independence 
between x  and e  implies { ( ) }U xE e =)

{ ( )} { } .U x 0E E e =)  
The complex Bussgang theorem 

is the natural complex-valued exten-
sion of Theorem 1. The corresponding 
complex Bussgang decomposition is 
given by (2) with the only exception that  
the Bussgang gain is now computed  
as | |( )B C C U x x xEEzx x

2= = )" ", , 
instead.

A first use case of the Bussgang 
decomposition is to quantify the signal-
to-distortion ratio (SDR) at the output of 
the distortion function. The SDR is the 
power ratio of the desired signal Bx  to 
the additive distortion h :

| | | |
| | ,

| |Bx
C B C

B CSDR
E
E

z x

x
2 2

22

h
= =

-

"
" ,

,
 

 (7)

where we have used that the additive 
distortion h  is uncorrelated with the 
desired signal x .

A second use case is to analyze the 
performance of a communication sys-
tem where ~ ( , )x C0N xC  is the trans-
mitted information signal. Suppose 
the receiver obtains the noisy distorted 
signal ( )U x y z y+ = + ,  where (·)U  
models the hardware distortion and y  
is thermal noise with power 2v , which 
is uncorrelated to x . The hardware dis-
tortion might, for example, be caused 
of a sequence of nonideal blocks in the 
receiver hardware [5], as illustrated in 
Figure 1. The first block is the low-noise 
amplifier (LNA), which can distort both 
the amplitude and phase of the complex 
input signal. In the yellow part of the 
figure, the amplitude distortion is exem-
plified and clipping occurs for input sig-
nals with large amplitudes. The second 
block is the in-phase/quadrature (I/Q) 
demodulator that might have mismatch-
es between its branches leading to I/Q 
imbalance. In the green curve, the effect 
of I/Q imbalance on a quadrature phase-
shift keying constellation is shown, 
where the actual transmitted points are 
affected by leakage from the mirror 
subcarriers. Finally, in the analog-to-
digital converter (ADC) block, the real 
and imaginary parts of the received sig-
nal are quantized to be represented by a 
finite number of bits. Quantization dis-
tortion is inevitable even if a large num-
ber of ADC bits are used [6]. We can use 
the Bussgang decomposition in (2) to 
rewrite the received signal as

( ) .U x y Bx y
Desired signal Uncorrelated signal

h+ = + +6 ;  
 

(8)

This signal contains a desired part Bx  
and an uncorrelated additive “noise” 
term yh+ . Since the latter term is 
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uncorrelated with x , we can utilize 
the worst-case uncorrelated additive 
noise theorem from [7] to compute 
an achievable data rate. That theorem 
states that the worst distribution of 

yh+  from a rate perspective is inde-
pendent complex Gaussian, in which 
case, the rate is

| |

| |
| |

| |
log

log

Bx

C B C
B C
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1
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E
E

z x

x

2 2 2

2 2 2

2

2

h v

v

+
+

= +
- +

e

c

o

m
"
"
,
,

(9)

where we have used that the distortion 
noise h  is uncorrelated with y  by Theo-
rem 2. In fact, this is the exact expression 
for the generalized mutual information 
of the channel under Gaussian inputs 
and nearest-neighbor decoding [8].

An alternative computation of the 
Bussgang gain and two examples
If the distortion function U x^ h is dif-
ferentiable or has finite jump disconti-
nuities where the first derivative can be 
represented using the Dirac function, 
there is an alternative way of comput-
ing the Bussgang gain B  that might be 
easier. We exemplify this way in the 
real-valued case where ~ ( , )x C0N x

has the probability density function 
( ) .p x C e1 2 ( )

x
x C2 x

2

r= -` j  Since its 
derivative is ( ) ( )p x C p xx x=-l ^ h , we 
can then rewrite the Bussgang gain as

( )
( )

( ) ( )

( ) ( ) { ( )},

{ ( ) }
B

C
U x x

C
U x x

p x dx

U x p x dx

U x p x dx U xE

E
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( )

a

b

x x
= =

=-

= =

3

3

3

3

3

3

-

-

-

l

l l

#

#
#

(10)

where we identify ( )p xl  in (a) and 
integrate by parts to get (b). The last 
expression in (10) reveals that the Buss-
gang gain can be also computed as the 
expected value of the first derivative of 
the distortion function. This result is a 
special case of the Price theorem [2].

Example 1: One-bit quantization 
[2, Sec. III]
Consider a real-valued signal ~ ( , )x C0N x

that enters the nonlinear distor-

tion function ( ) ( )sgnz U x x= = , which 
represents one-bit quantization. The 
Bussgang gain can then be found as 

{ ( )} { ( )} ( )B U x x p2 2 0E E d= = = =l

) ,( C2 xr  where ( )xd  is the Dirac 
function. The same Bussgang gain can be 
computed as ( )B U x x xEE 2= =" ", ,

| | .x CE x" ,
A similar alternative way of com-

puting the Bussgang gain exists in the 
complex-valued case, where the deriva-
tive of the distortion function U(x) is 
defined as [9]

( ) ( ) ( )
.

x
U x

x
U x

j
x

U x
2
1

2
2

20
2

21
2

= -c m" ", , (11)

One can then show that the Bussgang 
gain can be computed as [9]

( )
.B

x
U x

E
2
2

= ' 1 (12)

Example 2: Third-order nonlinearity
Consider a complex-valued signal 

~ ( , )x C0N xC  that enters the third-
order nonlinear distortion function 

( ) | | ,z U x x x2= =  which might model 
a nonlinear amplifier [4], [10]. The 
Bussgang gain can be obtained as 

| | .| |B x x C2EE x
24= =" ", ,  The same 

number is  found by eva luat ing 
( ) | |B U x x x C2 2E E x

22 2= = =" ", ,
using (11).

The additive quantization noise 
model is nothing but the Bussgang 
decomposition
The Bussgang decomposition is unique 
in the sense that it is the only decompo-

sition ( )z U x Bx h= = +  of a distorted 
signal having the property that the 
additive distortion noise h  is uncor-
related with the input signal x  and 
any other jointly Gaussian signal y . 
No other value of B  can be used to 
achieve that.

One seemingly different decompo-
sition is the additive quantization noise 
model (AQNM) originally proposed in 
[6] to model quantization errors. This 
model is sometimes described as an 
alternative decomposition; however, 
the AQNM is nothing but the Bussgang 
decomposition tailored to quantization. 
In [6, Lemma 1], a scalar quantizer func-
tion ( )Q $  is considered, which has the 
property | ( ) ( )x x xE Q Q=" , , which 
means that each quantization interval is 
represented by its mean value. When the 
input is ~ ( , )x C0N xC , the AQNM says 
that the output can be expressed as a 
summation of a scaled version of x plus 
an uncorrelated distortion term h :

( ) ( ) ,z x x1Q b h= = - + (13)

where /x z CE x
2; ;b = -" ,  and 

( )| | .C1E x
2h b b= -" ,

We will show that (13) equals the 
Bussgang decomposition x Bx h= + , 
where the Bussgang gain B C Czx x=

equals 1 b- . Using the assumption 
| ( ) ( )x x xE Q Q=" ,  from [6], we have

( ) ( ) | ( )

( ) ( ) .

C x x x x x

x x C

E E E

E
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FIGURE 1. Some common sources of hardware impairments in a wireless receiver. 
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By utilizing this result, the scaling 
1 b-  in (13) can be rewritten as

.

C
x z

C
C C C C

C
C B

1 1

1

E

*

x

x

x z zx zx

x

zx

2

b- = -

= -
+ - -

= =

-" ,

(15)

Hence, the AQNM is a special case of 
the Bussgang decomposition for distor-
tion functions that satisfy the condition 

| ( ) ( )x x xE Q Q=" , . The bottom line is 
that the Bussgang decomposition is unique 
but that the value of B depends on the distor-
tion function. We also note that the Gaussi-
anity of the input signal x is only required 
for h to be uncorrelated to any other jointly 
Gaussian random variable y. The same 
decomposition can be used for the non-
Gaussian ,x  which follows from utilizing 
the linear MMSE estimator, but h in that 
case will only be uncorrelated to x.

Extension to MIMO systems
In recent years, it has become popular to 
analyze MIMO systems that are subject 
to hardware impairments, in particular, 
in MIMO communications [11], [12]. In 
this part, we extend the Bussgang results 
to be applicable to such cases.

Consider two jointly circularly sym-
metric Gaussian random vectors x +
N ,0 CxC ^ h and N , ,0y CyC+ ^ h  which 
both have length .M  The correlation 
matrices are denoted as C xxEx

H= " ,
and C yyE H

y = " , and are assumed to 
have full rank. The cross-correlation 

matrix is denoted as .C xyExy
H= " ,

Using this notation, we can generalize 
the Bussgang theorem as follows.

Theorem 3: The Bussgang theorem 
for MIMO distortions
Consider the jointly circularly symmetric 
Gaussian random vectors x  and .y  Let 

:U C CM M"  denote a distortion func-
tion and z U x= ^ h is the distorted signal 
when using x as input. The cross-correla-
tion matrix C zyEzy

H= " , of z and y is 
a linear transformation of the cross-corre-
lation matrix Cxy  of x and :y

.C C C Czy zx x xy
1= - (16)

Proof
The proof is a matrix extension of the 
proof of Theorem 2. Let us express y
as a summation of the MMSE estimate 
of it given x  and the estimation error 

:CM!e

,y C C xyx x
1 e= +- (17)

where e  is defined as .y C C xyx x
1e = - -

If we multiply both sides of (17) by xH

from the right and take the expectation, 
we obtain

,

C C C C x

C x

E

E

yx yx x x

yx

1 H

H

e

e

= +

= +

-

"
"
,

,
(18)

from which it follows that .0xE He =" ,
Hence, e  and x  are uncorrelated, which 
implies that they are also independent 
since these are jointly Gaussian vari-
ables. Finally, we obtain (16) as

C

C C

C C C

z

zx z

yE

E E

zy

x yx

zx x xy

1

1

H

H H He

=

= +

=

-

-

"
" "
,
, , 

(19)

by utilizing that C Cyx xy
H =  and that 

0zE He =" ,  since z  and e  are inde-
pendent. Y

From this theorem we notice that 
the Bussgang gain is represented by the 
matrix

,B C Czx x
1= - (20)

and we call it a MIMO extension since 
the distortion function takes multiple 
inputs and provide multiple outputs. It is 
possible to extend the result to the case 
where Cx  is rank deficient, in which case 
the inverse in (20) is replaced by a pseu-
do-inverse; see [4, Sec. II.A] for details.

A consequence of Theorem 3 is the 
Bussgang decomposition for MIMO 
functions:

,z U x Bx h= = +^ h (21)

where the additive distortion term h  is 
uncorrelated both with x  and any other 
Gaussian random vector y  that is cor-
related with .x  This result is illustrated 
in Figure 2(a).

Element-wise distortion for 
MIMO systems
The Bussgang decomposition for MIMO 
functions has been widely used to model 
the hardware impairments in multiple-
antenna communication systems [11]. In this 
case, M  is the number of receive anten-
nas and the distortion function represents 

x

y
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Nonlinear
Memoryless Distortion

U(⋅)

Cxy Czy = BCxy 

z = U(x) 
= Bx + η

z = Bx + η

z

Bussgang
Gain, B

x

x

η
(a) (b)

FIGURE 2. The Bussgang decomposition for a nonlinear memoryless distortion function ( )U $ . (a) the Bussgang decomposition for jointly Gaussian 
random vectors x and y and (b) the generalized Bussgang decomposition for a non-Gaussian random vector x .
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impairments in the antenna branches. A 
common assumption is that there is no 
crosstalk between the branches, so that 
each one can be separately modeled in 
the way shown in Figure 1. The distor-
tion function then has the form

,
U x

U x
z U x

M M

1 1

h= =^
^

^
h

h

h
> H (22)

where xm  denotes the mth  element of 
.x  Hence, each output is a distorted ver-

sion of only the input having the same 
index. We can then simplify the Buss-
gang matrix. We note that all elements 
of x  are jointly Gaussian and the dis-
tortion noise for each element of z is 
thus uncorrelated to x  by Theorem  2. 
Then, it follows that ,C DCzx x=  where 

, ,d ddiagD M1 f= ^ h is a diagonal matrix 
and /d U x x xEEm m m m m

2; ;= )^ h "" ,,  is 
the Bussgang gain corresponding to the 
mth  component of the distortion func-
tion, i.e., .z U xm m m= ^ h  Hence, the Buss-
gang gain matrix of the overall MIMO 
distortion becomes B C C Dzx x

1= =-

from (20), and we obtain the simplified 
Bussgang decomposition

.
d x

d x
z Dx

M M

1 1

hh h= + = +> H (23)

Hence, when an element-wise distor-
tion function affects the Gaussian 
signal ,x  the output z  is an element-
wise scaled version of x  plus a dis-
tortion vector h  that is uncorrelated 
with .x  We reiterate that the distor-
tion vector h  is uncorrelated to any 
other vector y  that is jointly Gaussian 
with ,x  which is the part of this result 
that critically requires x  and y  to be 
Gaussian distributed.

Are the elements of the distortion 
noise h  uncorrelated?
Since the Bussgang gain matrix is diag-
onal when having element-wise distor-
tions, one may tend to think that the 
elements of the distortion h  will also 
be uncorrelated, so that we effectively 
get one separate Bussgang decomposi-
tion per received signal. However, this is 
generally not the case, as we show next. 
Let C E CM MH !hh= #

h " ,  denote the 
correlation matrix of the distortion vec-

tor .h  Using the fact that h  is uncorre-
lated with ,x  it can be computed as

.C C BC Bz x
H= -h (24)

Whenever the input signal x  contains 
correlated elements, such that Cx  is 
nondiagonal, the correlation matrix 
will likely also be nondiagonal. This is 
intuitively quite clear: If two (almost) 
identical signals are sent through iden-
tical hardware components, then the 
distortion should also be (almost) iden-
tical. This type of correlation typically 
appears in wireless communications 
since each receive antenna observes a 
different linear combination of the same 
transmitted information signals. Some 
conditions for when the correlation can 
be neglected, so that Ch  is approximate-
ly diagonal, are derived in [4]. However, 
it is rather common that the correlation 
is neglected without motivation (cf. 
[12]), which might lead to substantial 
approximation errors.

As an example, we consider a setup 
where a four-antenna receiver quantizes 
the real and imaginary parts of each 
entry in the received signal x  using 
identical b-bit ADCs. The input signal is 
generated as ,x Hs=  where H C4 4! #

is the MIMO channel matrix from a 
four-antenna transmitter. We consider 
Rayleigh fading where H  has indepen-
dent N ,0 1 -C ^ h distributed entries. For 
each channel realization, H  is assumed 
perfectly known and the transmitted 
signal is N ,,0s I4C+ ^ h  so x  is condi-
tionally complex Gaussian distributed. 
The Bussgang decomposition then says 
that the ADC output can be written as 

.z Dx h= +  To demonstrate that the 
elements of h  are correlated, Figure 3
shows the cumulative distribution func-
tion (CDF) of the normalized off-diago-
nal elements of Ch  (i.e., the correlation 
coefficients) for different number of 
ADC bits. When the ADC resolution 
is low, most of the correlation coeffi-
cients are nonzero and some are rather 
large. However, when the ADC resolu-
tion is high, the off-diagonal elements 
are almost zero and can potentially be 
approximated as zero when quantifying 
communication rates.

The generalized Bussgang 
decomposition for non-Gaussian 
input signals
In the Bussgang theorem, we are utiliz-
ing that x and y are Gaussian signals. 
The main result cannot be generalized 
to non-Gaussian signals. However, we 
can always decompose the distorted 
signal according to (21) using the Buss-
gang gain matrix ,B C Czx x

1= -  but it 
generally will not be a diagonal matrix, 
even if an element-wise distortion of 
the type in (22) is used. As mentioned 
previously, the intuition is that Bx  is 
the linear MMSE estimate of z  given 
a non-Gaussian distributed observation 

.x  In this analogy, h  is the estimation 
error which is uncorrelated with x since

.0

x z C C x x

C C C C

E E zx x

zx zx x x

1

1

H Hh = -

= - =

-

-

^ h" ", ,
(25)

The generalized Bussgang decompo-
sition for the non-Gaussian input x  is 
illustrated in Figure 2(b). It is suitable 
both for quantifying the SDR and for 
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FIGURE 3. The cumulative distribution function (CDF) of the absolute value of the correlation coef-
ficient between elements in h.
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analyzing the performance of nonlinear 
communication systems. For example, 
[10] did this using practically modulat-
ed data signals. That article also showed 
that although treating the uncorrelated 
distortion h  as independent Gaussian 
noise is convenient, one can increase the 
performance by exploiting its informa-
tion content.

Lessons learned
The Bussgang decomposition establish-
es that the output of a nonlinear function 
is a scaled version of the random input 
signal plus an uncorrelated distortion 
term. It is an exact and unique repre-
sentation. The distortion is not indepen-
dent and not Gaussian, but it can be 
treated as that to obtain a lower bound 
on the communication performance. 
The decomposition can be extended to 
MIMO systems, but then, the entries of 
the distortion vector are generally mutu-
ally correlated.
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Özlem Tuğ fe Demir (ozlem.tugfe
.demir@liu.se) received her Ph.D. degree 

in electrical and electronics engineering 
from Middle East Technical University, An-
kara, Turkey, in 2018. She is currently a 
postdoctoral researcher at Linköping Uni-
versity, Linköping, Sweden. Her research 
interests focus on signal processing and 
optimization in wireless communications; 
massive multiple-input, multiple-output 
systems; deep learning; and green commu-
nications. She  is a Member of IEEE.

Emil Björnson (emil.bjornson@liu
.se) received his Ph.D. degree in telecom-
munications from the KTH Royal Insti-
tute of Technology, Sweden, in 2011. He 
is currently an associate professor at 
Linköping University, Linköping, Swe-
den. He has authored Optimal Resource 
Allocation in Coordinated Multi-Cell Sys-
tems (2013) and Massive MIMO Net-
works: Spectral, Energy, and Hardware 
Efficiency (2017). He received the 
2018 IEEE Marconi  Prize Paper 
Award in Wireless Communications, the 
2019 European Association for Signal 
Processing Early CAREER Award, the 
2019 IEEE Communications Society 
Fred W. Ellersick Prize, and the 2019 
IEEE Signal Processing Magazine Best 
Column Award. In September 2020, he 
became a part-time visiting full professor 
at the KTH Royal Institute of Technology. 
He is a Senior Member of IEEE.

References
[1] J. J. Bussgang, “Crosscorrelation functions of 
amplitude-distorted Gaussian signals,” Research Lab. 
Electronics, Massachusetts Inst. Technology, 
Cambridge, MA, Tech. Rep. 216, 1952. [Online]. 
Available: http://hdl.handle.net/1721.1/4847

[2] H. E. Rowe, “Memoryless nonlinearities with 
Gaussian inputs: Elementary results,” Bell Syst. Tech. 
J., vol. 61, no. 7, pp. 1519–1525, 1982. doi: 10.1002/
j.1538-7305.1982.tb04356.x.

[3] J. Minkoff, “The role of AM-to-PM conversion in 
memoryless nonlinear systems,” IEEE Trans. 
Commun., vol. 33, no. 2, pp. 139–144, 1985. doi: 
10.1109/TCOM.1985.1096262.

[4] E. Björnson, L. Sanguinetti, and J. Hoydis, 
“Hardware distortion correlation has negligible impact 
on UL massive MIMO spectral efficiency,” IEEE 
Trans. Commun., vol. 67, no. 2, pp. 1085–1098, Feb. 
2019. doi: 10.1109/TCOMM.2018.2877331.

[5] T. Schenk, RF Imperfections in High-Rate Wireless 
Systems: Impact and Digital Compensation. Berlin: 
Springer-Verlag, 2008.

[6] A. K. Fletcher, S. Rangan, V. K. Goyal, and K. 
Ramchandran, “Robust predictive quantization: 
Analysis and design via convex optimization,” IEEE 
J. Sel. Topics Signal Process., vol. 1, no. 4, pp. 618–
632, 2007. doi: 10.1109/JSTSP.2007.910622.

[7] B. Hassibi and B. M. Hochwald, “How much 
training is needed in multiple-antenna wireless links?” 
IEEE Trans. Inf. Theory, vol. 49, no. 4, pp. 951–963, 
2003. doi: 10.1109/TIT.2003.809594.

[8] W. Zhang, Y. Wang, C. Shen, and N. Liang, “A 
regression approach to certain information transmis-
sion problems,” IEEE J. Sel. Areas Commun., vol. 
37, no. 11, pp. 2517–2531, 2019. doi: 10.1109/
JSAC.2019.2933964.

[9] W. McGee, “Circularly complex Gaussian noise—
A price theorem and a Mehler expansion,” IEEE 
Trans. Inf. Theory, vol. 15, no. 2, pp. 317–319, 1969. 
doi: 10.1109/TIT.1969.1054293.

[10] Ö. T. Demir and E. Björnson, “Channel estima-
tion in massive MIMO under hardware non-lineari-
ties: Bayesian methods versus deep learning,” IEEE 
Open J. Commun. Soc., vol. 1, pp. 109–124, 2020. 
doi: 10.1109/OJCOMS.2019.2959913.

[11] E. Björnson, J. Hoydis, M. Kountouris, and M. 
Debbah, “Massive MIMO systems with non-ideal 
hardware: Energy efficiency, estimation, and capacity 
limits,” IEEE Trans. Inf. Theory, vol. 60, no. 11, 
pp. 7112–7139, 2014. doi: 10.1109/TIT.2014.2354403.

[12] L. Xu, X. Lu, S. Jin, F. Gao, and Y. Zhu, “On the 
uplink achievable rate of massive MIMO system with 
low-resolution ADC and RF impairments,” IEEE 
Commun. Lett., vol. 23, no. 3, pp. 502–505, 2019. 
doi: 10.1109/LCOMM.2019.2895823.

 SP

Publications  /  IEEE Xplore ®  /  Standards  /  Membership  /  Conferences  /  Education 

IEEE connects you to a universe of information!
As the world’s largest professional association dedicated to advancing 
technological innovation and excellence for the benefit of humanity, 
the IEEE and its Members inspire a global community through its 
highly cited publications, conferences, technology standards, 
and professional and educational activities. 

Visit www.ieee.org. Visit www.ieee.org. 

IMAGE LICENSED BY INGRAM P BLISHING



137IEEE SIGNAL PROCESSING MAGAZINE   |   January 2021   |

This close coupling of emerging 
application areas, processing devices, 
and theoretical advances demands 
expertise, which cuts across the three 
areas of interest of the three predecessor 
technical communities. The ASPS TC 
addresses this cross-cutting requirement.

A notable, unique, aspect of the 
ASPS community is its industrial links. 
This is as a result of its focus on identi-
fying practical industrial applications of 
signal processing and applying known 
signal processing techniques and theo-
ries to their practical contexts. This is a 
natural consequence of the development 
of the ASPS as an extension of the IDSPT 
committee, but industrial interaction is a 
common theme across all of the progeni-
tor communities. This focus will manifest 
in a number of ways; the ASPS sees a 
high percentage of industrial involvement 
via committee membership. But indeed, 
the linkages run deeper. The ASPS TC 
organizes the Industry Technology Track 
at ICASSP. This covers a huge range of 
areas of interest relevant to industry. 
For this track, we advocate immediately 
important applications, commercial-
ready implementations, and key sig-
nal processing technologies that are 
ready for industry adoption. A good 
number of the papers in the track tend 
to come from industry, while others may 
come from academia but are capable of 
withstanding the review and selection 
process that involves numerous tough 
industry reviewers.

Generally, the ASPS committee pro-
vides a forum for industry people and 

academics to get together and share 
current industry-focused interest areas 
and the promising emerging signal pro-
cessing technology that can apply. For 
example, with the trend toward the adop-
tion of machine learning techniques to 
solve conventional signal processing 
applications, we are seeing increased 
industry scrutiny on how practical and 
implementable these new approaches 
can be. With the mix of industry and aca-
demic people in the ASPS, we are well 
positioned to recognize both the most 
impactful possible upcoming technol-
ogies as well as those than can be practi-
cally implemented and commercialized. 
More specifically, TC Member Ivan 
Tashev (Microsoft) chairs the Indus-
try Technical Working Group (TWG), 
which includes membership from Intel, 
HIPCAM Global, Novartis, Yahoo, and 
NVIDIA, alongside academia. The remit 
of this TWG considers how the SPS can 
better serve the needs of its industrial 
members, where there is sometimes less of 
a premium placed on traditional academic 
activities, such as publishing papers. The 
ASPS TC is keen to involve the views of 
all corners of the Society in this process, 
so please feel free to contact the TC lead-
ership should you wish to offering sugges-
tions or get further involved.

Of course, the TC is heavily involved 
in cutting-edge research alongside its 
industrial considerations. Recent years 
have seen a near tripling in submis-
sions to the DISPS track at ICASSP, and 
the TC also sponsors the annual IEEE 
Workshop on Signal Processing Sys-

tems (SiPS)—the leading international 
gathering on processing architectures, 
software, and design. The 2019 edition, 
held in Nanjing, China, saw 120 del-
egates enjoy a technical program with 
42 papers, together with an excellent 
array of keynote speakers, including 
Prof. K. Parhi (the University of Minne-
sota, United States), Prof. Deming Chen 
(the University of Illinois at Urbana-
Champaign, United States), and Sunny 
Zhang (Intel) (see Figure 1). 

SiPS 2020 was due to be held in 
Coimbra, Portugal, in October 2020, but 
the on-location event had to be replaced 
by a virtual alternative due to uncer-
tainty related to COVID-19. Chaired 
by Prof. Leonel Sousa (the Instituto de 
Engenharia de Sistemas e Computado-
res—Investigação e Desenvolvimento, 
Lisbon) and Prof. Joe Cavallaro (Rice 
University, Texas), and with a program 
led by Prof. Gabriel Falcao (the Uni-
versity of Coimbra) and Dr. Farhana 
Shiekh (Intel Corporation), SiPS 2020 
welcomed more than 240 delegates who 
enjoyed another 43 papers as part of an 
event that was a tremendous success, 
particularly the dazzling assortment of 
keynote speakers. Luca Benini (ETH 
Zurich and the University of Bologna, 
Italy) spoke about low-power proces-
sors for edge-based signal processing 
and artificial intelligence, Vivienne Sze 
(the Massachusetts Institute of Technol-
ogy, Cambridge) discussed deep neural 
network evaluation, and Shilpa Talwar 
(Intel Corporation) reviewed wireless 
intelligent systems.

FIGURE 1. Attendees at SiPS 2019 in Nanjing, China.

IN THE SPOTLIGHT (continued from page 139)
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These combined foci on both aca-
demic and industrial impacts, and the 
strong mix of design; implementa-
tion; applications; and technologists; 
both academic and industrial, offer an 
extremely promising mix for the future 
of the ASPS TC.
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The Applied Signal Processing Systems Technical Committee

The Applied Signal Processing Sys-
tems (ASPS) Technical Committee 
(TC) is a brand-new member of the 

TC roster of the IEEE Signal Processing 
Society (SPS). It was formed at the start 
of 2021 as a merger of a number of pre-
viously independent groups: the Design 
and Implementation of Signal Process-
ing Systems (DISPS) TC, the Internet of 
Things (IoT) Special Interest Group 
(SIG), and the Industry Digital Signal 
Processing Technology (IDSPT) Stand-
ing Committee. These groupings had 
similar outlooks on signal processing 
technology that were not focused on a 
particular class of signals or specific 
application areas, but rather sought to 
apply practical processing technologies 
such as embedded processors, program-
mable hardware and custom chips (the 
DISPS community), and distributed and 
networked IoT platforms (the IoT SIG) 
to new application areas (the IDSPT). 
This complementary outlook makes 
merging these into a single entity that 
combines the best aspects of all three an 
exciting opportunity for the new TC and 
the SPS itself.

The success of digital signal process-
ing (DSP) technology, in particular, has 
been based on the continuous develop-
ment of high-performance, efficient 
computing devices, processors, and soft-
ware. The constant increases in compu-
tational capacity per unit cost afforded 
by Moore’s law have worked hand in 

glove with the development of new algo-
rithms to drive the development of wire-
less communications, image processing 
and computational imaging, and many 
other areas. This extended into diverse 
processing architectures, moving from 
DSP chips to programmable hardware, 
such as field-programmable gate array, 
graphics processing units, and complex 
systems on chip, further extending the 
reach of DSP capabilities. However, as 
advances in networking—both wired 
and wireless—have emerged, complex, 
multilayer signal processing systems 
have become established.

The IoT, in particular, is gaining sig-
nificant traction in the consumer and 
industrial markets; the bold vision of 
unobtrusive, pervasive, and continuous 
sensing, computation and actuation are 
taking hold in everyday life. IoT plat-
forms offer unique features, constraints, 
and requirements. Powerful and dis-
tributed sensing is enabling new appli-
cations, leveraging sensing modalities 
such as acoustic; motion; temperature; 
humidity; acceleration; or even physio-
logical sensors for wearable computers. 
The limited availability of power—often 
battery operated—or energy-harvesting 
systems imposes additional constraints, 
requiring low power and duty cycling 
for sensing and reducing computation, 
storage, and communications. 

Various data-transfer methods, in -
cluding low power, and stateless commu-
nication paradigms such as Bluetooth 
Low Energy; storage; and burst com-
munication as well as passive methods, 

such as the National Electrical Code and 
radio-frequency identification-assisted 
methods, are actively leveraged. Novel 
wireless communication paradigms pro-
vide additional services, such as local-
ization. Actuation and feedback provide 
opportunities for health care, industrial 
and residential energy management, 
safety, disaster response, self-driving, and 
many more new paradigms all aimed at 
creating a safer, more efficient and more 
desirable smart environment, homes, cit-
ies, communities, and services. All in all, 
the technical challenges are introducing 
new opportunities for R&D to continu-
ally push the performance envelope of 
IoT platforms while enabling new appli-
cations with significant impacts on indi-
viduals and communities.

Alongside their companion cloud- 
and edge-processing contexts, the IoT 
is enabling major new areas of signal 
processing endeavors to emerge and 
become established, with increasing 
speed. New kinds of structure (such as 
sparsity, networked, or graph-structure), 
have emerged and been exploited in new 
application areas (such as body centric, 
neural, swarming, or the IoT). These 
are powered by rapidly advancing theo-
retical foundations and an accompany-
ing raft of devices, which tailor their 
capability to both application and data 
structures, such as Google’s Tensor 
Processing Unit and Coral, and brain-
inspired or graph processing units.
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2021

JANUARY
Virtual: 28th European Signal Processing  
Conference (EUSIPCO)
18–22 January, Amsterdam, The Netherlands.
General Chairs: Richard Heusdens  
and Cédric Richard
URL: https://eusipco2020.org

Virtual: IEEE Spoken Language  
Technology Workshop (SLT)
19–22 January, Shenzhen, China.
General Chairs: Zhijian Ou and Lei Xie
URL: http://slt2020.org/index.html 

MARCH
Data Compression Conference (DCC)
23–26 March, Snowbird, Utah, United States.
Conference Chairs: Michael W. Marcellin  
and James A. Storer
URL: https://www.cs.brandeis.edu/~dcc/

APRIL
IEEE International Symposium on  
Biomedical Imaging (ISBI)
13–16 April, Nice, France. 
Conference Chairs: Laure Blanc-Féraud  
and Françoise Peyrin
URL: https://biomedicalimaging.org/2021/

MAY
International Conference on Information 
Processing in Sensor Networks (IPSN)
18–21 May, Nashville, Tennessee, United States.
General Chair: Ákos Lédeczi
URL: https://ipsn.acm.org/2021/

JUNE
IEEE Data Science and Learning  
Workshop (DSLW)
5–6 June, Toronto, Ontario, Canada.
General Chairs: Stark Draper and Z. Jane Wang
URL: https://conferences.ece.ubc.ca/dslw2021/#/

IEEE International Conference on  
Acoustics, Speech, and Signal  
Processing (ICASSP)
6–11 June, Toronto, Ontario, Canada. 
General Chairs: Dimitri Androutsos, Kostas 
Plataniotis, and Xiao-Ping (Steven) Zhang
URL: https://2021.ieeeicassp.org/

JULY
IEEE International Conference on  
Multimedia and Expo (ICME)
5–9 July, Shenzhen, China. 
General Chairs: Moncef Gabbouj, Houqiang Li, 
Guo-Jun Qi, and Yonghong Tian
URL: https://2021.ieeeicme.org/

IEEE Statistical Signal Processing  
Workshop (SSP)
11–14 July, Rio de Janeiro, Brazil. 
General Chair: Rodrigo C. de Lamare
URL: http://ssp2020.cetuc.puc-rio.br

AUGUST
IEEE International Conference on 
Autonomous Systems (ICAS)
11–13 August, Montréal, Québec, Canada.
General Cochairs: Amir Asif  
and Arash Mohammadi 
URL: https://2021.ieee-icas.org 

SEPTEMBER
IEEE International Conference  
on Image Processing (ICIP)
19–22 September, Anchorage, Alaska,  
United States. 
General Chair: Saif alZahir
URL: https://2021.ieeeicip.org 

IEEE International Workshop on Signal 
Processing Advances in Wireless 
Communications (SPAWC)
27–30 September, Lucca, Italy. 
General Chair: Luca Sanguinetti
URL: https://www.spawc2021.com
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The 2021 IEEE International Conference on Autonomous Systems is scheduled to be held  
11–13 August in Montréal, Québec, Canada. 
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Editor’s Note
Due to changing situations around 
the world because of the novel 
coronavirus (COVID-19) outbreak, 
please double-check each confer-
ence’s website for the latest news 
and updates.

Digital Object Identifier 10.1109/MSP.2020.3028254 
Date of current version: 24 December 2020



       

  Call for Papers

Special Issue on Deep Learning in Biological Image and Signal Processing

Studies of the fundamental structural and functional properties of life, from molecules to cells, tissues, organs, and 
complete organisms including human life, nowadays critically depend on advanced imaging systems and measurement 
devices generating data of ever-increasing quantity and complexity. Deep learning of artificial neural networks has 
emerged as a powerful tool for extracting the relevant information from such data and helping researchers to detect 
patterns that may be unnoticeable to the human senses.

Many scientific and engineering challenges remain to improve the efficacy of deep learning methods and make them 
trustworthy enough for use in critical biological image and signal processing tasks. Deep learning needs to become 
more explainable and interpretable, more generalizable and transferable across applications, especially where little or 
only weakly annotated data is available, and optimal network design needs to become more automated. Signal 
processing theory, information theory, statistics and other fields could play a key role in filling the gaps.

This special issue of  IEEE Signal Processing Magazine provides a venue for a wide and diverse audience to survey 
recent research advances in deep learning for applications in biological image and signal processing. Fostering cross-
pollination between data-driven and model-driven approaches, the special issue aims to inspire researchers in 
developing novel solutions to current challenges of deep learning in biological applications.

Topics of interest include but are not limited to:
● Deep multimodal bioimage/biosignal processing
● Integrated data-driven and model-driven approaches
● Explainable deep learning for bioimage/biosignal analysis
● Unsupervised and weakly supervised deep learning
● Deep learning strategies in imaging genetics
● Graph neural networks for connectivity analysis
● Privacy-preserving distributed deep learning
● Deep learning for biomarker discovery
● Generative deep models for disease fingerprints
● Annotation-efficient deep learning strategies
All topics are to be covered from the perspective of applications in biological research. Papers focusing entirely 
on clinical medical applications will not be considered.

White papers are required, and full articles will be invited based on the review of white papers. The white paper 
format is up to 4 pages in length, including the proposed title, motivation and significance of the topic, an outline of 
the proposed paper, and representative references. An author list with contact information and short bios should also 
be included. Submitted articles must be of tutorial/overview/survey nature, in an accessible style to a broad 
audience, and have a significant relevance to the scope of the special issue. Submissions must not have been 
published or be under review elsewhere, and must be made online at https://mc.manuscriptcentral.com/sps-ieee. For 
submission guidelines, see the Information for Authors at https://signalprocessingsociety.org/publications-resources/ 
ieee-signal-processing-magazine/information-authors-spm.

Guest Editors
Prof. Erik Meijering, University of New South Wales, Australia, meijering@imagescience.org
Prof. Vince D. Calhoun, TReNDS, Georgia State/Tech and Emory University, USA, vcalhoun@gatech.edu
Prof. Gloria Menegaz, University of Verona, Italy, gloria.menegaz@univr.it
Prof. David J. Miller, Pennsylvania State University, USA, djm25@psu.edu
Prof. Jong Chul Ye, Korea Advanced Institute of Science and Technology (KAIST), Korea, jong.ye@kaist.ac.kr

Important Dates
White papers due: 1 February 2021
Invitation notification: 1 March 2021
Full manuscripts due: 1 May 2021
First review to authors: 1 July 2021
Revision due: 1 September 2021
Final decision: 1 November 2021
Final materials due: 1 December 2021
Publication: 1 March 2022
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