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This special issue of IEEE Signal Processing Magazine
includes 16 articles that revolve around three general and 
most pressing aspects of modern signal processing educa-
tion: how to educate differently (better), student engage-
ment, and the promotion of the societal impact of signal 
processing. Enjoy the issue! 
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FROM THE EDITOR
Christian Jutten  |  Editor-in-Chief  |  Christian.Jutten@grenoble-inp.fr 

In my March editorial in IEEE Signal 
Processing Magazine (SPM) [1], I pre-
sented the new area editors for feature 

articles, outreach and social media, as 
well as for the eNewsletter. In this issue, 
I announce the two area editors for col-
umns and forums and the new area edi-
tor for special issues. In addition to the 
area editors, as I previously explained in 
the March issue, SPM benefits from the 
valuable help and wide expertise, in sig-
nal and image processing (SIP) and its 
applications, of the senior and associate 
editors who form the Editorial Board.

Introducing three new 
area editors

Columns and forums

Rodrigo Guido
I have been in love with 
signal processing and 
electronics since my 
childhood, long before 
receiving my B.Sc. de-
grees in computer sci-

ence and computer engineering. Since 
receiving my Ph.D. degree in signal pro-
cessing from the University of São Pau-
lo, Brazil, in 2003, I have been involved 
with editorial activities. As an associate 
professor at São Paulo State University, 
I have contributed to dozens of scientific 
journals, serving as a guest editor, an as-

sociate editor, and an area editor. I have 
focused my research on speech process-
ing-related topics where, from the di -
gital side, a combination of machine 
learning and wavelet transforms approach-
es are the main tools and, from the analog 
side, radio-frequency 
circuitry is a passion. 
I am extremely glad 
to serve as the co-area 
editor of columns and 
forums for SPM, con-
tributing to our com-
munity of students, 
scientists, and engi-
neers in the fantastic world of signal 
processing. Please do not hesitate to 
contact me at guido@ieee.org if you have 
any questions. It is always a great pleasure 
to help.

Vicky Zhao
I am an associate pro-
fessor in the Department 
of Automation, Tsinghua 
University, China. Be-
fore joining Tsinghua 
University, I was with 

the Department of Electrical and Com-
puter Engineering, University of Alber-
ta, Edmonton, Canada, as an assistant 
professor (2006–2012) and associate 
professor (2012–2016). My research 
interests include media-sharing social 
networks, information security and 
forensics, digital signal processing, 
and communications. I received the 
IEEE Signal Processing Society 2008 

Young Author Best Paper Award and 
the Asia-Pacific Signal and Informa-
tion Processing Annual Summit and 
Conference 2020 Best Paper Award. 
I have been active in professional so-
cieties, serving as a senior area editor 

of IEEE Signal Pro-
cessing Letters and 
an associate editor of 
IEEE Open Journal 
of Signal Processing, 
IEEE Transactions 
on Information Fo-
rensics and Security, 
IEEE Signal Process-

ing Letters, and SPM. I also serve as an 
organizing committee member for IEEE 
conferences and workshops, including 
IEEE ICASSP, IEEE ICIP, IEEE Inter-
national Conference on Multimedia and 
Expo, IEEE International Workshop on 
Information Forensics and Security, and 
IEEE International Workvshop on Mul-
timedia Signal Processing. If you have 
any suggestions or would like to con-
tribute, please feel free to contact me at 
vzhao@tsinghua.edu.cn.

Submit contributions
SPM’s columns and forums articles are 
intended to provide high-level mate-
rial focused on different content, types of 
coverage, and target audiences. In par-
ticular, they aim to deliver tutorial-like 
lessons with relevant insights and to track 
recent technological advances, balanc -
ing theoretical and experimental aspects 
and offering diversified coverage in the 

Introducing SPM’s New Team of Area Editors: Part 2
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wide signal processing area. As the 
area editors of SPM’s columns and fo-
rums, we encourage all researchers, 
engineers, and scientists to share rel-
evant material, recent news, working 
experiences, views related to signal 
processing, and even funny stories  
and cartoons to lighten life a little 
bit . We look forward to receiving  
your  contributions.

Special issues

Xiaoxiang Zhu
I received my M.Sc. de-
gree, Dr.-Ing. degree, 
and “Habilitation” in 
the field of signal pro-
cessing from the Techni-
cal University of Munich 

(TUM), in 2008, 2011, and 2013, respec-
tively. I am a professor of data science in 
Earth observation at TUM, and I head 
the Department of Earth Observation 
Data Science at the German Aerospace 
Center. I am also the director of the inter-
national artificial intelligence (AI) future 
lab AI4EO; codirector of the Munich 
Data Science Institute, TUM; co-spokes-
person for the Munich Data Science Re-
search School; and head of the Helmholtz 
aeronautics, space, and transport AI re-
search field. I was a guest scientist and 
visiting professor at the Italian National 
Research Council, Fu-
dan University, Uni-
versity of Tokyo, and 
University of Califor-
nia, Los Angeles, in 
2009, 2014, 2015, and 
2016, respectively. My 
research interests in-
clude remote sensing 
and Earth observa-
tion, signal process-
ing, machine learning, and data science, 
with a special application focus on 
monitoring global urbanization. I am a 
Fellow of IEEE and a member of the 
Junge Akademie/Junges Kolleg, Ber-
lin–Brandenburg Academy of Sciences and 
Humanities, German National Academy 
of Sciences Leopoldina, and Bavarian 
Academy of Sciences and Humanities. 
SPM is one of my favorite magazines, 
and I am happy to serve as the area editor 

of special issues, which aim to address 
pressing signal processing research top-
ics that are highly relevant to a broad 
community. Please do not hesitate to con-
tact me at xiaoxiang.zhu@dlr.de if you 
wish to see a special issue on an interest-
ing topic that has not been covered or or-
ganize a special issue yourself.

In this issue
The theme of this special issue is “In-
novation Starts With Education.” It is 
based on an ICASSP 2019 panel about 
education [2]. Clearly, this topic is of 
great interest since many of us are in-
volved in teaching signal processing at 
the bachelor’s, master’s, and doctoral lev-
els and as supervisors of trainees and 
postdocs at companies and in research 
labs. Sixteen articles constitute the spe-
cial issue, proposing many approaches 
and telling us about various experiences 
at numerous universities worldwide.

But first, Prof. A. Oppenheim and 
Prof. A. Constantinides present their 
article “Reflections After 50-Plus Years 
in the Classroom” [3] in the “Reflec-
tions” column. I encourage you to read 
Prof. Oppenheim’s previous columns 
about education [4] (in 1992) and re-
search [5] (in 2006) to understand his 
views and how they have changed, es-
pecially in the context of technological 
advances but also during the COVID-19 

pandemic. Basically, 
I take from these ar -
ticles—I hope not to 
betray his thoughts—
that in addition to in-
stilling the basics in 
students, it is funda-
mental to be attentive to 
pupils’ motivations and  
interests, to let them 
have some fun and   

develop their creativity. Another point 
concerns the dual role of mentor and 
friend: this is possible with Ph.D. stu-
dents and postdocs because of the in-
tensive interactions that are involved, 
but I believe it is much more difficult in 
bachelor’s and master’s classes that have 
tens of students. Finally, I note that Prof. 
Oppenheim never learned to teach, and 
surprisingly, it seems that this is true in 
most countries.

In fact, all the articles in this spe-
cial issue focus on some of these facets, 
which seem to be “invariants,” and read-
ers will profit from the authors’ ideas, 
experiences, feedback, and reflections, 
which will certainly be helpful for de-
veloping and delivering lectures. I also 
discovered (after 40 years of teaching!) 
the concepts of Bloom’s taxonomy and 
Kolb’s cycle. One of the difficulties of 
teaching SIP is that it requires instruc-
tors to impart a mastery of mathematics 
and statistics. On the other hand, SIP is 
a dream discipline since it can be use-
ful in so many interesting—and some-
times funny—applications. To develop 
students’ creativity, and even to help 
them understand basic concepts, it is 
easy to choose music, speech, biomedi-
cal signals, images, robotics, and others 
that can be fun and stimulating. It is 
also clear that the authors select diverse 
applications that are strongly related to 
their own research activities, illustrat-
ing how teaching and research duality 
is essential. Of course, project-based 
learning is present in many approaches 
for enhancing students’ creativity, and 
addressing problems to which there is 
no unique solution but many approaches 
that can be rigorously discussed, imple-
mented, and evaluated.

Beyond fostering SIP skills, enhanc-
ing creativity, and addressing multidis-
ciplinary applications, projects open the 
way to honest benchmarking, which is 
the cornerstone of open-access and re-
productible science. Currently, with 
massive open online courses and vir-
tual conferences, such as ICASSP and 
ICIP in 2020, there is a wide diversity 
of documents that can be used any-
where at any time and enhance more 
classical ways of teaching. Finally, 
there is intense pressure from students 
and industry to teach fashionable tech-
nologies such as machine learning 
and deep learning: for SIP instruc-
tors, this presents an opportunity to 
trade between white- and black-box 
methods—model and data driven—and  
make students attentive to the explain-
ability and robustness of approaches 
that could seem like magic and that 
must be applied with critical thinking  
and intelligence.

Beyond fostering SIP skills, 
enhancing creativity, and 
addressing multidisciplinary 
applications, projects 
open the way to honest 
benchmarking, which is the 
cornerstone of open-access 
and reproductible science.
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Most of the ex-
periments presented 
in this special issue 
have been conducted, 
at least partly, du  ring 
the past year, which 
was a strange one for 
education. Practically overnight, we had 
to teach remotely, speaking to a screen,  
with very little interaction with our stu -
dents. In a blink of an eye, practical 
work and group projects became more 
complicated, if not impossible. You can 
certainly relate through your own teach-
ing experience: how you fared and what 
tricks you used to motivate your stu-

dents and ensure their 
well-being as much 
as possible.

I would like to 
mention that, beyond 
this special issue, 
i n  any SPM issue, 

you can share an interesting teaching 
experience in a “Lecture Notes” col-
umn, if possible, with additional ma-
terials, such as exercises and quizzes 
for student assessments and codes for 
experiments. If you are interested, feel 
free to email your ideas to the area edi-
tors for columns and forums, Prof. Guido 
and Prof. Zhao.
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Practically overnight, we 
had to teach remotely, 
speaking to a screen, with 
very little interaction with 
our students.
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Signal Processing Plays a Key Role  
in Environmental Research Projects
Keeping people and ecosystems alive and healthy is perhaps  
the 21st century’s biggest challenge

Despite the impressive technological 
strides made over the years, human 
lives still depend very much on the 

natural environment. Fortunately, tech-
nology can now be used to help address 
critical environmental concerns in air 
quality, soil condition, and weather events. 
In all of these areas and many others, 
signal processing is supporting the abil-
ity to provide immediate and long-term 
observations and insights.

Efficient air-quality monitoring
It’s generally accepted that the efficient 
monitoring of airborne particulate mat-
ter (PM), particularly particles with an 
aerodynamic diameter measuring less 
than 2.5 μm (PM2.5), is an important 
step toward sustaining and improving 
public health.

Acknowledging this fact, researchers 
at the Max Planck Institute for the Science 
of Light have developed a novel way to 
continuously monitor a local environ-
ment for both the size and optical prop-
erties of individual airborne particles. 
The technique utilizes optical forces to 
automatically capture airborne particles 
and then propel them into a hollow-
core fiber where they can be studied and 

counted, providing a potentially better 
way to monitor air pollution levels.

On-the-fly particle metrology uses 
both advanced optics and signal processing to 
continuously monitor the size and refrac-
tive index of individual airborne particles 
in an open atmosphere, says research 
team leader Shangran Xie (Figure 1). 
“It can overcome several limitations of 

… existing methods, offering the abil-
ity of simultaneous measurement of 
particle size and refractive index, which 
can assist in identifying particle material, 
real-time particle metrology, highly repro-
ducible results, and unlimited device life-
time,” he explains.

Current commercially available parti-
cle counters are limited to counting 

John Edwards
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FIGURE 1. An on-the-fly particle metrology, developed by researchers at the Max Planck Institute for 
the Science of Light, uses both advanced optics and signal processing to continuously monitor the 
size and refractive index of individual airborne particles in an open atmosphere. (Source: Max Planck 
Institute for the Science of Light; used with permission.) 
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the number of airborne particles. If 
more detailed particle data are need-
ed, the existing standard technique 
requires manual sampling with sophis-
ticated equipment. While the combined 
approach can provide a full span of par-
ticle information, it’s not a continuous 
measurement and can’t provide real-
time feedback on the pollutant.

The new technique promises to pro-
vide a reliable way to rapidly and contin-
uously characterize airborne particles. 
“It can not only count the number of par-
ticles, which is related with the level of 
pollution, but also can provide detailed 
information on particle size distribution 
and chemical dispersion in real time,” 
Xie says. “The configuration is also very 
simple; it’s highly possible to build a 
shoe-box-sized device able to continu-
ously monitor airborne PM2.5 particles 
in urban areas and industrial sites.”

Xie reports that he and his team have 
been working on particle trapping and 
analysis in hollow-core photonic crys-
tal fiber for years, gaining, over time, a 
deep understanding of particle scattering 
within a hollow-core fiber. “Inspired by 
the need for particle detection in air pol-
lution monitoring, we think our fiber and 
the corresponding data processing proce-
dure may offer a better solution,” he says.

The new analysis approach traps air-
borne particles inside a laser beam by 
optical forces and propels them for-
ward by radiation pressure. The trap-
ping force is strong enough to overcome 
gravitational force on very small parti-
cles, such as PM2.5. The approach also 
automatically aligns the particles within 
the hollow-core fiber. Postalignment, 
laser light propels the particle into the 
fiber, forcing the laser light inside the 
fiber to scatter and create a detectable 
reduction in the fiber transmission.

At the project’s heart is a novel signal 
processing algorithm that the research-
ers designed to retrieve useful informa-
tion from the particle-scattering data 
in real time. A photodetector is used to 
convert the original optical signal into 
an electrical signal. “The goal of signal 
processing in our technique is to retrieve, 
as precisely as possible, the particle size 
and its refractive index from the fiber 
transmission signal,” Xie states.

The fiber carries two types of infor-
mation: transmission drop data created 
by particle scattering and time-of-flight 
information and the time it takes a par-
ticle to travel through the fiber. “Hav-
ing these two [types of] information in 
hand, an algorithm based on particle 
scattering theory can be integrated into 
the signal processer to unambiguously 
retrieve the particle size and refractive 
index,” Xie says.

A significant remaining signal pro-
cessing challenge is dealing with a rela-
tively weak transmission drop signal. 
“Normally, a single particle would only 
introduce a less than 1% signal drop; 
the signal we are [now] facing is a tiny 
drop lasting for tens of milliseconds on 
top of a strong dc background.” Anoth-
er concern is the particles that pass 
through the laser beam without being 
captured. “Those particles will intro-
duce spikes in the signal which cannot 
be properly retrieved by the algorithm,” 
Xie comments.

The biggest challenge the team 
now faces is finding an algorithm that 
can further translate particle number, 
size, and refractive index into PM2.5 
concentration data as well as a descrip-
tion of the types of pollutants detected. 
“To do this, advanced signal process-
ing algorithms on data classification 
… may be required to quickly identify 
the pollution type based on the known 
database,” Xie says. “In other words, we 
need to further bridge the gap between 
the data in the lab and information for 
the end users.”

Looking forward, Xie is hoping 
to further advance the system’s par-
ticle characterization. “For instance, it 
may be possible to monitor the particle 
shape or surface roughness by analyz-
ing the scattering patterns from the 
fiber endface or from the side,” he says. 
“This can give additional information 
on the residence time of pollutants in 
the environment.”

Improving tornado detection  
and tracking
University of Mississippi researchers 
believe that “listening” to tornadoes via 
infrasound will lead to significantly ear-
lier and more accurate tornado warnings.

Despite the rapid advances in mete-
orological technology, detecting and 
tracking tornadoes remains a formidable 
task. More than 24,400 tornadoes have 
been reported across the United States 
since 2000, according to the National 
Centers for Environmental Information. 
Over the same period, tornadoes have 
killed almost 1,500 people and resulted 
in billions of dollars in damage.

Radar is unable to reliably detect 
tornadoes, states Roger Waxler, a Uni-
versity of Mississippi research associ-
ate professor of physics and astronomy 
and a principal scientist at the National 
Center for Physical Acoustics (NCPA). 
The wavelengths are too long and 
upward looking to generate accurate 
reports, he explains. Therefore, torna-
do warnings are currently issued solely 
on the basis of visual observations and/
or confirmations.

Addressing this issue, significant 
effort has been poured into the develop-
ment of short wavelength radar systems 
that might be able to detect tornadoes 
directly, perhaps by the debris gener-
ated by the tornado’s funnel. “But these 
would require line-of-sight and would 
be blocked by hills, tree cover, and so 
on,” Waxler observes.

Acoustics promise a better approach. 
Since sound doesn’t depend on line-
of-sight, it can detect tornado activ-
ity directly. An added benefit is that 
acoustic technology is generally less 
costly than radar systems, Waxler notes. 
“Tracking from acoustic technologies 
could assist in providing better esti-
mates of locations to investigate and 
tornado passage times,” he adds.

Joining Waxler in investigating acous-
tics’ potential to detect and track torna-
dos is Garth Frazier, a senior research 
scientist at NCPA and a University of 
Mississippi research associate professor 
of electrical engineering. Another key 
team member is Carrick Talmadge, also 
a senior NCPA research scientist and a 
University of Mississippi research asso-
ciate professor of communication sci-
ences and disorders.

For the past several years, the team 
has explored the potential of infra-
sound arrays that incorporate anywhere 
from five to 10 sensors. The sensors are 
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installed directly on the ground in semi-
permanent locations, measuring approx-
imately 50 x 50 meters, that change on 
a seasonal basis (Figure 2). “We deploy 
a network of arrays based on guidance 
from meteorologists with the goal of 
covering a regional area,” Frazier says.

In the current research phase, data are 
continuously logged at 1,000 samples/s 
by the Coordinated Universal Time-
synchronized sensors, which run on 
solar-augmented battery power. “Peri-
odically, the data are downloaded 
from the sensors during site visits, but 
this might be only once per several 
months,” Frazier notes.

Using storm report information 
available on U.S. National Oceanic and 
Atmospheric Administration websites 
and the Iowa Environmental Mesonet 
website at Iowa State University, select-
ed time periods of data are analyzed 
using array processing algorithms. “Sig-
nal processing is one of the three pil-
lars of the technology, with the other 
two being infrasound sensors and long-
range atmospheric sound propagation 
modeling and prediction,” Frazier says.

The collected data are typically deci-
mated to a lower rate, such as 100 Hz, 
prior to array processing. “Additionally, 
we high-pass filter to remove most sig-
nal fluctuations below 0.1 Hz,” Frazier 
notes. The project uses three algorithms 

to estimate the directions of arrival 
and measured signal levels: a maxi-
mum likelihood approach based on the 
complex Wishart distribution, a signal 
subspace approach, and multiple signal 
classification. “All of the array signal 
processing is performed in the frequen-
cy domain,” he adds.

The researchers selected the three 
specific signal processing approaches 
for their ability to resolve multiple 
sources simultaneously along different 
azimuths. “In two cases in Alabama, 
we have followed two tornadoes simul-
taneously,” Frazier says. “In addition to 
storm-generated infrasound, we have to 
contend with anthropomorphic infra-
sound, especially from urban areas and 
industrial plants in particular.”

During the course of their research, 
the team found that tornadic storms pro-
duce sound in various frequency bands. 
“Almost all of the long-range detec-
tions—50–100 km—we have observed 
have been in the band from 1 Hz to 
10 Hz, and most of those have been in 
2 Hz to 5 Hz,” Frazier reports.

Much work remains to be done be -
fore that system can be used to gener-
ate reliable tornado warnings. “From 
a signal processing point of view, we 
still need to automate the entire pro-
cessing pipeline into a real-time frame-
work,” Frazier says. Currently, all data 

processing is performed offline in either 
Python or Octave.

The primary challenge the team now 
faces is frequent low signal-to-noise 
ratio issues. Wind noise created by 
intrinsic turbulent pressure fluctuations 
in the atmosphere surface layer com-
bined with the interaction of wind and 
the sensor housing has been a particu-
larly nagging concern.

The researchers also still need to 
perfect their real-time, bearings-only, 
2D multiple-target tracking algorithms 
to provide accurate geolocations when 
multiple arrays detect and follow the 
same tornadoes. This task promises to 
be particularly challenging given the 
significantly different time delay that 
exists between sound emission and mea-
surement at different sensors as the tor-
nado travels along its path.

Another complicating factor is long-
range atmospheric propagation, which 
can cause the average speed of sound 
between the source and receiver to vary 
when detected from different direc-
tions. “We have solved this problem for 
the single target case using a Bayesian 
framework that updates the state vec-
tor at the previously estimated emis-
sion time then propagates forward to 
the newly estimated emission time—
the reverse of Kalman filtering steps,” 
Frazier explains. “These calculations 
require the use of a ray-tracing model 
for the sound propagation that depends 
on a local vertical profile model of wind 
and temperature.”

Waxler believes that the technology 
has reached the stage where it’s time 
to begin moving toward small-scale 
demonstration test systems, including 
data telemetry for remote processing. 
“There’s a clear path to the signal pro-
cessing implementations that are still 
required,” he says. “There will possibly 
be hiccups in the data transmission pro-
cess, but the only way to address these is 
to begin to gain experience.”

Sensor promises larger crop  
yields using less fertilizer
Soil ecosystems provide most of the anti-
biotics used to combat diseases, control 
the movement of water and chemical 
substances between the Earth and its 

FIGURE 2. Tornado-detecting infrasound arrays, developed by University of Mississippi researchers, 
incorporate anywhere from five to 10 sensors. (Source: Shea Stewart/University of Mississippi; used 
with permission.) 
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atmosphere, and function as the source 
and storage media for gases that are crit-
ical to sustaining life, such as oxygen, 
carbon dioxide, and methane.

Facing rapid global population growth, 
climate change, and increasing competi-
tion for land resources, there’s an urgent 
need to find a way to quickly and effi-
ciently analyze and monitor soils. Being 
able to rapidly and reliably measure levels 
of soil phosphate—a finite and nonre-
newable resource that stays in a complex 
biogeochemical environment—is particu-
larly urgent since there have been calls for 
a global effort to utilize phosphate fertil-
izers as efficiently as possible.

Researchers at Kansas State Uni-
versity’s industrial engineering depart-
ment, working with their counterparts 
at educational institutions worldwide, 
are developing graphene sensor-based 
systems that can map and monitor 
soil phosphate levels while generating 
insightful real-time data. The project 
aims to help researchers and farmers 
understand soils better while increasing 
crop yields and minimizing the use of 
phosphate fertilizers (Figure 3).

While phosphate is a key crop nutri-
ent, it’s currently difficult for farmers to 
quickly and reliably map soil phosphate 
content levels since the process requires 
sending samples to a lab. Mapping and 
monitoring soil with portable and afford-
able sensors promise to provide a more 
accurate understanding of how soil 
composition changes over time, helping 
farmers to apply phosphate fertilizers 
only to the areas where it’s most needed.

The project’s researchers are focus-
ing their efforts on two major areas: a 
soil sensor made of graphene (an atomi-
cally thin 2D carbon material) and a 
hardware-supported signal processing 
architecture. “Exploiting the interac-
tion of phosphates with graphene will 
produce a characteristic signal read by 
an impedance that will be carefully col-
lected and processed by the signal pro-
cessing hardware,” explains principal 
investigator Suprem Das, an assistant 
professor in industrial manufacturing 
systems engineering at Kansas State 
University’s Carl R. Ice College of Engi-
neering. “Therefore, identifying the 
fundamental impedance related to phos-

phates as well as discriminating signals 
from interfering species in the soil dur-
ing the signal processing are important 
parts of our research,” he says.

Signal processing plays a dual role in 
the project, which is funded by the U.S. 
National Science Foundation and U.K. 
Research and Innovation. “First, electri-
cal signals from the soil collected by the 
sensor board need to be carefully ana-
lyzed to get the accurate estimate of phos-
phate content, so in situ processing of the 
signals is very important,” says project 
co-investigator Biswajit Ray, an assistant 
professor of electrical and computer engi-
neering at the University of Alabama in 
Huntsville. “Second, the phosphate con-
tent value needs to be transmitted wire-
lessly with limited power sources and [on 
a] resource-constrained hardware plat-
form, so careful hardware design will be 
important,” he adds.

The researchers plan to present data 
in a way that will allow end users to 
focus on the task at hand while ignoring 
the complex science underpinning 
the technology. “This technology is 
primarily aimed at the farming indus-
try so that we can achieve a more sus-
tainable agriculture,” explains Adrien 

Chauvet, a lecturer in physical chemis-
try at the University of Sheffield as well 
as the project’s primary United King-
dom investigator. “Such a technology 
would allow farmers to literally map the 
phosphate content of their crops, with 
an approximate square-mile resolution, 
live.” The researchers envision a field 
deployment that includes multiple sen-
sor boards distributed over a large area. 
Each board will be capable of measuring 
local phosphate content and transmitting 
the information to a control station.

Chauvet is confident that the technol-
ogy has a promising future. “As a sci-
entist, I see this project as the first step 
of a long-lasting collaboration that will 
go beyond the creation of the actual 
device,” he states. “If we can prove that 
this sensing strategy works, then we can 
expand it and apply it to other minerals 
and heavy atoms.”

Author
John Edwards  ( jedwards@john 
edwardsmedia.com) is a technology 
writer based in Gilbert, Arizona, 85234, 
USA. Follow him on Twitter @Tech 
JohnEdwards.
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FIGURE 3. Printed graphene electrochemical sensors, combined with pH sensors and soil moisture 
sensor arrays on mechanically flexible substrates, deployed in the soil for phosphate sensing. A 
wireless circuit in combination with a custom-built impedance analyzer will transmit the data to the 
acquisition center. (Source: Suprem Das/Kansas State University; used with permission.) 
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IN MEMORIAM

 

Hagit Messer, Arye Nehorai, Jeff Krolik, José M.F. Moura,  
Al Hero, and Joseph Tabrikian

In Remembrance of Peter Schultheiss

O n 23 February 2021, Peter Schul-
theiss died peacefully in his sleep 
in Hamden, Connecticut, at the age 

of 96. He had been a faculty member 
at Yale University since 1947, where he 
taught for more than 65 years and trained 
dozens of Ph.D. students, postdocs, and 
research collaborators. His research 
interests centered on problems in detec-
tion and estimation theory. He led the 
most significant contributions to the the-
ory of source localization by an array of 
sensors and advanced its application in 
underwater acoustics.

Prof. Schultheiss’s research was 
motivated by real-world problems with 
direct connections to the physical world. 
He identified many of these through 
collaborations with U.S. Navy research 
laboratories. He insisted on accurate 
modeling and accepted approximations 
only when they were well justified, and 
he introduced a systematic method for 
discovering insights through the use 
of theoretical performance bounds. In -
variably, modeling imperfections, such 
as limited coherence and calibration, 
constrain the ability of sensing systems 
to achieve optimal performance. By 
including uncertainty in his models, 
Prof. Schultheiss provided benchmarks 
to which the performance of real sys-
tems could be realistically compared. 
Moreover, his insights focused attention 

on areas of system design that most criti-
cally limited performance. His early appli-
cation of the Cramér–Rao lower bound, 
from statistics, to sensor 
array systems spawned 
its use as well as that of 
other bounds in a wide 
variety of signal pro-
cessing applications.

More specifically, 
Prof. Schultheiss was 
an early and consistent 
contributor to passive and active source 
localization and time delay estimation in 
underwater acoustics and sonar environ-
ments. Working with his many students 
and collaborators, he derived optimal 
and suboptimal estimators and developed 

Cramér–Rao bounds that established 
limits on expected performance under 
a variety of conditions, including ran-
domly perturbed arrays, the presence of 
interference, multipath, and unknown 
noise statistics. One such example is his 
pioneering work on array shape cali-
bration using sources in unknown 
locations, under which he first present-
ed the concept of a hybrid Cramér–Rao 
bound and demonstrated how its analy-
sis could be used for studying the inher-
ent limitations in practical parameter 
estimation problems.

Prof. Schultheiss was highly recog-
nized as an excellent teacher. He taught 
linear algebra in the Department of 
Mathematics for decades, as students 
preferred his teaching style and clar-
ity. For his graduate students, postdocs, 
and research collaborators, he was an 
excellent mentor and was involved in 

the details of their re -
search projects. He 
was a great inspiration 
to many  researchers 
and his former stu-
dents. Prof. Schultheiss 
was a kind individual 
who was always open 
to support younger 

researchers and provide them with valu-
able career guidance. He was highly 
appreciated by colleagues in the sig-
nal processing community and will be 
missed by all of them.
 SP

Digital Object Identifier 10.1109/MSP.2021.3065892
Date of current version: 28 April 2021

Prof. Peter Schultheiss.

He led the most significant 
contributions to the theory 
of source localization by 
an array of sensors and 
advanced its application in 
underwater acoustics.
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FROM THE GUEST EDITORS
Mónica F. Bugallo, Anthony G. Constantinides, Danilo P. Mandic,  
Alan V. Oppenheim, and Roberto B. Togneri

Innovation Starts With Education

Signal processing (SP) is at the very 
heart of our digital lives, owing to its 
role as the pivotal enabling technol-

ogy for advancement across multiple dis-
ciplines. Its prominence in modern data 
science has created a necessity to supply 
industry, government labs, and academia 
with graduates who possess relevant SP 
expertise and are well equipped to deal 
with the manifold challenges in current 
and future applications. To this end, the 
ways to deliver both educational content 
and the core SP curriculum need to be 
revisited and integrated into current elec-
trical engineering and computer science 
degrees to provide high-quality and hands-
on multidisciplinary skills, experience, 
and inspiration for students at all levels.

SP education in today’s universi-
ties is largely inf luenced by three 
modern trends:
1) the availability of competing and 

complementary online and multime-
dia resources

2) the fact that we live in a world in 
which the amount and diversity of 
information we generate, process, 
and analyze are growing

3) the explosive growth of computing 
power and the rapid development of 
new technologies for implementing 
both analog and digital SP.
These trends offer both opportunities 

and challenges, which we can and must 

exploit in charting dynamically adjust-
able courses that attract a high level of 
student engagement while offering a 
mix of essential background physics, in-
tuition, mathematical rigor, and practical 
applicability of the taught material. 

With such initiatives underway world-
wide, this special issue aims to facilitate 
both keeping abreast with SP education 
and exploring innovative and participa-
tory ways to present the educational 
materials. In effect, we cannot assume 
that students will be able to appreciate 
the scope and relevance of their courses 
without explicitly building a bridge be-
tween the material presented in class and 
cutting-edge research and the societal 
and practical impact of their education. 
This includes the con-
vergence of educa-
tional material with 
other disciplines (ma-
chine learning, data 
science, big data, bio-
engineering, artificial 
intelligence, finance, 
and many others).

This special issue of IEEE Signal 
Processing Magazine (SPM) therefore 
revolves around three general and most-
pressing aspects of modern SP education:

 ■ How to educate differently (better): 
This includes the use of available 
technology, bringing research into 
the classroom, web resources, expe-
riential learning, and massive open 
online courses (MOOCs).

 ■ Student engagement: This includes 
ways to enhance student creativity 
and curiosity, student satisfaction 
issues, various forms of assessment 
and metrics, engagement of under-
represented populations, and out-
reach drives.

 ■ Promotion of the societal impact of 
SP: This includes privacy, ethical and 
security concerns, wearable devices 
and eHealth, global interconnections 
through the Internet of Things (IoT), 
and impact on climate change, global 
economy, and finance.
A coherent and comprehensive ac-

count of these issues is particularly im-
portant and timely, given the increasing 
exposure to popular technological 

advancements, such 
as big data, the IoT, 
and wearable devices. 
These also naturally 
lead to q u e s t i o n s 
about the relevance 
of some classic subjects 
in modern, real-world 
applications. 

Apart from the values specific to 
SP, this special issue aims to help the 
international community engage in 
education and the outreach of our dis-
cipline (including industry-run courses) 
to better understand, tackle, and ad-
dress (through a coherent effort of in-
ternational contributors) some of the 
key challenges the global education is 
facing. Indeed, the inexorable advances 

Digital Object Identifier 10.1109/MSP.2021.3060277 
Date of current version: 28 April 2021

“The role of a magician is to 
make simple things appear 
mysterious. The role of a 
teacher is to make mysterious 
things appear simple.” 
—Al Oppenheim
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in sensor technology and the IoT and 
the increasingly diverse forms of data 
acquisition have inevitably led to wider 
and more rapid ways in which we gen-
erate, process, and revise the notion of 
information. This trend is already hav-
ing a major impact on how we educate 
and learn. Given the rich history of the 
SP field and the availability of com-
peting and complementary multime-
dia educational resources, a common 
challenge in modern SP education is to 
produce a dynamically adjustable trad-
eoff, arising, as it does, from both the 
diversity in student learning styles and 
the requirements imposed by the future 
careers of these students.

To this end, we have identified some 
of the most pressing challenges the glob-
al education is facing, which include

 ■ students communicating in a dif-
ferent way, which requires a re -
thinking of teaching practices that 
highlight the importance of real-time 
demonstrations and hands-on proj-
ects in teaching

 ■ how to use emerging technologies to 
improve instruction and teaching 
next-generation solutions where 
possible (that is, educating students 
for jobs that currently may not even 
exist but will be prominent in five 
years or so)

 ■ ways to bring research into the cur-
riculum as a paradigm shift

 ■ educating students about the impor-
tance of the completion and execu-
tion of their ideas/projects and of 
expressing themselves concisely and 
precisely through SP tools and SP 
ways of thinking

 ■ the implementation of elements 
of service economy into electrical 
engineering curricula as many 
economies are moving away from 
products and into services

 ■ enhancing awareness about the societal 
impact of SP education and the role of 
education as a key to innovation and, 
thus, the creation of enabling technolo-
gies for the solution of issues such as 
climate change, global IoT-enabled 
interactions, and space exploration

 ■ the need for the reform of education, 
both geographically and in terms of wide -
ly accessible “global” lecture courses.

To address these challenges, we 
have centered this special issue of SPM 
around the following topics:

 ■ the mitigation of issues related to the 
perceived difficulty of traditional SP 
courses, such as strategies on how to 
teach SP with less math and how to 
attract attendees from nonengineer-
ing departments

 ■ the use of technologically orientated 
classrooms and emerging tech-
nologies, such as MOOCs and web 
resources

 ■ metrics for success of education 
delivery in the after-online technolo-
gy era

 ■ using the principles of SP to 
improve teaching and research in 
related areas, such as machine learn-
ing, bioengineering, and artificial 
intelligence and optimization, and 
vice versa

 ■ curricular changes to meet contempo-
rary demands from industry, such as 
using practically relevant problems, 
exploring feasible extensions and 
new applications of the taught mate-
rial, and curiosity-driven learning

 ■ preparing students for lifelong 
learning and teaching lifelong fun-
damentals of SP and the relevance 
of SP with respect to technologi-
cal advances

 ■ challenges and solutions in industry-
run courses—the design of short 
courses offered by academia for 
industry, government agencies, and 
national defense

 ■ the role of mentorship and initiatives 
to encourage and motivate students 
in research experiences

 ■ promoting creativity in learning, 
especially when applying the con-
cepts with opportunity windows to 
explore entrepreneurship, possible 
product developments, and cross-
disciplinary aspects of our work.
The timing of this special issue has 

been reinforced by the success of the 
recent special program “Celebrat-
ing Signal Processing Education” 
at ICASSP 2019 in Brighton, United 
Kingdom, which had the involvement 
of all of the guest editors of this special 
issue. This initiative has highlighted 
that the SP community can significant-

ly benefit from the dissemination of 
ideas and practices, especially related 
to the recent rapid evolution of SP edu-
cation. These topics are of vital impor-
tance for the future of our discipline 
but have not, until now, been properly 
addressed in a comprehensive and co-
hesive way in the open literature. This 
special issue therefore aims at pro-
viding a unifying framework to edu-
cate SP educators within the general 
umbrella of “Innovation Starts With 
Education.” Before moving on to the 
articles in this special issue, we con-
tinue this guest editorial with a more 
personal “Reflections” column by two 
colleagues, Al Oppenheim and Tony 
Constantinides, who have been part of 
this community for more than five de-
cades. We close with a quote from Al 
Oppenheim: “The role of a magician is 
to make simple things appear mysteri-
ous. The role of a teacher is to make 
mysterious things appear simple.”   
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REFLECTIONS
Alan V. Oppenheim and Anthony G. Constantinides

Reflections After 50-Plus Years in the Classroom

hile the theme of this special issue 
is “Innovation Starts With Educa-
tion,” it is also true that “education 

thrives on innovation.” And as technol-
ogy continues to advance, new oppor-
tunities continue to present themselves 
for innovation in the classroom. Some 
remarks during the education panel at 
the 2019 International Conference on 
Acoustics, Speech, and Signal Process-
ing started with the playful but never-
theless attention-getting comment that 
“we’ve been teaching for more than 50 
years and are just realizing that, for all 
that time, we’ve been doing it wrong.” 
That is perhaps somewhat like saying 
during the late 20th century that, with 
hindsight, when traveling from Boston 
to California in 1900, it would have 
been better to fly than to travel by rail.

The good old days and  
the good old ways
From ancient times (measured in decades 
or millennia) to the present, the passing 
of knowledge from “the master” to “the 
student” has relied on various technolo-
gies and methods. Drawing pictures in 
the sand and on cave walls and verbal 
exposition were eventually enriched by 
writing, the printing press, video, audio 
recordings, and other means by which 
knowledge could be stored, archived, 
and shared. And throughout time, the 

process has been dynamically augment-
ed with experiments and real-world 
demonstrations to help bring concepts 
to life.

In more recent times, and especially 
before the massive disruption created by 
COVID-19, classroom presentation has 
taken a form in which the initial con-
tent exposure happens with “the mas-
ter” presiding in front of a gathering of 
students, and, in particular, it has dealt 
with mathematically rigorous topics, 
developing in great detail—including 
all the epsilons and deltas and condi-
tions for interchanging the order of 
integration and summation—the theo-
rems, proofs, and examples related to 
the material being taught. Traditionally, 
in this setting, students dutifully try to 
copy everything, and they frequently 
get lost early in the presentation, con-
fused about concepts and details, with-
out questioning whether the math is 
indeed correct.

In subjects with large enrollments, 
lectures are generally augmented by 
smaller recitation sections and through 
even more intimate tutorial sessions and 
office hours with the professor. (As an 
interesting side comment, when one 
of us changed the terminology from 
office hours to open hours and moved 
the location from his office to a confer-
ence room, attendance tripled. As stu-
dents pointed out, going to a professor’s 
office can sometimes feel intimidating.)   
This is followed by assigned reading in 

textbooks and/or detailed lecture notes 
and homework exercises. Classroom 
development is typically performed 
with chalk on a blackboard, a marker 
on a white board, slides, or some com-
bination of these. Ideally, the smaller 
recitation sections are highly interactive 
between the instructor and the students. 
However, in practice, too often recita-
tion and tutorial sessions are given by 
relatively inexperienced graduate stu-
dents who overprepare and are reluctant 
or unable to nimbly direct the interac-
tion based on the needs of the students.

The use of overhead projectors and 
then computer-generated slides offered 
many opportunities to easily incorporate 
rich graphics and visuals (including “eye 
candy”) into teaching.  And it also pro-
vided the opportunity to focus on the high-
lights of mathematical derivations without 
“dragging” students through every small 
step unless there was specifically an 
important point to be made in doing so. 
Accompanying a presentation with a hand-
out would often nicely augment a transpar-
ency or slide show and free students from 
having to laboriously copy everything. Un -
fortunately, however, instructors would often 
bundle the entire content of a course into 
static slides and then, during each semester, 
pull out the package without updates and 
without enriching it with some blackboard/
whiteboard interaction. In other words, the 
technology had the potential to be overused, 
often for the convenience of the instruc-
tor. In a rapidly changing environment 
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such as ours, we need to consider when 
new ideas in teaching, motivating, and 
inspiring students are just substitutes 
for old ones and when they are another 
enriching dimension to be included in 
the tool bag.

In 1992, there was a “Reflections” 
column article in IEEE Signal Pro-
cessing Magazine (SPM), “A Personal 
View of Education” [1], and another, 
in 2006, “One Plus One Could Equal 
Three (And Other Favorite Cliches)” 
[2], that contained some reflections on 
research. In preparing this article, those 
pieces seem as relevant today as they 
were then. But times have also changed 
in many significant ways. The profiles, 
expectations, and prior educational 
experiences of the student population 
are clearly different than they were two 
and three decades ago. And there have 
been significant advances in the rich-
ness of technology for sharing content, 
knowledge, and teachers’ insights and 
experiences with students.

Massive open online courses  
and the flipped classroom
A significant step forward in incor-
porating technology in education was 
driven, in part, by the introduction of 
massive open online courses (MOOCs). 
The development of MOOCs inspired 
the organization of presentations into 
smaller modules that had video, rich 
graphics, concept demonstrations, and, 
perhaps most significantly, the auto-
matic grading of simple exercises inter-
spersed with the other segments. There 
are now many excellent MOOCs avail-
able for the signal processing commu-
nity, as described, for example, in the 
article “MOOC Adventures in Signal 
Processing,” published in SPM, in 2016 
[3]. Of course, by necessity, the struc-
ture of MOOCs constrains the opportu-
nity for rich interaction between students 
and teachers.

MOOCs and associated creative 
technologies have made an extraordi-
nary contribution to education. They 
have enabled rich content presented by 
highly talented teachers to be acces-
sible to anyone with Internet access 
anywhere in the world. And even in 
residential teaching environments, 

MOOCs have offered an opportunity 
for teachers who have less experience 
with a course’s content to deepen their 
understanding and to incorporate ele-
ments such as the selective utilization 
of demonstrations, video segments, and 
auto-graded exercises. The develop-
ment of MOOCs has also intensified 
the discussion of “flipped classrooms,” 
where, before in-person sessions, stu-
dents watch videos of the course con-
tent and perform simple exercises to, at 
a minimum, get a sense of the concepts 
and notation. Learners then carry out 
at-home or in-class applications of the 
methods under consideration, perhaps 
even employing their personal signals, 
e.g., their voice, electrocardiograms,  
and so forth (see, for example, [4]). 
Of course, there are many variations, 
from relatively strong expectations and 
requirements for the preclassroom com-
ponents to more relaxed but encour-
aged assumptions.

In some ways the flipped class-
room is in the spirit of the more tra-
ditional (but often ignored) suggestion 
to students that they spend some time 
with the course textbook or other 
reading material before coming to 
class. However, typical textbook mate-
rial is prepared to be highly complete 
and detailed. Consequently, requiring 
textbook reading prior to any class-
room exposure to context and motiva-
tion can be difficult and cumbersome 
and is often more meaningful after 
the basics have been absorbed. In any 
case, with whatever advance prepara-
tion students can be encouraged to do, 
the classroom experience becomes 
more than just a lecture theater: it is 
also a forum for inspiring, motivating, 
and interacting.

Well-chosen and prepared videos 
and autograded exercises can be enor-
mously beneficial in acclimating stu-
dents to notation and basics before a 
lecture or classroom interaction. The 
potential effectiveness of aggressive 
or partial classroom flipping is highly 
dependent on the nature of the material, 
the resources available to students, and 
the creativity and style of instructors in 
utilizing and building on advance prep-
aration by the students. And again, the 

flipped or somewhat flipped classroom 
can be overdone and purposely or inad-
vertently take the path of being more 
for the convenience of the instructor 
than for the enhanced learning of 
the students.

“Necessity is the mother  
of invention”
As this article was being written, we 
were clearly experiencing another poten-
tial major step forward in incorporating 
technology into our teaching, precipitat-
ed by the worldwide COVID-19 crisis. 
During this period, schools at all levels 
abruptly closed their physical spaces, 
with the requirement to move to online 
platforms. This naturally meant that 
many of the “old” ways of delivering 
content—e.g., by long, detailed black-
board derivations—were, by necessity, 
rapidly replaced by more creative ways 
of presentation and engaging students. 
And as we all watched in real time in our 
respective environments, very clearly 
there was a lot of innovation and creative 
experimentation undertaken, which we 
all believe has impacted and will contin-
ue to influence our residential teaching 
methods during both the short and the 
long term, when life settles to whatever 
the new normal will be.

So, as abrupt and painful as the pan-
demic shutdown has been, and as exten-
sive as the debris field will be, there are 
some silver linings, among them, new 
opportunities for presenting content 
and interacting with students. We’ve all 
heard the old English proverb, some-
times attributed to Plato, that “necessity 
is the mother of invention.” With online 
classroom experimentation rapidly hap-
pening throughout the world, there are 
clearly new avenues to pursue and likely 
many hazards and unintended conse-
quences. This, of course, is always the 
case when introducing new technology 
into the classroom.

Another important element in the 
education process is the role of mentor-
ing, which is clearly different than that of 
delivering content. In this magazine, the 
1992 article about education [1] empha-
sized the importance of live mentoring 
and coaching. What we are seeing at our 
universities during the adjustment to the 
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pandemic are many innovative ways of 
having rich interaction with and among 
our students, evidenced, for example, by 
the use of “breakout rooms” (as they’re 
referred to on the Zoom platform) and 
other methods of holding online open 
hours, maintaining accountability dur-
ing exams, and so on. All these inno-
vations have enormous potential for 
enhancing both residential and distance 
learning. Again, it’s important to focus 
on utilizing these new resources to 
enhance the experience of the students 
rather than to benefit or provide conve-
nience to teachers.

Textbooks
It’s also important to comment on the 
role of textbooks. Historically, these 
have played an important part as a com-
panion to the other elements of a class-
room experience and as future reference 
material. Textbooks are often written to 
be highly detailed and self-contained on 
their own. Therefore, the content can be 
hard to digest during a first exposure 
to the material. As phrased by Andrew 
Wu, a Massachusetts Institute of Tech-
nology undergraduate who commented 
on a draft of this article:

A problem that I personally 
have with textbooks is that using 
them can often be cumbersome. 
More typically, I consult a source 
because I have a question on some 
specific aspect of the material. 
If what I’m searching for exactly 
corresponds to a section in a text-
book, then the textbook works 
well; however, if it’s just a few 
paragraphs within a textbook, it 
can be tedious and cumbersome 
to find the exact information that 
I’m looking for. Modern educa-
tion, to me, with its vast arrays of 
different technologies and meth-
ods of information delivery, offers 
students much more of an oppor-
tunity to learn in a more personal-
ized way.
Of course, some of that student’s con-

cerns are mitigated by e-textbooks that 
support word search functions. But just 
as with poor search engines, it can often 
be difficult to find the right combination 
of terms to search for. Word search in an 

e-text is certainly a significant improve-
ment over a poorly composed index in a 
hard-copy book, but it is often cumber-
some and unhelpful.

While textbooks are usually not the 
best resource for initial exposure to 
material, they have always played an 
essential role since they can provide a 
more detailed exposition than is typi-
cally necessary and appropriate in the 
classroom. Furthermore, textbooks 
give students ready access to details as 
pupils engage material through home-
work exercises and related activities. 
Perhaps more importantly, well-written 
textbooks often become lifelong, trust-
ed companions and reliable reference 
sources. For a host of reasons, writing 
and publishing textbooks—and particu-
larly in printed, rather than electronic, 
form—has become 
less attractive to edu-
cators. Among the 
factors causing this 
are the increasingly 
rapid advance of the 
concepts, perspec-
tives, and techniques 
in our field and many 
others and what seems like the broken 
“business model” of many  publishers. 
Textbooks are typically perceived by 
many students as incredibly expen-
sive to purchase, and most often they 
are rented or purchased used and then 
resold. Increasingly, there are pirated, 
unauthorized versions of popular texts 
for sale or simply posted for free on the 
Internet. Consequently, any financial 
incentives for publishers to commis-
sion, and for authors to write, textbooks 
are diminished.

Furthermore, there is an increased 
desirability, expectation, and require-
ment to incorporate hypertext links 
and lots of supplemental material to 
augment a textbook, which inten-
sifies the overall effort on the part 
of authors and publishers. It current-
ly seems unclear, at least to us, what 
good alternatives there are for pro-
viding students with well-written tex-
tual material while providing authors 
with incentives to produce it (beyond 
the immense satisfaction of explain-
ing topics to a broad audience) and, 

indeed, for motivating publishers and 
publishing platforms to make content 
widely available at a reasonable cost. 
All of this again requires innovation 
directed toward education.

The modern student
As commented earlier, the important 
evolutionary changes impacting our 
roles as educators include the back-
grounds, experiences, and expectations 
of students. In our own student days and 
throughout a major part of our personal 
careers, a literature search typically 
began with a trip to the library. Now, for 
all of us, including students, a literature 
search often starts with accessing an 
appropriate search engine. And in the 
midst of working on a problem, all of 
us as researchers, teachers, and students 

frequently find our-
selves initially turning 
to our favorite search 
engine or some other 
online resource to 
direct us to the solu-
tion of, or resources 
related to, a problem. 
The vast array of online 

resources makes many aspects of learn-
ing and research more efficient and in 
many respects provides more “instant 
gratification.” The opportunity for stu-
dents to ask questions and get answers 
more rapidly than in decades past natu-
rally generates a certain impatience. On 
the other hand, much of the information 
available online has not been reviewed 
and vetted and consequently, to some 
extent, it’s “searcher beware.”

As another aspect, students who 
have grown up in the era of TiVo, online 
and on-demand content streaming, 
and handheld devices have more reluc-
tance than we did to be required to be 
at a specific place at a specific time. 
Today’s students have also grown up in 
an era of multitasking, for which they 
have developed a habit and sometimes 
an addiction. Always having a laptop, 
smartphone, and smart watch nearby is 
wonderful for keeping up with friends, 
family, news, and social media, but there 
seems little doubt that those devices 
represent a strong temptation that can 
quickly lead students to become distracted 

Today’s students have 
also grown up in an era 
of multitasking, for which 
they have developed a 
habit and sometimes  
an addiction.
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and then lost in the classroom. This can 
and should be taken into account as we 
incorporate the rapidly expanding array 
of technologies for interacting with our 
students and delivering content.

The evolving field of signal 
processing
Next, we’d like to reflect on how our 
field has changed during the past five 
decades and suggest how this impacts 
what we choose to teach going for-
ward. Signal processing has always 
been characterized by a strong sym-
biotic relationship between math-
ematics, motivating applications, and 
platform implementations. During the 
20th century, much of the innovation 
was motivated by applications such as 
radar, sonar, avionics, communications, 
entertainment, and the venture into 
space. Platform developments were 
largely centered around electromagnet-
ics, electricity, and electronics. Advances 
in signal processing system design and 
analysis relied heavily on the mathemat-
ics related to continuous functions and 
differential equations. And practitioners’ 
education included, at a minimum, a 
firm grounding in both the fundamen-
tal mathematics and the physics related 
to the implementation platforms.

Toward the end of the 20th century, 
the digital computer moved from its role 
of offline analog system data analysis 
and simulation to a true platform for 
real-time and deployable signal pro-
cessing systems. This opened the door 
to designing and implementing signal 
processing systems that were freed in 
some sense from the constraints of the 
physics imposed by the electronics. 
And, in addition to utilizing the math-
ematics of continuous functions, the 
field increasingly harnessed discrete 
mathematics, numerical methods, and 
difference equations. This transition 
correspondingly expanded the essen-
tial foundational mathematics, which 
required including and incorporating a 
strong understanding of linear algebra 
and optimization methods, statistical 
inference, and other approaches that 
are exploited in closely related fields, 
such as machine learning and artificial 
intelligence. In terms of implementing 

signal processing systems, computer 
programming skills became more cen-
tral, as did a proficiency with, or at least 
some understanding of, integrated cir-
cuit design.

Signal processing curricula
Signals and the need for processing 
them arise in a very broad set of fields 
and disciplines, including every branch 
of engineering, many aspects of health 
science, all the physical sciences, finan-
cial data analysis, and so on. Students 
taking advanced undergraduate and 
graduate signal processing classes often 
have learned the prerequisites from 
diverse perspectives and perhaps even 
picked up the knowledge informally, 
i.e., “learning it on the street.” During 
the first few weeks of a course, this 
often presents the challenge of synchro-
nizing everyone to similar notation and 
perspectives. While the concepts and 
foundational mathematics are essen-
tially universal across these disciplines, 
students will obviously relate most 
strongly to application contexts with 
which they have some familiarity.

In thinking about appropriate cur-
ricula related to signal processing, it 
is also important to draw a distinction 
between students who will be head-
ing toward the development of signal 
processing tools as a technology and 
those who are learning signal process-
ing primarily to apply the field’s tools 
and methods to advance specific appli-
cations. In both cases, there is a math-
ematical foundation so that tools don’t 
get misused and so that results aren’t 
misinterpreted. (No! The MATLAB 
function fft does not generate the Fouri-
er transform of the input signal!) Intelli-
gent use of high-level platforms, such as 
MATLAB, Mathematica, and LabView, 
does not require an in-depth and highly 
sophisticated fluency with the underly-
ing mathematics.

But interpreting results correctly 
does demand a basic mathematical 
understanding of the underlying prin-
ciples as typically taught in an advanced 
undergraduate signals and systems 
course that incorporates both continu-
ous-time and discrete-time material as 
well as the basic mathematics of contin-

uous functions, linear algebra, and sta-
tistical inference. For students preparing 
for advanced development and research 
to significantly advance the technology 
of signal processing, an appropriate cur-
riculum would likely also include more 
advanced mathematical topics, such 
as optimization methods, advanced 
statistical inference, and perhaps some 
functional analysis and nonlinear math-
ematics. For example, it is quite likely 
that the future of our field will involve 
the creative and methodical design of 
nonlinear systems and algorithms and 
the processing of signals that are best 
characterized on more general mani-
folds than Cartesian ones.

In our view, it is essential that students 
and practitioners advancing the tech-
nology of signal processing have real-
world signals to process. Less crucial, 
in our opinion, is a strong commitment 
to advance any specific application. But 
it does seem indispensable that, in the 
process of developing creative new sig-
nal processing tools, the concepts and 
algorithms be tested on real as well as 
simulated signals. Signal models are 
important for developing and refining 
signal processing algorithms, but mod-
els are typically only approximations of 
real signals. It is important for students 
to understand the difference between 
signals and signal models. Anyone 
involved in signal processing, wheth-
er for research toward advancing the 
technology or for developing a specific 
application, needs to have real signals 
to process.

Some final thoughts
Our field has had a rich history, and 
clearly it has incredible potential going 
forward. There is always an opportunity 
for discovering or rediscovering mathe-
matical principles that have not yet been 
fully exploited in the context of signal 
processing. And physics will continue 
to provide us with new ways of imple-
menting signal processing systems. 
While digital platforms have played an 
increasingly important part in signal 
processing system implementation, the 
role of analog platforms also continues 
to grow, as does a mix of both. And 
quite likely, as the technology advances, 
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it will become increasingly difficult to 
define precisely which parts of a sys-
tem are considered analog and which 
are digital.

An additional dimension is the inevi-
table advancement, overlapping, and 
merging of multiple disciplines, offering 
new, rich contexts and applications on 
which sophisticated signal processing 
can have an impact. These increas-
ing dimensions and the rapid pace of 
progress place further demands for the 
constant updating, upgrading, and mod-
ification of the material taught in class-
rooms. Static presentations are quickly 
outdated and at an accelerating pace. 
Industrial and societal needs are con-
tinuously evolving, pressing the need 
for further innovation. The confluence 
or divergence of different disciplines 
puts further pressures on the modes and 
content of teaching for evolving educa-
tional needs.
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INNOVATION STARTS WITH EDUCATION

The effectiveness of teaching digital signal processing (DSP) 
can be enhanced by reducing lecture time devoted to theory 
and increasing emphasis on applications, programming as-

pects, visualization, and intuitive understanding. An integrat-
ed approach to teaching requires instructors to simultaneously 
teach theory and its applications in storage and processing of 
audio, speech, and biomedical signals. Student engagement 
can be enhanced by having students work in groups during 
class, where they can solve short problems and short program-
ming assignments or take quizzes. These approaches will in-
crease student interest and engagement in learning the subject. 

Introduction
DSP is used in numerous applications, such as communica-
tions, biomedical signal analysis, health care, network theory, 
finance, surveillance, robotics, and feature extraction for data 
analysis. Learning DSP is more important than ever before 
because it provides the foundation for machine learning and 
artificial intelligence.

The DSP community has benefited tremendously from 
Oppenheim’s views of education [1], [2] and from his many 
field-shaping textbooks. Teaching an engineering class in gen-
eral and the DSP class in particular is very different today from 
30 years ago when computers, tools, and data were not avail-
able in abundance. Shulman captures how classes with sig-
nificant mathematical content were taught in the past [3]. He 
describes specifically how a professor teaches fluid dynamics: 
“He is furiously writing equations on the board, looking back 
over his shoulder in the direction of the students as he asks, 
of no one in particular, ‘Are you with me?’ A couple of affir-
mative grunts are sufficient to encourage him to continue… 
This is a form of teaching that engineering shares with many 
of the other mathematically intensive  disciplines and profes-
sions; it is not the ‘signature’ of engineering.” The author is 
right in that, although some instructors teach engineering this 
way, it is not and should not be our teaching signature. When 
I taught the DSP class at the University of Minnesota (UMN) 
using the Oppenheim–Schafer textbook [4] in the fall of 1989, 
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my teaching signature was close to what Shulman describes. 
But over the last three decades, my teaching signature has 
changed significantly. In this article, I will describe my teach-
ing signature as I practice it today.

The objectives of teaching are threefold: 1) teach the nec-
essary mathematical theory and derivations, 2) introduce 
sufficient applications and visualize the results by program-
ming the application, and 3) present intuitive insight about 
the observations from the programming 
experiments. Thus, signal processing is as 
much about listening to sounds and visu-
alizing temporal and spectral representa-
tions as about theoretical problem solving.

My teaching signature can be described 
as “blended teaching.” I teach mostly by 
writing down the content in class. This helps 
the students write down what I am writing; 
this then helps them develop the same thought process as I do 
when I derive these results. I then switch to PowerPoint slides, 
and I show graphs and plots and play audio sounds to see how 
a signal sounds after a certain filtering operation or how dif-
ferent types of filters change the signal to different forms. We 
filter some music and sinusoids and discuss some MATLAB 
code. This blended teaching keeps the students engaged. I try 
to assign homework problems that relate to real applications. I 
remind myself of the threshold concepts [5]. While thresholds 
differ for different students, I try to cover as many if not all of 
these concepts. In signal processing, we have many threshold 
concepts. They range from myriads of math tricks to challeng-
es in applying the same concepts to different problems. The 
most challenging part of teaching is to really pretend that we 
are not experts but novices. Then we can teach other novices 
more effectively. 

Challenges in teaching DSP
When I took the DSP class at the University of Pennsylvania 
in 1983 using the Oppenheim–Schafer textbook [6], it was 
taught as an advanced graduate course at that time. The DSP 
class is taught today as a senior elective at most universities.

There is a desire to teach the class as a practical class, 
where signals, sounds, and images can be manipulated using 
DSP. This manipulation should be integrated into the lec-
ture as well as homework. One of the challenges is that the 
textbooks are rich in theory but do not provide a sufficient 
number of  practical applications. The textbook by Mitra, 
however, provides numerous applications related to mul-
tirate and sample-rate alteration [7]. Because the class is 
often taught with an emphasis on theory, many students lose 
interest in taking it. Such a class is an elective class. So to 
increase enrollment, students should find the class interest-
ing and practical. We also need to train students to acquire 
the practical skills that will help them in their jobs in indus-
try. However, we also need to teach the mathematical rigor 
for students. In the absence of an ideal textbook, this places 
a burden on instructors to design application examples to be 
covered during lectures and applications to be assigned as 

part of the homework. We have already seen some local suc-
cess in this direction [8].

There is also a need to increase student engagement 
and interest. This requires instructors to deviate from tra-
ditional teaching and adopt some form of flipped teach-
ing, where students familiarize themselves with some 
material before coming to the class either by reading the 
content or listening to video lectures [9], [10]. This frees 

up time in class so students can work 
together to solve theoretical or practi-
cal problems.

To increase attendance, short quizzes 
can be assigned during lectures. Assign-
ing group quizzes can enhance student 
engagement by allowing students in the 
same group to discuss and learn from each 
other. Thus, taking a quiz is as much about 

learning as about earning a grade in the class.
Often the homework can be frustrating if the students do 

not learn the “tricks.” Students find the lectures easy, but they 
find it harder to solve problems. Thus, some of the tricks to 
solving the problems need to be taught during lecture. This 
requires working out some of the problems that would have 
been assigned as homework. Another approach is to provide 
solutions to problems that are similar to the homework prob-
lems. Studying these solutions will be very helpful to the stu-
dents in preparing them for their homework. The same is also 
true for programming problems. Starter codes for program-
ming assignments should be provided to the students. This will 
help them in solving their programming assignments. Some 
students have strong theoretical skills but are less inclined to 
solve programming problems.

Finally, often there is a gap between the homework assign-
ments and exams. Homework problems are often time consum-
ing and require more calculations, whereas examinations cover 
short problems that take less time but are thought provoking 
and nontrivial. Students need to develop skills in solving prob-
lems that are similar to those in the tests. The aforementioned 
quizzes during lectures can be very helpful to students in pre-
paring for exams.

An integrated approach to teaching
There is debate in the community about the interrelationship 
between innovation and education [11]. This section describes 
examples of how signal processing can be taught more effec-
tively via an integrated approach that emphasizes learning of 
the theory, application, and intuition.

Mathematical derivations
Many decades ago, the entire class was spent on deriving 
the mathematical theory, and the homework problems were 
also mostly mathematical. Many DSP homework problems 
involve “tricks” that are not taught in the class, but students 
are expected to figure them out. As a student, I enjoyed figur-
ing out these tricks; however, many students lose interest in 
learning DSP as they cannot work them out. Thus, there is a 

Learning DSP is more 
important than ever before 
because it provides the 
foundation for machine 
learning and artificial 
intelligence.
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need to spend lecture time solving problems where the tricks 
are explained. This reduces the time required for all of the 
derivations. Fortunately, students can read the textbook for 
this part. In general, the amount of lecture time used to derive 
theory needs to be reduced.

The threshold concepts come into play when explain-
ing the tricks. Students may have forgotten some of the 
concepts. Typically, in a junior-level class on signals and 
systems, I spend a week teaching functions, scaling and 
shifting of functions, complex numbers, and trigonomet-
ric identities.

Another aspect of deriving theory is to first explain 
the results intuitively and then derive the theory. At other 
times, it may be easier to compute the result using MAT-
LAB and then explain the result theoretically. This achieves 
two objectives: students develop practical skills, and they 
then relate the experimental result to theory. This makes the 
theory more relevant. As one example, I illustrate the fast 
Fourier transform (FFT) properties using Table 1. Students 
then verify the properties using MATLAB (see Problems 5 
and 6 in the section “In-Class Group Activity”). Variations 
of Table 1 can also be used for homework or group activity.

Applications and visualization in MATLAB
I explain several applications of the theory during the 
lecture. In addition, I assign programming problems 
for applications as part of the homework. For example, 
when describing digital filters in terms of, say, low-pass, 
bandpass, and high-pass, I take a sound or audio file, 
filter it with different passbands, and then listen to the 
filtered sound. These sounds are either embedded into 
the PowerPoint presentation or obtained from MATLAB 

during the class. I also provide the codes for the filter-
ing operations. Students can use the code for solving 
their homework.

In the first DSP class, I ask students to record their 
speech as they describe themselves for a few minutes. 
They turn in their speech as part of the homework. 
Then, in subsequent weeks, I ask them to filter their own 
speech. We have also downloaded publicly available bird 
sounds from websites, and the students use these sounds for 
their homework.

In another application for speech or audio compression, 
we compute the FFT of the signal. Then we retain low-fre-
quency content and compute the inverse FFT (IFFT). Then 
we listen to the sound. This is explored in a homework prob-
lem (Problem 1).

The MATLAB problem in Problem 1 relates to audio com-
pression. In this problem, students explore the principles of 
audio compression where the high-frequency content is dis-
carded. The MATLAB codes for the functions _fft compress  
and _expandfft  are provided to the students.

Problem 1
1)  Load the audio file, referred to as [ ].x n  Let [ ]X k  be its dis-

crete Fourier transform (DFT). Compute [ ]X k  using the 
fft command. 

2)  Compress the FFT [ ]X k  using the _fft compress  function 
and a percentage of compression = 10% (0.10). This 
retains only the first 10% of the spectrum.

3)  Using the compressed sound file from step 2, apply 
the _fft extract  function to reconstruct the original 
audio file.Save the reconstructed audio sound file 
and play it. Refer to this signal as [ ].x n1  Comment on 

your observations.
4)  Generate an error file which is the 

difference between the original 
audio file, [ ],x n  and the recon-
structed audio file, [ ].x n1  Call this 
error signal [ ].e n  Save the error 
sound file and play it. Comment on 
your observations.
 Comment: [ ]e n  contains the higher  
frequency content of [ ]x n .

5)  Observe that the error signal contains 
frequency components in the mid-
band and no frequency components 
at low frequency. Shift left the fre-
quency components of the error sig-
nal by k0  samples and compute the 
IFFT of the shifted frequency-domain 
signal. Save the generated sound file 
and play it. Call this signal [ ].x n2  
Comment on your observations.
Comment:

[ ] [ ]X k E k k2 0= +

[ ] [ ] .x n e n e j
N

nk
2

2
0=

r-

Table 1. The DFT properties. 

x [n] X [k]
( , , , , , )A B C D E F ( , , , , , )a f e d c b6 6 6 6 6 6
( , , , , , )A F E D C B ( ), , , , ,6a 6b 6c 6d 6e 6f
( , , , , , )A B C D E F) ) ) ) ) ) ( , , , , , )a b c d e f6 6 6 6 6 6) ) ) ) ) )

( , , , , , )A F E D C B ( , , , , , )a b c d e f6 6 6 6 6 6
( , , , , , )a b c d e f) ) ) ) ) ) ( , , , , , )A F E D C B) ) ) ) ) )

( ), , , , ,a f e d c b ( , , , , , )A F E D C B
, , , , , )(a f e d c b) ) ) ) ) ) ( , , , , , )A B C D E F) ) ) ) ) )

( , , , , , )a b c d e f- - - ( , , , , , )D E F A B C
( , , , , , )a f e d c b- - - ( , , , , , )D C B A F E

( , , , , , , , , , , , )a b c d e f0 0 0 0 0 0 ( ), , , , , , , , , , ,A B C D E F A B C D E F

( , , , , , , , , , , , )A B C D E F A B C D E F ( , , , , , , , , , , , )a f e d c b12 0 12 0 12 0 12 0 12 0 12 0
( ),, , , , , , , , , ,A 0 B 0 C 0 D 0 E 0 F 0 ( , , , , , , , , , , , )a f e d c b a f e d c b6 6 6 6 6 6 6 6 6 6 6 6
( / , , / , , / , , / , , / , , / , )A F E D C B6 0 6 0 6 0 6 0 6 0 6 0 ( ), , , , , , , , , , ,a b c d e f a b c d e f
( / , / , / , / , / , / ,

/ , / , / , / , / , / )

A F E D C B

A F E D C B

12 12 12 12 12 12

12 12 12 12 12 12

( ),0, , , , , , , , , ,a 0 b 0 c 0 d 0 e 0 f

( ), , , , , , , , , , ,D 0 E 0 F 0 A 0 B 0 C 0 ( , , , , , , , ,

, , , )

a f e d c b a f

e d c b

6 6 6 6 6 6 6 6

6 6 6 6

- - - -

- -

Example given in class: Let the discrete Fourier transform (DFT) of a six-point complex sequence (a, b, c, d, e, f ) be 
another complex sequence (A, B,C, D, E, F). Then complete the table below. The sequences in bold were given, and 
students were asked to find the corresponding pairs; the sequences in red correspond to solutions.
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The signal [ ]x n2  is complex and differs from [ ]e n  and 
is a modulated version of [ ].e n  Thus, if we listen to its mag-
nitude, it will sound different from [ ].e n

6) Multiply the signal [ ]x n2  with a complex exponential 
( ),e /( )j N k n2 0r  where k0  corresponds to the shift in frequency 
performed in step 5. Save the generated sound file and play 
it. Call this signal [ ].x n3  Comment on your observations.
Comment:

[ ] [ ] [ ].x n x n e e nj
N

nk
3 2

2
0= =

r

[ ]x n3  is the same as [ ].e n
Solution: Solutions with MATLAB codes are provided 

in the supplementary materials that appear with this article 
on IEEE Xplore. Y

I introduce practical applications while describing theo-
retical concepts. For example, while introducing the defini-
tion of autocorrelation of a real signal, I provide examples 
of photoplethysmogram (PPG) and respiration-rate signals. 
Then I discuss how to compute the heart rate and respira-
tion rate from these two signals using autocorrelation by 
looking at the zero-crossings. We then compute the DFT 
of the signals and verify if the frequency obtained by the 
autocorrelation is the same as that from the DFT. This is 
illustrated in Problem 2, where the PPG signal is used to 
compute the heart rate. The   respiration-rate signal is not 
included in Problem 2, but the approach is similar. This 
helps connect the theoretical expression for autocorrelation 
to a practical application.

Problem 2
The PPG signal captured from a sensor at a 100-Hz sampling 
frequency is provided in this problem. The length of the sig-
nal is 1,024 samples (10.24 s). The data file (ppg_100hz_1024 
samples.csv) for this problem is given in the supplementary 

materials that appear with this article on IEEE Xplore. The 
data are part of a PPG signal (ppg_100hz_1024samples.csv). 
The PPG signal is used in this problem to compute the 
heart rate.
1) Compute the 1,024-point FFT of the signal and plot 

the absolute values of the single-sided FFT with a stem 
plot: Find the frequency in hertz of the highest magni-
tude in the FFT of the PPG. Note that the frequency 
corresponding to the highest magnitude represents the 
heart rate.

2) In this part, we compute the heart rate using autocorrela-
tion: This is accomplished by finding the difference of the 
first and third zero-crossings, which corresponds to the 
time period of the signal. This information is used to com-
pute the heart rate in hertz from the PPG.

Solution: The MATLAB code for this problem is avail-
able in the supplementary materials that appear with this 
article on IEEE Xplore. A diagram containing results from 
the two parts of the problem is presented in Figure 1. The 
heart rate can be estimated by:

1) Finding the highest peak from the DFT spectrum: The 
fundamental frequency is 1.0742 Hz for the PPG sig-
nal, which results in a heart rate of 64.45 beats per 
minute (bpm). 

2) Considering the interval between first and third zero-
crossings: A lag difference of 94 at a 100-Hz sampling 
rate = 0.94 s or 63.8 bpm. Note that the values from steps 1 
and 2 are almost the same. Y

Fortunately, numerous large collections of data and 
signals are now publicly available. These data and signals 
can be used as part of the homework or class projects. In 
my DSP class, I have used intracranial electroencephalo-
gram signals for seizure detection from the UPenn and 
Mayo Clinic’s Seizure Detection Challenge on Kaggle 
[12]. Students use the same signals for solving different 
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FIGURE 1. (a) The DFT and (b) normalized autocorrelation for the PPG signal. 
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programming problems assigned over many weeks and 
compute time-domain and frequency-domain features. 
These problems are described in “Programming Assign-
ments Using Intracranial Electroencephalogram Data” (see 
Problems S1–S3). 

The roles of theory and application sometimes can 
be interchanged. We first describe an application using 
MATLAB. Then we make an observation and then derive 
the theory.

Intuitive insight
It is important to explain the results from MATLAB experi-
ments intuitively. For example, the effects of scaling and shift-
ing a signal in the spectral domain can be quickly  observed. 
The theory can then be explained. I included the following 
Problem 3 as part of a homework assignment.

Problem 3 
Two signal processing systems are shown in Figures 2 and 3, 
where [ ]x n1  and [ ]x n2  are audio sounds, and H(z) is a 100th-
order finite-impulse response low-pass filter with cutoff fre-
quency / .2r  For each system, load the input audio sounds, 
use MATLAB to obtain the sounds [ ], [ ],z n y n1  and [ ],y n2  

and listen to these sounds. Use the freqz command to plot the 
spectrum of the sounds [ ], [ ], [ ], [ ],x n x n z n y n1 2 1  and [ ]y n2  for 
each system. Compare the output signals obtained using the 
two DSP systems.

Solution: Multiplication of [ ]x n2  by ( )1 n-  results in a 
shift in the frequency domain by .r  Thus, the signal [ ]z n  
contains the audible [ ]x n1  along with the shifted version of 

[ ],x n2  which is inaudible to the human ear. The second mul-
tiplication of [ ]z n  by ( )1 n-  results again in a shift in the 
frequency domain by ,r  thus making it possible to listen to 

[ ]x n2  at [ ].y n2  However, [ ]y n2  also contains the high-fre-
quency content of [ ].x n1  This can be avoided by band-limit-
ing the input signals using system 2 shown in Figure 3. Y

The intrigue of the previous problem lies in the fact that 
the sound [ ]z n  does not seem to contain [ ],x n2  whereas it is 
audible in [ ].y n2  Students think that the signal [ ]x n2  is lost, 
and they are surprised that it can be recovered. I then explain 
this mathematically and intuitively. This problem can illustrate 
the basic concepts of audio steganography.

Blended teaching and active learning
Almost all students today have their own laptops that they can 
bring to class. Thus, it is easy for them to learn in an active 

This is a description of programming assignments that use 
intracranial electroencephalogram (EEG) data from the 
Seizure Detection Challenge on Kaggle organized by the 
University of Pennsylvania and the Mayo Clinic [12]. The 
students were assigned one specific subject and a specific 
electrode/channel signal from that subject. The students 
were asked to extract various time- and frequency-domain 
features and comment on the suitability of these features for 
discriminating ictal (during seizure) and interictal (baseline) 
clips to detect seizures. The sample solutions for these prob-
lems, provided in the supplementary materials that appear 
with this article on IEEE Xplore, use the training data from 
channel 1 for the EEG clips from Dog 1, which has a total 
of 596 clips of which 178 are ictal, i.e., those correspond-
ing to seizures. Each clip is a 1-s recording.

Problem S1. This problem explores time-domain signal 
processing. Extract and plot the eight time-domain features 
listed below for the assigned subjects. Use the stem () com-
mand to plot the value of each feature for all of the clips. 
Observe the plots and comment on whether the given fea-
ture could be used to detect seizures.
1) Measures of central tendency: arithmetic mean, me-

dian, and mode.
2) Energy: the energy for a sequence [ ]x n  of length N  

is given by

.E x n
n

N

1

2
=

=

6 @|

3) Total length of the curve (sum of distances between suc-
cessive points):

.L x n x n 1
n

N

2

= - -
=

6 6@ @|
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Solution: The MATLAB codes for this problem are pro-
vided in the supplementary materials that appear with 
this article on IEEE Xplore. The results varied based on 
the assigned subject and electrode. In many cases, the 
energy, total length, and Hjorth activity were good indi-
cators of seizure. Y

Problem S2. In this problem, we will generate an ana-
lytic signal from the EEG signal. The analytic signal is a 
complex signal whose real part is the signal itself and 
whose imaginary part is the signal filtered by the Hilbert 
transform filter. Using this, we generate two new features 
listed below. Plot the features using the stem () command 

Programming Assignments Using Intracranial Electroencephalogram Data 
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learning environment where they can write short programs or 
solve short problems during the class. Students can learn from 
each other by working in groups.

Flipped classes have been used to teach DSP effec-
tively [13]. At UMN, I taught the undergraduate DSP class 
EE-4541 in an active learning classroom in the fall of 2013 
[14], [15]. The students sat around tables in groups of three. 
The classroom was equipped with a camera for the instructor 
and there were TV screens near each table, as shown in Fig-
ure 4. I sometimes used pen and paper to derive or explain 
theoretical results. At other times, I used PowerPoint slides. 
Students had access to my PowerPoint slides a week before 
the class, and they were asked to review them before coming 
to class.

x1[n ]

x2[n ]

y1[n ]H (z )

H (z )
z (n )

(–1)n (–1)n

y2[n ]

FIGURE 2. Signal processing system 1 for Problem 3.

x1[n ]

x2[n ]

y1[n ]H (z )

H (z )

H (z )

H (z ) z (n )

(–1)n (–1)n

y2[n ]

FIGURE 3. Signal processing system 2 for Problem 3.

and comment on whether the given feature could be 
used to detect seizures.

1) Mean instantaneous amplitude of delta band: Filter 
the original EEG clips using a bandpass filter to ob-
tain the signal in the delta band (1–4 Hz). Using the 
Hilbert transform, obtain the discrete-time analytic 
signal (complex valued), the magnitude of which pro-
vides the instantaneous amplitude. Use its average as 
the feature.

2) Mean instantaneous frequency of alpha band:  
Filter the original EEG clips using a bandpass  
filter to obtain the alpha-band (8–12 Hz) signal. 
Using the Hilbert transform, obtain the discrete-
time analytic signal (complex valued), the an-
gle of which provides the instantaneous phase. 
The derivative of the unwrapped instantaneous 
phase scaled by the sampling frequency yields 
the instantaneous frequency. Use its average as  
the feature.
Solution: The MATLAB codes for this problem are pro-

vided in the supplementary materials that appear with 
this article on IEEE Xplore. The results varied based on 
the assigned subject and electrode. In many cases, the 
mean instantaneous amplitude of the delta band is a 
good indicator of seizure. Y

Problem S3. We explore the following three methods 
listed to observe the power spectral density (PSD) of the 

EEG clips and find out if PSD is a useful feature for 
 seizure detection.

1) Spectrogram: Combine all the clips (ictal followed by 
interictal) to form a single time series. Use the spectro-
gram command with a window of 100 sample seg-
ments and an 80-sample overlap to view the frequency 
spectrum. Show the output as a surface plot with time 
on the ,x axis-  frequency on the y-axis and spectrum (in 
decibels) along the third axis.

2) Welch PSD estimate: Combine the ictal clips and inter-
ictal clips separately to form two different time series. 
Using the pwelch command, obtain and plot the PSD es-
timate of the two signals on the same graph for a normal-
ized frequency range of [ ].0 r-  Use the smoothdata() 
function to smooth the plot and identify the normalized 
frequency range that has the maximum difference be-
tween the PSD estimates of the ictal and interictal series.

3) Average PSD as a feature: Using the stem () command, 
plot the average of the PSD estimate obtained using 
the pwelch command for each clip. Observe and 
comment on whether this feature could be used to de-
tect seizures.

Solution: The MATLAB codes for this problem are provid-
ed in the supplementary materials that appear with this 
article on IEEE Xplore. The results varied based on the 
assigned subject and electrode. In many cases, the PSD 
estimate is a good indicator of seizure. Y

Programming Assignments Using Intracranial Electroencephalogram Data 

FIGURE 4. An active learning classroom.
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I assigned a quiz in the first class. The students were 
divided into three groups based on their performance in the 
quiz: top, middle, and bottom. Groups consisting of three 
students each were created by randomly picking one student 
from each of the top, middle, and bottom groups. This course 
was taught twice per week, where each class was of 75-min 
duration. Out of the 75 min, the last 15 min were reserved 
for either a group activity or a group quiz. During the group 
activity, the students were assigned short problems and short 
MATLAB assignments to work on in their groups. In this 
approach, a student who needed help could learn from anoth-
er student in the group. The group quizzes also consisted of 
short problems and short MATLAB programming problems. 
The group quiz and group activity alternated from one class 
to another during the semester. At the end of the group activ-
ity, I was able to provide intuitive insights and solutions to the 
problems at the end of the lecture.

In-class group activity
I designed the group activity problems such that students 
could first either learn the tricks needed to solve problems or 
compute the final result by MATLAB before the theory was 
presented. Other problems were designed to use MATLAB to 
verify what was learned from theory. Some examples of group 
activity are described next.

Problem 4
Consider the following sinc function:

[ ] .
sin

x n
n

n
4
r

r

= e o

Using MATLAB, plot the discrete-time Fourier transform 
(DTFT) of the 10 signals listed below.
1) Plot DTFT X e j~^ h using MATLAB.
2) Let [ ] [ ].x n x n 101 = -  Plot .X e j

1
~^ h

3) Let [ ] [ ].x n x n2 = -  Plot .X e j
2

~^ h
4) Let [ ] [ ].x n nx n3 =  Plot .X e j

3
~^ h

5) Let [ ] [ ].x n e x n/( )j n
4

6= r  Plot .X e j
4

~^ h
6) Let [ ] ( ) [ ].x n x n1 n
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5

~^ h
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6
~^ h
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2=  Plot .X e j

7
~^ h

9) Let [ ] [ ].x n x n28 =  Plot .X e j
8

~^ h
10) Let [ ]

,
,
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n

0
2

is odd
is even

9 = '
Solution: The MATLAB codes to this problem are pro-

vided in the supplementary materials that appear with 
this article on IEEE Xplore. The students were asked to 
explain the discrepancy between impulse magnitudes in  
the MATLAB result and the theoretical result for step 4  
( /201 2r  versus 1). Y

As another example of group activity, I will ask the stu-
dents to observe the properties of the DFT by solving Prob-
lem 5 using MATLAB. Then they solve Problem 6 based on 
their observations from Problem 5. Once the students under-
stand the properties, I derive some of them theoretically in 
class. Finally, students explore the use of the DFT properties 

shown in Table 1 as part of their homework. In this table, the 
sequences in red correspond to the solutions and are assigned 
as homework.

Problem 5 
Evaluate the following using MATLAB:
1) FFT [ , , , , ]2 3 4 5 6
2) FFT [ [ , , , , ]]2 3 4 5 6FFT
3) FFT [ , , , , , , , , , ]2 3 4 5 6 0 0 0 0 0
4) FFT [ , , , , , , , , , ]2 3 4 5 6 2 3 4 5 6
5) FFT [ , , , , , , , , , ]2 2 3 3 4 4 5 5 6 6
6) FFT [ , , , , ]4 5 6 2 3
7) FFT [ , , , , ]2 3 4 5 6- - .

Solution: The FFT of a sequence can be computed using the 
fft command in MATLAB. Y

Problem 6
Let ( , , , , ) ( , , , , )a b c d e A B C D E+ . Write general expressions 
for the FFTs listed below in terms of (A, B, C, D, E) based on 
the observations from Problem 5.
1) FFT [ [ , , , , ]]a b c d eFFT

Solution: [ , , , , ].a e d c b5 5 5 5 5  Y

2) FFT [ , , , , , , , , , ]a b c d e 0 0 0 0 0
Solution: [ , , , , , , , , , ].A B C D E) ) ) ) )  Here ) denotes 

interpolated values and hence cannot be expressed in terms 
of , , , , .A B C D E  Y

3) FFT [ , , , , , , , , , ]a a b b c c d d e e
Solution: [ , ] e1A, B, C, D, E A, B, C, D, E ( / )j k 5+ r-6 @ for 

, , , .k 0 1 9f=  Y

4) FFT [ , , , , , , , , , ]a b c d e a b c d e
Solution: [ , , , , , , , , , ].A B C D E2 0 2 0 2 0 2 0 2 0  Y

5) FFT [ , , , , ]d e a b c
Solution: , , , ,A Be Ce De Ee/ / / /j j j j4 5 8 5 12 5 16 5r r r r- - - -^ ^ ^ ^h h h h6 @ 

using the property .e X kx n 2 /j k
5

4 5
< > )- r-^ ^h h6 6@ @  Y 

6) FFT [ , , , , ]a b c d e- -

Solution: Interpolation with two-and-a-half-sample 
delay. Here the input can be expressed as ( ) [ ]x n1 n- = 

[ ] .x n e ( / )( / )j n2 5 5 2r-  Y

7) FFT [ , , , , ]a e d c b
Solution: , , , , ,A B C D E) ) ) ) )6 @  using the property 

([ ]) [ ].x n X k5< > )- )   Y 

In-class group quiz
Students take a group quiz lasting 15 min once a week. This 
engages the students in the group to solve the problems to-
gether. It also reduces the pressure of taking quizzes for in-
dividual  students. An example of a group quiz is given in 
Problem 7. Group quizzes help the students to prepare for 
the examinations.

Problem 7
Evaluate the following. Note that these time-domain convolu-
tion problems are easier to solve in the frequency domain.

1) .
sin sin

n

n

n

n
4 8)
r

r

r

r` `j j
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Solution: The frequency-domain representation of a sinc 
signal is a rectangular function. The solution then involves 
multiplying two rectangular functions and then taking an 
inverse Fourier transform, which is another sinc function. 
[See Figure 5(a).] Y
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Solution: See Figure 5(b). Y

3) [ ] .
sin sin
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Solution: The same as before; we take advantage of the 
fact that the Fourier transform of the d  function is 1. See 
Figure 5(c). Y
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Solution: Note, ( ) .e 1j n n= -r-  Thus, the signal is shift-
ed in the frequency domain by .r  See Figure 5(d). Y
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Solution: See Figure 5(e). Y

Evaluation metrics

Group comparison
Data were collected from EE-4541 students at UMN in 
Fall 2012 (41 respondents out of 77 enrolled) and Fall 2013  
(62 respondents out of 87 enrolled). The data collection was 
approved by the Institutional Review Board (IRB) at UMN 
under the “Exempt” category. The metrics for Fall 2012 
serve as the baseline for the comparison.

The two groups of students did not differ signifi-
cantly on any available demographic variables, including 
undergraduate–graduate status, year in the university, 
ethnicity, sex, age, cumulative grade point average, and 
composite ACT score. We can conclude that, as far as can 
be determined from the available data, the students in 
the two sections of EE-4541 can be validly compared to 
one another.

Outcome analyses
The metrics used to understand the efficacy include engage-
ment, enrichment, flexibility, effective use, classroom/course 
fit, confidence, and student learning outcome (SLO). For each 
measure, a number of criteria and questions were chosen for 
the students, and they were asked to grade each question as 
Strongly Agree, Agree, Disagree, or Strongly Disagree, cor-
responding to numerical scores of 3, 2, 1, and 0, respectively. 
A brief description of each of the metrics is presented next.
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FIGURE 5. The Problem 7 solutions. 
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1) Engagement:
 • Encourages my active participation
 • Promotes discussion
 • Helps me develop connections with my classmates
 • Helps me develop connections with my instructor
 • Engages me in the learning process.

2) Enrichment:
 • Enriches my learning experience
 • Makes me want to attend class regularly
 • Increases my excitement to learn.

 Flexibility:
 • Facilitates multiple types of learning activities
 • Nurtures a variety of learning styles.

 Effective use:
 • The instructor is effective in using the technology avail-
able in the classroom for instructional purposes.

 • The instructor is effective in using the classroom for 
instructional purposes.

 Classroom/course fit:
The criteria used for the classroom/course fit metric are 

listed below: 
 • The classroom is an appropriate space in which to hold 
this particular course.

 • The in-class exercises for this course are enhanced by the 
features of this classroom.

 Confidence:
The students rate the course based on the following 
criteria:

 • Course helps develop confidence in working in small 
groups

 • Helps students develop confidence in analyzing
 • Helps student develop confidence in presenting
 • Helps develop confidence in writing
 • Improves confidence that the student can speak clearly 
and effectively.

3) SLO:
 • Helps me develop professional skills that can be trans-
ferred to the real world

 • Helps me to define issues or challenges and identify pos-
sible solutions

 • Prepares me to implement a solution to an issue or chal-
lenge

 • Helps me to examine how others gather and interpret 
data and assess the soundness of their conclusions

 • Deepens my understanding of a specific field of study
 • Assists me in understanding someone else’s views 
by imagining how an issue looks from his or her 
perspective

 • Helps me to grow comfortable working with people 
from other cultures

 • Improves my confidence that I can speak clearly and 
effectively

 • Encourages me to create or generate new ideas, products, 
or ways of understanding

 • Prompts me to incorporate ideas or concepts from differ-
ent courses when completing assignments

 • Enabled the instructor to make intentional connections 
between theory and practice in this course.

Bivariate tests
Independent-samples t-tests were conducted to compare the 
learning metrics of the students taught in the Fall 2013 semes-
ter using partial flipping and active learning versus those in the 
Fall 2012 class with traditional learning. The results are sum-
marized in Table 2. On all aggregated variables derived from 
student responses, statistically significant differences (at the 

.p 0 051  level or better) were found between the mean scores 
of the two groups, favoring the Fall 2013 class (see Table 2). 
The group-level difference was the highest in the categories 
of engagement, flexibility, and confidence. The next highest 
categories include classroom/course fit and SLO. There is still 
room to improve the scores in the enrichment and effective 
use categories.

Current trends
While MATLAB is used in many universities and industries, 
it is not an open source environment. There is great inter-
est in teaching DSP using Python or Octave as they do not 
require licenses. However, students have to write code from 
scratch for many DSP functions, unlike in MATLAB, where 
students can use numerous in-built functions. Nevertheless, 
using Python is more desirable as most open source libraries 
for machine learning functions are written in Python. There 
is also growing interest in teaching DSP for embedded sys-
tems such as smartphones so that students can design apps for 
cell phones [16]. For example, they can write DSP programs 
in Python for smartphones to analyze biomedical signals 
such as electrocardiograms. Most commercial products like 
smartwatches already have this capability. We should create 
DSP lab courses to teach app design for either Android or iOS 
 operating systems to prepare students for the rapidly changing 
job environment.

The entire world was disrupted by COVID-19 during 
the initial white paper submission of this article (2020 

Table 2. Student evaluation metrics.

Variable Semester N Mean Score p 
Fall 2012 41 2.345 0

Engage Fall 2013 62 2.960 
Fall 2012 41 2.565 0.019

Enrich Fall 2013 62 2.854 
Fall 2012 41 2.329 0

Flexibility Fall 2013 62 3.169 
Fall 2012 41 2.793 0.028

Effective Fall 2013 62 3.129 
Fall 2012 41 2.598 0.004

Fit Fall 2013 62 3.024 
Fall 2012 41 2.327 0.001

Confidence Fall 2013 62 2.672 
Fall 2012 41 2.497 0.007

SLO Fall 2013 62 2.768 
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 February) and submission of the full paper (submitted 
June 2020 and revised 2020 December). Almost all classes 
in the second half of the Spring and Fall semesters of 2020 
were taught using remote learning. This provided a chal-
lenge and opportunity to redesign various courses. Many 
laboratories were redesigned so that the students could 
perform the experiments at home. I provided lecture notes 
and recorded videos of the EE-4541 class from Fall 2017 
[10] to my students in the Fall 2020 semester. All program-
ming problems discussed in this article were assigned as 
homework in the Fall 2020 class. Active learning is still 
possible using breakout rooms in a remote learning envi-
ronment such as Zoom; however, it is better suited for an 
in-person class.

Conclusions
We argue that DSP can be taught effectively by using visu-
alization, active learning, and partial flipping. Application 
examples enable visualization, where instructors can play 
different sounds and illustrate plots of time-domain and 
spectral-domain features. This will increase student engage-
ment, interest in the class, and understanding of the subject. 
Use of speech, audio, and biomedical signals in the class and 
as part of the homework can connect the theory to applica-
tions and better prepare students for jobs in industry. Future 
DSP textbooks should include application examples and con-
nect the theory to applications. However, instructors can use 
the application examples presented in this article to supple-
ment the textbook.
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Novice to Postgraduate Researcher Perceptions of  
Threshold Concepts and Capabilities in Signal Processing
Understanding students’ and researchers’ perspectives

Svignal processing is an engineering discipline known to involve 
abstract and complex concepts. Curriculum development should 
be informed by an understanding of the most critical and chal-

lenging learning in the field. Threshold concept theory and thresh-
old capability theory provide a framework describing the features 
of the most critical and challenging learning in any discipline. The 
framework describes the effort of overcoming thresholds as trou-
blesome, with a process that is often messy and long. Five course-
work master’s students, six postgraduate research students, and five 
academics were interviewed about their experiences with thresh-
old concepts in signal processing. Two major threshold concepts 
were identified: time–frequency transformation and discretization. 
Self-regulated learning through years was needed to overcome the 
thresholds. Based on students’ comments, the following are recom-
mended to support learning in signal processing: integrated units, 
an introduction to how signals can be represented and why signal 
processing is used, examples of real applications, visualizations, 
practical laboratory exercises with prework, small applied proj-
ects throughout units, ample sample problems, the development of 
learning communities through consistent class groups, and oppor-
tunities to ask questions. Coursework and research students report-
ed developing efficacy in self-directed learning as a consequence of 
overcoming threshold learning in signal processing.

Introduction
Signal processing is an engineering discipline involving significant 
conceptual hurdles, such as Fourier transforms. Additionally, sig-
nal processing has widely diverse applications (e.g., noise removal, 
source localization, telecommunications, adaptive filtering, image 
enhancement, and source coding). Students often struggle with 
these challenges. Recently, educators redesigned curricula by us-
ing at least one of two strategies. The first is flipping, meaning that 
students access material before going to class and engage in interac-
tive, facilitated learning during class [1], [2]. The second approach 
is to enhance students’ engagement through practice [3].

Our previous investigation into improving teaching and learn-
ing in signals and systems [4] involved simple strategies to better 
engage students, avoid stretching pupils too far at once, and  provide 
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a more inclusive learning environment. We engaged student peer 
facilitators with first-hand knowledge from their own recent expe-
riences of being introduced to signals and systems. Additionally, 
the third author taught a communications unit in intensive mode, 
meaning that the course lasted eight weeks instead of a full semes-
ter, increasing the continuity of engagement [5]. Any such efforts 
to improve teaching and learning in signal processing should be 
informed by compelling evidence of the most critical and chal-
lenging concepts and capabilities for students to master, how 
acquiring this knowledge is troublesome, and how pupils sur-
mount the challenges.

Previous studies considered the concepts students need to learn 
in signal processing. Martinez-Torres et al. [6] used multivariate 
statistical analysis to map concepts based on the experience and 
knowledge of teachers. Wage et al. [7] developed a signal pro-
cessing concept inventory standardized test that measured all the 
important constructs in signal processing. Identifying every essen-
tial notion is not sufficient. It is also important to identify the most 
critical and challenging aspects of learning.

Theoretical framework: Threshold concept  
and threshold capability theory
Especially when developing interactive learning opportunities, it is 
necessary to identify the concepts and capabilities that are the most 
transformative and critical to future knowledge and practice in the 
field. In threshold concept theory, these ideas and proficiencies are 
known as threshold concepts and threshold capabilities [8], [9]. 
Since they are transformative, threshold concepts and capabilities, 
also known as thresholds, are usually troublesome for students. The 
term threshold is not used in the sense of being a level, as is often 
the meaning in engineering. Instead, it refers to a gateway to future 
learning and practice. In mastering threshold concepts and capabili-
ties, students grow to be comfortable applying them. By identifying 
thresholds and the features that make them difficult, educators can 
design curricula to focus class time on the most essential and taxing 
learning [10], [11].

The theoretical framework of threshold concepts and capabili-
ties has been shown to be valuable for curriculum development. In 
2012, a team at the authors’ university, including the first and sec-
ond authors, informed the design of new foundation engineering 
units for students in the first years of all engineering disciplines 
at the school [12]. Researchers and curriculum developers seek to 
identify thresholds in a discipline, and they explore how students 
find thresholds troublesome and how learners overcome those 
obstacles. A popular method for identifying thresholds is through 
interviews and focus groups with students and teachers. Thresh-
old concept theory describes common characteristics that can 
be used to help identify thresholds [13]. Among other common 
features, the learning associated with overcoming a threshold is 
usually “irreversible” [14, p. 110], often  connecting previously 
isolated concepts for the learner and frequently enhancing the 
learner’s use of language. The transformative nature of thresholds 
means that overcoming a threshold fosters capabilities that the 
learner did not have before.

Especially relevant to how students overcome thresholds, the 
theory refers to the “liminal space” [12, p. 398] as the state that 

a student is in when he or she has become aware of a concept or 
capability but not yet become comfortable with it. Studying 
students’ transition through the liminal space can inform cur-
riculum development. The framework explains the importance 
of considering students’ understanding before they entered the 
liminal space. Because threshold concepts and capabilities are 
difficult, it can take more than one unit (also known as a course 
or a paper) for students to become comfortable with the infor-
mation and skills. Therefore, educators provide opportunities for 
students to revisit thresholds during a degree program. However, 
some students require even more time and overcome thresholds 
only after they have been working for an extended period.

Previously identified thresholds in signal processing
Studies of thresholds generally involve students and teaching 
team members as participants and often focus on a single unit. 
In their study of how to support students learning electrical engi-
neering, Carstenson and Bernhard, in 2008 [15], analyzed video 
recordings of laboratory classes. They explored the links that stu-
dents made, including investigating the questions that students 
asked and the connections that learners made between physi-
cal and various models of systems. Carstenson and Bernhard 
coined the term complex concept [15, pp. 146–147], which links 
multiple ideas. They concluded that, in addition to designing 
the sequence of concepts to be taught, it is necessary to craft  
curricula such that students inevitably undertake learning activi-
ties that force them to make connections between subject areas. 
In a foundation electronics unit, Harlow et al., in 2011 [16], used 
student surveys, student focus groups, interviews with teach-
ing team members, and an analysis of assessment responses 
and grades to identify threshold concepts. Harlow and her core-
searchers found that the lecturer was not easily able to identify 
the troublesome aspects of learning for the students because the 
concepts were not troublesome for the instructor. Consistent with 
Carstenson and Bernhard, the challenges identified by Harlow  
et al. were related to connections between models of systems.

In 2012, the first and second authors, along with others, iden-
tified foundation engineering threshold concepts and capabili-
ties through a two-step process involving students and educators 
participating in interviews and/or focus groups, followed by the 
negotiation of identified thresholds [12], [17], [18]. Findings 
related to signal processing were consistent with previous stud-
ies. “Abstraction, modeling, and theories,” depending on other 
thresholds, such as “model evaluation,” “visual representation 
of concepts and systems,” “describing systems mathematically,” 
and “relating mathematical representations of systems to physical 
systems,” were identified as thresholds [19, pp. 20–28]. In 2017, 
Reeping et al. [20] held focus groups with electrical and computer 
engineering faculty members to identify big ideas that should be 
in the curriculum and how those areas relate to threshold concepts 
identified in the literature. In terms of signal processing, they rec-
ognized “frequency domain,” “complex analysis” (linked to Fou-
rier analysis), and “demodulation” [20, p 5].

The research outlined in the preceding paragraphs identified 
threshold concepts related to signal processing. However, the par-
ticipants were limited to teachers and students. As noted,  academics 
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can have difficulty identifying thresholds because they have 
become familiar with them through experience [15], [16]. Con-
versely, students are thought to have difficulty identifying 
thresholds because they cannot yet determine what they have 
not understood [15]. It is known in threshold concept theory 
that students can take longer than one unit, and even beyond 
graduation, before they become comfortable with threshold 
concepts. Therefore, it is reasonable to expect that the perspec-
tives of postgraduate practitioners would complement the views 
of students and academics. However, although practitioners are 
often involved in curriculum design, they have been included 
in threshold concept studies only in limited disciplines, not 
including signal processing. An exploration of the variation in 
perspectives of threshold concepts from coursework students to 
practitioners was expected to enhance the understanding of the 
most critical and challenging learning in signal processing and 
how students’ development progresses.

Research questions
To inform signal processing curriculum development, we investi-
gated perceptions of students at various levels, from coursework to 
research, and academics as practitioners who apply signal process-
ing, addressing the following questions:
1) What are the thresholds (concepts and/or capabilities) in signal 

processing experienced by students of various levels, teachers, 
and practitioners?

2) How do coursework students’, graduate research students’, and 
academics’ perspectives of thresholds in signal processing vary 
with levels of experience?

Method
Semistructured interviews were conducted with coursework stu-
dents, postgraduate research students, and academics who were 
teaching signal processing or supervising pupils who were using 
signal processing in research. Interviews are used in educational 
research to deeply explore topics, especially those that are not 
well understood. In semistructured interviews, a researcher poses 
planned questions and expands on them with additional prompts, 
even following unexpected topics that emerge and are of interest. 
The purpose is to reach a thorough understanding of the views of a 
selected group of participants. In this study, the questions focused 
on participants’ experiences of learning about signal processing 
and, where relevant, observations of students they had taught or 
supervised. By asking about observations of others’ learning, the 
researchers investigated the experiences of many more people than 
participated in the study.

Participant recruitment
Research designs involving interviews do not necessarily need 
large numbers of subjects. This study used a purposive sample with 
intentional diversity of experience among the participants. Consis-
tent with ethics approval, invitations to participate were emailed to 
students enrolled in relevant units, peer tutors in these units, labora-
tory demonstrators, academics teaching the units, doctoral students 
identified by their supervisors as using signal processing, and aca-
demics identified as using signal processing.

Interviews
Interviews were conducted one-to-one with the exception of one 
focus group involving three coursework students. The first author 
conducted all interviews except one in which the participant was 
a current student of all three authors. A researcher with electronic 
engineering and threshold concept research expertise conducted 
that interview. The interviewer explained threshold concepts and 
capabilities as transformative and asked the participants to identify 
knowledge or skills they had experienced and/or observed students 
to experience. For each identified threshold, the participant was 
asked to outline the concept or capability and describe the following:

 ■ the transformation provided by the threshold
 ■ how the threshold was troublesome
 ■ what he or she or others do or did before overcoming the 

threshold
 ■ any concepts that the threshold connected
 ■ any expanded use of language associated with the concept
 ■ how he or she overcame or observed others overcoming the 

threshold
 ■ whether he or she needed to revisit the threshold
 ■ how the threshold was used
 ■ barriers and useful approaches to overcoming the threshold.

Interviews were recorded and transcribed.

Participants
Participants included five coursework master’s engineering stu-
dents, six postgraduate research students, and five academics. The 
five students had various coursework experience of signal process-
ing. Of three relevant units—signals and systems, signal process-
ing, and communication systems—one student was undertaking 
the first, one student had completed the first and was undertaking 
the second, one student had completed the first two and tutored in 
the first, one student had completed and demonstrated in the second 
(having completed units equivalent to the first elsewhere), and one 
student had completed all three units. Three of the coursework stu-
dents were male, and two were female.

The postgraduate research students were pursuing doctoral 
degrees, applying signal processing in diverse fields, including 
acoustic signal processing, optical coherence tomography, gravity 
wave detection, and communications. Two had been involved in 
teaching signal processing. Four were male, and two were female. 
The academics were using signal processing in their research, 
supervising coursework students from  various disciplines of engi-
neering and/or physics who used signal processing in their research 
projects, and supervising postgraduate research students who used 
signal processing. Three of the academics taught units related to 
signal processing. Four were male, and one was female, and two 
were the second and third authors of this article.

Analysis
The transcripts were analyzed in four stages. First, the potential 
thresholds identified in each interview were documented. Sec-
ond, those areas were validated against the compulsory criterion 
for a threshold concept or capability, namely, being transformative. 
Third, the validated thresholds were rationalized to combine simi-
lar ones and remove repetition. Fourth, the structure of the relationships 
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between thresholds and the variation in thresholds across the levels 
of experience among participants was mapped.

Findings and discussion
The interviews revealed different thresholds challenging students 
at various stages. Students and academics reported the need to 
have confidence with the mathematical concepts of integrals, loga-
rithms, complex exponentials, random processes, power spectral 
densities, covariance, and correlations. In the coursework stage, 
students reported a threshold related to understanding why signal 
processing is necessary and the different forms in which signals 
could be generated and represented. Working with time–frequen-
cy transforms, in particular, the Fourier transform, was the most 
discussed threshold capability. Potential thresholds nested within 
this were visualization, complex exponentials, and modeling. Dis-
cretization was the second-most commonly discussed threshold. 
Nested within this were convolution, sampling, and windowing. 
Two postgraduate students and one coursework student identified 
program coding (e.g., MATLAB) as a threshold capability that 
transformed how they developed signal processing. One academic 
identified model fitting as a threshold. Phase and decibels were 
identified as threshold concepts by different academics. Partici-
pants’ reports reliably revealed that some threshold concepts in 
signal processing are especially troublesome. Even highly capable  
students, who became teachers, required years after graduation be-
fore they were comfortable with the most challenging threshold 
concepts in signal processing.

Two major identified thresholds
Two threshold concepts received significantly more attention in the 
interviews than any of the others, as described in the following.

Threshold 1: Time–frequency transformation
The time–frequency transformation threshold concept was identi-
fied most generically and concisely by academic 2: 

There’s definitely a threshold concept behind being able to 
see data in multiple domains. And the Fourier transform, 
the time-to-frequency swap in the Fourier domain, is one 
of those.

Transformative
The concept is transformative in the sense that it enables the learner 
to complete tasks that were not previously possible, as described 
by academic 5:

With understanding it, it opens up a lot of techniques that 
we use to process, particularly, images or data. So, if you 
can take some time series information, like … the power of 
the light coming in as a function of time, and say you were 
just interested in only the green lines and how that changes 
with a function of time, the Fourier transform would enable 
you to cut away the blue and the red and just leave you with 
the green.
Participants reported that the concept enabled them to carry out 

design in signal processing. Graduate student 3 said, 
You know the transformation first, and then you can design 
the signal processing system by yourself.

The transformation is clear in a quote from graduate student 5:
It was pretty much a … watershed moment, I think, when it 
sort of clicked, and it came from pretty much a year of hard 
slog, working long hours … the normal sort of eight-to-five 
thing in the Ph.D., plus time at night and on the weekend, 
self-learning and everything … to get comfortable with how 
the optical coherence tomography (OCT) technique worked. 
And there was sort of a huge moment when I really I taught 
myself … Fourier analysis. And once I got it into my own 
terms, and I understood it, it was this huge moment where I 
began to understand how OCT worked. What was once this 
enormous beast just simplified everything, and then it also 
simplified all of the stuff I’d struggled with … the very first 
time I even picked up [units], when I first had to deal with … 
transforms or Fourier analysis, in which I was so confused. 
And so … I didn’t … have this sort of threshold learning 
until I was already well and truly into a Ph.D.

Troublesome features
The transformation concept is troublesome because it is abstract, as 
described by graduate student 5:

I think the hardest part is being able to—I don’t actually, I 
can’t think of signals in terms of frequency. It doesn’t make 
any sense. It’s not. It’s a lot. If you think of a signal varying 
as a function of time you can size it .… It goes up or down or 
whatever .… We’re used to thinking of things in a progression 
of time. Whereas thinking of things in terms of a frequency is 
pretty weird and doesn’t come naturally to me anyway.

Of the issue, academic 1 said:
You just have to understand that [the complex Fourier trans-
form] is an abstraction. So, things like negative frequency, 
things like why are things complex, also the symmetry prop-
erties …. If you can understand you’re going from a real 
world to an abstraction … of the physical system to be able 
to design and analyze it more efficiently .… Complex Fou-
rier transforms is a clear case where you do that.

Participants also identified visualizing the physical systems in 
each domain as an additional threshold, and this could be con-
sidered a threshold that increases the troublesome nature of the 
Fourier transform.

Threshold 2: Discretization
The second major threshold concept was the consequence of dis-
cretizing a process. Processing discrete rather than continuous data 
introduces possibilities for error. Academic 2 described what hap-
pens when students do not understand the concept:

[Students] might understand the pure mathematical Fourier 
transform. And they know how to invoke the fast Fourier 
transform button in MATLAB, but they have absolutely no 
practical grasp on all the things that go wrong when sud-
denly the thing you are processing is a string of numbers 
rather than an analytical function.

Transformative
Academic 2 further identified what can be done with an under-
standing of the discretization threshold concept:
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It helps you understand the impact of various processing 
steps of a signal: why one processing step might lose infor-
mation, why it is you need a certain bandwidth or a certain 
something else to capture that information, or you might 
get hurt.

An example of getting hurt is aliasing caused by an incorrect ap-
plication or implementation of sampling.

Troublesome features
Academic 1 reported, 

Students don’t realize [that] when you go to the discrete 
domain, you’re not talking about time, you’re talking about 
samples of data.

Academic 2 explained:
What’s happening is you are, in order to compute each one 
point down here, you’re taking an integral from minus in-
finity, the first infinity of the first function multiplied by the 
second function .… Engineers usually think of it as little dips 
and bits and hats. And they go, “Why is the radio not work-
ing?” Because you have, you’ve failed to capture … the hat 
out here.
Thresholds nested within the concept of discretization include 

convolution, windowing, and sampling. Convolution involves com-
bining two signals in the time domain. It is difficult to visualize the 
process. Aliasing occurs if there is an error in how the signal was 
sampled. Academic 2 described windowing:

When you discretize data, you necessarily have a finite 
chunk of it. And yet, the Fourier transform is defined as an 
integral across all time. What happens when you have this fi-
nite chunk of data (anything you’ve necessarily measured is 
finite), when you take a Fourier transform, there is an implic-
it infinite replication of this thing. And sometimes that will 
cause a horrible outcome. So, you go, “Well, gee, I’m going 
to have to want to squish the horrible outcome. And I do it by 
premultiplying this by something, which is a window ….” 
We say the data has been windowed, meaning it is finite, but 
I change the shape of the window by attenuating the guys on 
the end, perhaps, or adding huge numbers of zeros or some 
other technique to try and stop one of the bad things that hap-
pened because of the implicit infinite replication.

How students overcame the thresholds

Deep, self-regulated learning
Students described taking responsibility for learning about signal 
processing. Many participants reported that overcoming the thresh-
olds took extensive reading and checking. A need in the workplace 
and teaching signal processing to others were catalysts in overcom-
ing thresholds.

Barriers to learning
Students learn about transforms in first-year math, and the signals 
and systems unit is in the third year. This was noted as a problem by 
an academic and by a coursework student, who said:

There’s a massive gap between … when you first start La-
place transforms and all these transforms in mathematics 

… and then when you do the signal processing signal and 
system unit. So, I think most people have already forgotten 
that. And I think, from the get-go, they’ve already struggled 
to remember what they were back then. So maybe I think it 
would be better if we did … the refresher unit or a refresher 
week, when you do repeat the whole transformations again.

Transition through the liminal space
The transition through the liminal space toward becoming com-
fortable with threshold concepts in signal processing is long and 
difficult. The interviews revealed that even successful research stu-
dents and academics take years to understand them. Participants 
reported remaining unclear about some elements of the two identi-
fied threshold concepts. Overcoming the thresholds involved deep, 
self-regulated learning approaches through years. The study of 
threshold concepts by Harlow et al. found that the teacher was not 
aware of the difficulties in understanding faced by students because 
the instructor did not have similar struggles. In contrast, academic 
4 reported taking five to 10 years and applying significant effort to 
understand the frequency domain and convolution:

So, I, back at my, the way I was taught, and I didn’t, I 
didn’t get it. I never understood, not frequency domain or 
convolution, after leaving university. I, it probably took 
me five years, 10 years before I was really comfortable 
… with exactly what it meant, and that, for me, came out 
of really deconstructing a lot of the math and realizing 
that all of the math .… I taught the unit in [University X] 
… and I think I must have pulled out about six different 
books on signal processing.
Overcoming the thresholds in signal processing was associ-

ated with a transformation in students’ confidence in their  ability 
to learn. One graduate described himself as not learning quickly, 
and another described himself as not a logical thinker. Those 
participants were not concerned about this at the time they were 
interviewed, and instead reported that it assisted them in explain-
ing concepts to others. The interviews of these students and a 
coursework student reveal that the learners developed self-efficacy 
through developing understanding and skills in signal processing. 
Graduate student 2 said:

Well, now, I’m doing pretty fundamental work in signal 
processing in our field, and I’ve got publications, so I’m at 
a point where … I can do it .… It’s not like: he’s the one 
that might be able to. It’s like: I can; I’ve got the publica-
tions to back it up .… So, I had the ability all along, but I 
just didn’t get it back when I was an undergrad. I just didn’t 
understand it.

Graduate student 4 remarked:
When I was an undergrad, I relied on people to teach me 
things. I was relying on the course notes, the tutorial ex-
amples, the tutorial questions, and the lecturer. And the lec-
turer was going too fast. The pace was too fast for me. And I 
didn’t understand the concepts well enough for the examples 
to help me, and I couldn’t synthesize the information out of 
the lecture notes enough, and whilst I probably could have if 
I had the time to, I probably could have figured out myself, 
there were … two things stopping me from doing that. The 
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first thing was time commitments with other units. So, I was 
doing three other units at the time .… That occupies a lot of 
space in your mind and also time studying for tests and ex-
ams and everything; you can’t do that. And also, I hadn’t re-
ally got to the point where I was able to teach myself things.
Students reported the following approaches to overcoming the 

thresholds in signal processing: reading books and accessing online 
resources, including videos; using visual representations; solving 
practice problems and finding opportunities to ask questions of 
teachers; learning about applications; teaching one another in a 
close cohort; being challenged early (through projects during a unit 
and by preparing before laboratory sessions); and teaching.

Visual representations
On the topic of visual representations, coursework student 1 said:

Having a physical, like, graph of a signal, say, and then ma-
nipulating with math and then producing a different graph, 
it just tends to help me remember how, how each of this, the 
filters are supposed to work, and then how … I’m supposed 
to implement them later.

Learning community
Graduate student 6 reflected on learning in a cohort, remarking:

I had a class of possibly 30-ish total, or it was, maybe it was 
two classes of 30 .… It meant that we stuck in groups, and 
we worked in groups, and we all taught each other .… You 
know, the lecture did that. Then we taught each other, and 
we did that.

Learning by teaching
Graduate student 6 described learning by teaching:

And each time I did explain it, I seemed to learn a little bit 
more about it and go, “Oh, well, that happens because of 
this.” The next time, you know, the students would have 
different problems .… I guess I learned from the mistakes 
of myself and others, and as a teacher, I get to see a lot 
more mistakes.

Being challenged early
Students need to enter the liminal space, in which they tackle the 
troublesome elements of a threshold concept. If they reach the trou-
blesome elements only after class, they have lost the opportunity 
to resolve the trouble with others. Coursework student 1 described 
the need to start some preparation before laboratory sessions. For 
similar reasons, in another comment, the student suggested mul-
tiple small projects during semester instead of one project at the 
end, saying:

I find … I need to … go through the content of the lab and 
try and do, like, at least a quarter of it before I go into the lab, 
and honestly just to have some understanding of what I’m 
supposed to be doing .… You can … read the manual and 
things like that like, but I find that, in signal processing, that 
I can’t just … research from the unit reader; like, the content 
that I’m supposed to know … I always feel like out of my 
depth .… That’s maybe an assignment that you do on MAT-
LAB; say that’s not in the, that’s not in the 3-hour timed 

environment .… There are prelab activities, but it’s mostly 
just, it’s mostly, like, solving this probability .… It’s just a 
little too basic in order to really properly help us.

Variation across participants
The coursework students identified fundamental aspects of the 
first major threshold concept of time–frequency transformation, 
such as what frequency is, what a signal is, how a signal can be 
represented, and why signals are processed. The graduate students 
and the academics focused heavily on conceptual understanding 
and alternatives they had observed to be held by the coursework 
students. They were able to identify students’ actions before and 
after the pupils reached understanding, and they were able to re-
call what they had done to help. The inclusion of graduate stu-
dents who applied signal processing in diverse applications was 
intentional. The study found that the threshold concepts in signal 
processing were similar across applications. This is reassuring for 
curriculum design.

Comparison with previous studies
The first transformation threshold concept is consistent with top-
ics identified by Reeping et al. [20] and Carstenson and Bernhardt 
[15]. Those studies, with their separate methods, revealed a differ-
ent understanding of the concepts. This study has demonstrated 
the long, troublesome nature of the experience of developing an 
understanding of the concepts. Similarly, the comments from 
participants in this study are consistent with the identification by 
Harlow et al. [16] of threshold  concepts in electrical and electronic 
engineering associated with making connections between physical 
systems and models.

Recommendations
Most importantly, by consulting coursework students and gradu-
ate research students, this study discovered that it takes learners 
longer than one unit and even longer than a coursework degree 
program to cross the liminal space for major threshold concepts 
in signal processing. This means that units should be designed 
together to support students in continuing to develop knowledge 
across multiple units. It also means that significant time should 
be allocated to allowing students to focus on the major threshold 
concepts. If units are cluttered with too many topics, students are 
likely to complete degree programs without achieving the most 
critical learning.

The study also revealed practices likely to improve students’ 
transition through the liminal space. A thorough introduction is 
necessary, covering frequency, what signals are, how  signals can be 
represented, and why signals are processed. Students should have 
ready access to examples of applications, visual representations, 
and practice problems. Educators should design units such that stu-
dents reach the challenging aspects of concepts sufficiently early in 
a semester, not at the end. Students should be supported in devel-
oping a learning community [21] to enhance their interactions and 
opportunities by teaching one another. This could be done by limit-
ing students’ movement between labs and/or by designing activities 
to support student interactions. Educators should design connec-
tions between units. It would be helpful if students  connected what 
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they learn in mathematics with applications in signal processing. If 
possible, units should be completed close in time. The revision of 
mathematics within units would help.

Limitations and future research
Studies with 10 participants are not designed to reach generaliz-
able results. The sample was sufficient to be confident about the 
major threshold concepts because they were reliably raised by par-
ticipants. However, the interview transcripts were rich in potential 
threshold concepts and, as noted, some concepts were identified by 
one person only. Therefore, additional interviews and further analy-
sis may reveal more threshold concepts. The study used interviews. 
Methods involving observations may discover topics that the par-
ticipants did not have the awareness to self-report.

Conclusions
The approach was overdue to inform curriculum design that takes 
account of signal processing students’ development, including the 
experiences of graduates who use signal processing. This study 
contributes to understanding how students’ perspectives of thresh-
old concepts and capabilities develop.
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INNOVATION STARTS WITH EDUCATION

Setareh Maghsudi, Andrew Lan, Jie Xu,  
and Mihaela van der Schaar

T he objective of personalized learning is to design an effec-
tive knowledge acquisition track that matches the learner’s 
strengths and bypasses his/her weaknesses to ultimately 

meet his/her desired goal. This concept emerged several years 
ago and is being adopted by a rapidly growing number of edu-
cational institutions around the globe. In recent years, the rise 
of artificial intelligence (AI) and machine learning (ML), to-
gether with advances in big data analysis, has introduced novel 
perspectives that enhance personalized education in numerous 
ways. By taking advantage of AI/ML methods, the educational 
platform precisely acquires the student’s characteristics. This 
is done, in part, by observing past experiences as well as ana-
lyzing the available big data through exploring the learners’ 
features and similarities. It can, for example, recommend the 
most appropriate content among numerous accessible ones, 
advise a well-designed long-term curriculum, and connect ap-
propriate learners by suggestion, accurate performance evalu-
ation, and so forth. Still, several aspects of AI-based personal-
ized education remain unexplored. These include, among 
others, compensating for the adverse effects of the absence 
of peers, creating and maintaining motivations for learning, 
increasing the diversity, removing the biases induced by data 
and algorithms, and so on. In this article, while providing a 
brief review of state-of-the-art research, we investigate the 
challenges of AI/ML-based personalized education and dis-
cuss potential solutions.

Introduction
The last decade has witnessed an explosion in the number of 
web-based learning systems due to increasing demand in high-
er-level education, the limited number of teaching personnel, 
advances in information technology and AI, and, more recent-
ly, COVID-19. In the past few years, to enhance conventional 
classrooms, to bridge the constraints of time and distance, and 
to improve fairness by making high-quality education acces-
sible, most universities have integrated massive open online 
course (MOOC) platforms in their education systems. Also, 
several schools have added online labs to their structures, where 
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students, especially those who cannot access physical labs, can 
perform experiments. 

In addition, there has been significant growth in the develop-
ment of other online educational tools that simplify learning. 
These include, for example, the software used for text sum-
marization in different domains and also to produce ques-
tions and tests, followed by evaluation, which can be of great 
assistance to not only students but also to teachers. Several 
advantages of these systems over traditional classroom teach-
ing are that 1) they provide flexibility to the student in choos-
ing what and when to learn, 2) they do not require the presence 
of an interactive human teacher, and 3) often, the capacity in 
terms of the number of participants is significantly larger than 
the synchronous-presence teaching form. Figure 1 shows the 
baseline ecosystem of online personalized education, includ-
ing all the stakeholders, together with the crucial factors and 
performance metrics.

However, currently available online teaching platforms have 
significant limitations. To a large extent, personalized education 
has been limited mainly to a specific type of recommender sys-
tem, although its potential goes far beyond advising a series of 
lectures on an online platform that might be interesting to a spe-
cific user. One fundamental difference between existing recom-
mender systems and personalized education is the optimization 
objective: The former focuses on some form of user engagement 

to maximize profit, which is system centric and relatively easy 
to quantify, whereas the latter focuses on some form of learning 
outcomes, which is student centric and hard to define.

ML/AI-enabled education is a response with great poten-
tial to overcome the current shortcomings. It creates a new and 
more flexible learning technology genre that adapts to student 
learning and allocates resources as obliged. It takes advantage 
of the strengths of both online tools and individual tutoring. 
As such, AI-enabled personalized education promises to yield 
many of the benefits of one-on-one instruction at a per-student 
cost similar to that of large university lecture classes. The sys-
tem applies to both online courses and courses with a hybrid of 
classroom and online instruction. As displayed in Figure 2, ML/
AI-enabled education comprises a large set of decision-making 
strategies that collectively map the available data together with 
the individual features to a variety of personalized educational 
materials and recommendations.

Data can be collected on performance in both traditional 
assignments (problem sets, computer programs, and laborato-
ries) as well as online exercises and tests. It includes built-in 
assessment tools as an essential part of its optimization of les-
son sequences. As such, it supports the educational commu-
nity in developing new teaching modalities in a broad range 
of disciplines. However, despite intensive research efforts con-
ducted during this decade, a variety of aspects of personalized 
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education remain unexplored, including both dark and bright 
sides. In this article, we discuss six core topics, review exist-
ing work, outline their limitations, and propose future research 
directions (see Figure 3 for an overview).

When discussing any form of education, quality is an inev-
itable keyword. The quality of education depends largely on 
the quality of the available learning content and on the quality 
of the personalized recommendations that guide each learner 
to the most suitable learning content. Thus far, researchers 
have studied the production of learning content, from devel-
oping AI-driven smart learning content such as intelligent, 
interactive textbooks and game-based learning platforms, to 
automatically generating learning content from the wild. The 
authors in [1], for example, develop a sentence-deletion meth-
od for text simplification. In [2], the authors investigate the 
effectiveness of discourse in multimedia to extract the knowl-
edge from textbooks. Moreover, a large body of the existing 
work investigates the recommendation of both macro- and 
microlevel learning content, including courses in learners’ 

degree plans as well as specific remedial content, such as lec-
ture notes, videos, and practice problems. For example, in [3], 
the authors take advantage of a multiarmed bandit framework 
to optimize the selection of learning resources and questions 
to satisfy the needs of each individual student. Furthermore, 
another paper has developed an e-learning recommender system 
framework based on two concepts: peer learning and social 
learning, which encourage students to cooperate and learn 
jointly. Despite great effort, there remain several challenges to 
address, including content recommendation at heterogeneous 
levels, the recommendation of a bundle of related content fol-
lowed by performance evaluation, and the Pareto-optimiza-
tion of conflicting objectives in the content recommendation. 
We discuss these progress and future steps in the “Content 
Production and Recognition” section.

Historically, education has been tightly coupled with evalu-
ation. In personalized education, assessment and evaluation 
concern both the learner’s performance and the effectiveness of 
the intelligent learning platform. The early approaches that were 
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used for learner assessment, such as classical testing theories 
(CTTs), utilized graded standardized test summaries. Recent 
approaches include item response theory (IRT) models, which 
facilitate the estimation of latent-knowledge mastery levels, and 
knowledge tracing (KT) models, which pursue the evolution of 
a learner’s knowledge. In [4], the authors compare CTTs and 
IRTs. Methods such as computerized adaptive testing improve 
the efficiency of assessments. The current approaches employed 
to evaluate learning platforms use rigorous experiments, often 
large-scale, randomized, and controlled trials. In this area, 
open problems include the prediction of learners’ future perfor-
mance, which enables providing better recommendations and 
more accurate feedback. This is referred to as the KT problem, 
for which several methods have been developed in the past few 
decades. As an example, among many others, some papers 
discuss a Bayesian framework for KT. Another challenge is to 
reduce the information loss while grading the arrived input from 
the learner through the accurate interpretation of knowledge 
level based on the test design. We elaborate on and address such 
challenges in the “Assessment and Evaluation” section.

Significant advances in science, technology, and health care 
have changed the working life of humans. Individuals have 
many more alternatives when choosing a job; he/she tends to 
change jobs more frequently than before, is more open to mobil-
ity, and has a long career span. As such, continuing education, 
which aims at advancing one’s educational process, as well as 
lifelong learning, i.e., pursuing additional professional qualifi-
cations, are important components of educational policy in the 
world. Implementing these two concepts successfully has a sig-
nificant impact on social welfare by developing new skills that 
enhance personal and professional lives.

During the past decade, AI-/ML-based personalized edu-
cation has been under intensive investigation from several per-
spectives; nonetheless, the aforementioned aspects are largely 
neglected. Indeed, personalized education shall accompany the 
learner throughout his/her life, which can be difficult and costly 
to implement. Other challenges include a lack of appropriate data, 
a potentially long delay to receive feedback, high diversity, and 
fast dynamics in the environment. For instance, in [5], the authors 
design a new genre of educational technology, personal computer 
systems, which support learning from any location throughout a 
lifetime. Another research direction is to enable the learning sys-
tem to learn continuously. Parisi et al. [6], for example, investigate 
the ability of neural networks to provide lifelong learning. We 
elaborate more on this topic in the “Lifelong Learning” section.

Similar to any other task, humans require motivation for 
learning. Generally, incentives for learning can be defined as an 
inducement or supplemental reward that serves as a motivation-
al device for intended learning [7]. Presumably, the most con-
ventional models of incentive are the grade and the certificate, 
which are implemented as a part of learning platforms to moti-
vate students. The strength of such motivation depends on the 
validity and acceptance of such certificates by different authori-
ties, such as employers. Nonetheless, employing AI methods for 
personalized education enables incentive design far beyond the 
issuance of a certificate. This includes monetary rewards in the 

form of bonuses for online learning materials. The incentives 
can also be introduced using soft methods, such as gamification 
based on the learner’s characters to promote continuous learn-
ing, or by adapting the features of the learning environment 
based on the learner’s traits to engage him/herself in the learn-
ing process for as long as possible. In [8], the authors investigate 
the effects of gamification on students’ motivation from several 
perspectives. We discuss these challenges and methods in the 
“Incentives and Motivation” section.

Education is social, and learners can benefit meaningfully 
from their peers. It is therefore urgent to develop effective ways 
to build networks that serve as a conduit of knowledge for learn-
ers to interact with each other. In its current form, personalized 
education suffers from a lack of student–student and student–
teacher connections and interactions, which, unquestionably, 
have a positive impact on learning, through discussions, joint 
efforts, and brainstorming. For example, Vesely, et al. [9] inves-
tigated and compared the influence of such communities from 
both students’ and teachers’ perspectives. As another example, 
in state-of-the-art research, authors have studied the building 
and sustaining community in asynchronous learning networks, 
i.e., when the learners are physically separated. 

Despite past research efforts, we believe that by capital-
izing on AI and ML methods, online platforms have more to 
offer, especially for building the knowledge and expertise 
networks that facilitate the assimilation and dissemination of 
information, and, consequently, by enabling close interactions 
(in terms of mentorships, friendships, coworkers, and so on), 
creating knowledge. Personalized education platforms can pro-
mote autonomous network formation by encouraging learners 
to interact. Moreover, the platforms can establish links among 
those learners that satisfy some similarity conditions and can 
hence be useful to each other for cooperation, inspiration, and 
motivation. Still, it is vital to note that online contacts can be lost 
easily, and the learners, especially at early ages, are more prone 
to feeling isolated and depressed. We elaborate on these issues 
in the “Building Learning Networks” section.

In many different ways, education affects the well-being of 
humans, and society at-large, both in the short and long term. 
As such, fairness is a highly important aspect of education, 
regardless of whether it occurs in conventional classrooms or in 
modern platforms that can personalize the learning experience. 
Despite this great importance, personalized education, similar 
to its traditional counterpart, might result in and strengthen 
inequality. This arises, for example, due to unequal access to 
learning platforms, biases in training data, inaccuracies in algo-
rithm design, and so forth. Indeed, existing research shows that 
some subgroups of students—many of whom are also privi-
leged with respect to conventional education platforms—would 
profit more from personalized education than would their peers. 
To address this issue more specifically, there have been intensive 
efforts to develop appropriate fairness models [10]. Moreover, 
several research works have studied the fairness of predictive 
algorithms in educational settings. 

Another crucial issue is diversity. Today, it is well established 
that diversity promotes innovation and efficiency in the working 
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place. Nonetheless, given the social responsibility of education, 
recruiting only diverse talents does not suffice. An AI-based per-
sonalized education platform can help diversify the education 
environment, for example, by rewarding collaborative learning 
in diverse networks. We discuss these topics in the “Diversity, 
Fairness, and Biases” section.

Content production and recommendation
Ultimately, the quality of education depends on the quality of 
the learning content. Creating new content requires the wisdom 
of human content designers and educational experts; to date, 
AI methods have not shown the capability of creating learning 
content on their own. However, they still have plenty to offer 
in content production by automating mundane jobs and helping 
humans in tasks where human input is necessary. Specifically, 
the role of AI should be to 1) take away repetitive tasks that can 
be automated and 2) assist humans by providing the feedback 
extracted from data during the process of content production in 
a human-in-the-loop manner. The following section detail am-
ple future research directions in content production.

Content summarization and question generation
In many educational domains, knowledge is factual. For ex-
ample, in history, one often needs to remember specific detailed 
facts about historical events. Even in scientific domains such as 
biology, there is also factual knowledge, e.g., the size and life 
span of an animal. In this case, there are many natural language 
processing (NLP)-based tools that can be used for content pro-
duction. For example, text summarization tools can sort through 
long, sometimes redundant, textbook sections and extract key 
facts for remedial studies. This is not only helpful but also some-
times crucial to certain learner groups, such as those with learn-
ing disabilities. Moreover, automatic question generation can 
effectively produce high-quality factual assessment questions 
that have short, textual answers [11]. An example of automated 
question generation is shown in Table 1: We reversed a long 
short-term memory network-driven question-answering pipeline 
trained on common question-answering data sets, turned it into a 
question-generating pipeline, and applied it to textbooks. Human 
experts have indicated that the quality of generated questions is 
higher than those produced from other methods [11].

Multimodal content understanding
Many educational domains involve multimodal learning con-
tent, such as text, formulas, figures, and diagrams. When a 
learner fails to answer an assessment question correctly, person-
alized education systems need to automatically retrieve relevant 
content to help the learner resolve his/her confusion (by retriev-
ing examples and explanations) or give the learner more practice 
opportunities (by retrieving assessment questions). Retrieving 
content within the same modal is relatively easy; for example, 
when a learner answers a textual question incorrectly, it is possi-
ble to use information-retrieval methods to extract relevant text-
book chunks or lecture slides. However, when the most helpful 
content is in another modality, such as when a Venn diagram is 
the most effective at helping a learner clear up a misconception 

in a probability question involving text and mathematical for-
mulas, it is hard to retrieve the diagram. Therefore, more work 
needs to be done when the domain includes multimodal content. 
To understand these content modalities and use them for content 
production, we need to learn universal representations across all 
modalities, possibly using embedding approaches to map mul-
tiple modalities into a shared vector space.

Human-in-the-loop content design
Even for humans, learning content is not created in one shot. 
Similar to textbooks, which have different editions, learning 
content is frequently edited and updated over time. Therefore, 
during this multistep process, we can use AI methods to act as 
(possibly even interactive) assistants to content designers. The 
duties that can be assigned to AI methods include 1) analyzing 
learners’ data to identify the areas of priority for new content and 
assessment questions that need to be improved (see the “Assess-
ment and Evaluation” section for discussions on how existing 
learner assessment models can also provide information about 
question quality), 2) providing drafts of instructor responses 
and perform automated checking of human-generated content 
using NLP tools, and 3) using crowdsourcing to put the learning 
content together by soliciting on-demand feedback. The third 
task is especially important in online educational settings, where 
learning occurs during frequent exchanges between learners and 
human instructors and assistants [12].

Even with high-quality learning content, the presentation, 
i.e, the personalized recommendation of the right learning con-
tent to the right learner at the right time is crucial to optimiz-
ing learning outcomes. Fortunately, this is an area at which AI 
methods can excel: By automatically deploying recommenda-
tions and analyzing the data of learners’ performance, they can 
quantify the effect of the learning content on certain learners in 
terms of specific learning outcomes to detect the most effective 
ones. On the contrary, humans, including educational experts in 
the past, use theoretical models of learning and do not fully take 
advantage of this data. In the following sections, we discuss a 
few directions for future research in this area.

Recommendations at the microscopic and macroscopic levels
Learning content is organized at multiple levels, down to indi-
vidual paragraphs and assessment questions, up to courses and 

Table 1. An example of two automatically generated assessment 
questions for two different answers with the same input context from 
a textbook. The answers are underlined and marked with different 
colors in the input context.

Context (Biology): On each chromosome, there are thousands of genes 
that are responsible for determining the genotype and phenotype of the 
individual. A gene is defined as a sequence of DNA that codes for a 
functional product. The human haploid genome contains 3 billion base pairs 
and has between 20,000 and 25,000 functional genes.

3 billion base pairs Between 20,000 and 25,000 
How many base pairs 
are on the human 
genome?

How many functional genes are on the human 
haploid genome? 
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FIGURE 4. A detailed framework of course recommendation.

textbooks that organize several pieces of learning content to-
gether. Therefore, we need to study content recommendations 
at multiple levels: 1) microscopic, which comprises individual 
questions and lecture video suggestions [13], and 2) macro-
scopic, which includes course recommendation, especially for 
learners taking MOOCs [14].

Efficient experimentation and synthetic learner models
Traditionally, the fields of learning science and education have 
relied on rigorous A/B testing to validate the educational impact 
of learning content, usually in terms of its ability to improve 
learning outcomes for learners in the experimental group over 
those in the control group. However, this approach leads to long 
experimental cycles because 1) typically, only one learning con-
tent at a time can be validated and 2) metrics such as long-term 
learning outcomes naturally require long experimental cycles. 
Therefore, it is imperative to search for novel tools that enable 
rapid experimentation. Possible solutions include employing 
Bayesian optimization to test multiple contents simultaneous-
ly, or utilizing reinforcement learning (RL) as more and more 
learners use a piece of learning content. In the past, using RL 
to learn instructional policies (content recommendation can be 
viewed as a form of the instructional policy) has been limited 
due to a lack of large-scale real learner data; however, recent ap-
proaches have looked at using data- or cognitive theory-driven 
synthetic learner models to simulate learner data.

Conflicting objectives
There is no unified objective in personalized learning because 
learning outcomes themselves are defined at multiple time 
scales. The optimal action may differ across different objec-
tives. For example, the learning content used in a practice ses-
sion that maximizes a learner’s performance on the midterm 
exam tomorrow may differ from the one that maximizes their 
overall course grade, which may differ from the one that maxi-
mizes their chance of getting a specific job after graduation. 
Therefore, we need to develop personalization algorithms that 
can balance multiple objectives and even resolve potential con-
flicts among these objectives. We also need to understand how 
these objectives interact with each other; for example, what 
skills taught in courses and schools carry over after gradua-
tion—a key issue in lifelong learning (discussed in detail in the 
“Lifelong Learning” section).

Figure 4 depicts the interplay between different elements, 
such as context, prediction, feedback, and so on to optimize 
course recommendation. It is worth noting that the approaches 
described previously are generic in the sense that they have 
wide applicability to different educational areas, including sig-
nal processing, possibly with minor domain-dependent adap-
tations. As an example, in [15], the authors apply several of 
the aforementioned ideas to develop eTutor, a personalized, 
web-based education system that learns the optimal sequence 
of teaching materials to present, based on the student’s  context 
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and feedback, previously shown teaching materials. In an 
experiment, they apply the eTutor system in the following sce-
nario: The students have studied digital signal processing in 
the past. The role of eTutor is to recommend learning materi-
als to the students with the goal of refreshing their minds about 
discrete Fourier transform in the least amount of time. The  
eTutor shows better performance compared to random- and 
fixed-selection rules.

Assessment and evaluation
A key problem in learner assessment is estimating how well 
he/she will master each knowledge component/concept/skill 
from the responses to assessment questions. Related works 
can be broadly classified into two model categories: 1) static, 
which analyze the generated data as learners take an assess-
ment (assuming that each learner’s knowledge remains con-
stant during the assessment) and 2) dynamic, which track a 
learner’s progress throughout a (possibly long) period as their 
knowledge levels evolve. The following is a short overview of 
each category:

 ■ Static models—IRT: The basic 1PL IRT model charac-
terizes the probability that a learner answers a question 
correctly as

( ) ( ),P y a d1,i j j iv= = -

where y ,i j  denotes the binary-valued graded response of 
learner j to question i, where 1 implies a correct response 
and 0 otherwise. Moreover, a Rj !  and d Ri !  are scalars 
that correspond to the learner’s ability and the question’s 
difficulty, respectively. Also, ( )$v  is a link function that 
is usually the sigmoid function or the inverse probit link 
function. Later extensions include 2PL IRT models, which 
add another multiplicative scaling parameter. This param-
eter corresponds to the ability of each question, differ-
entiating high-capacity learners from low-capacity ones. 
Further, 3PL IRT models add another scalar outside of the 
link function, which corresponds to the probability that an 
item can be guessed correctly. Finally, multidimensional 
IRT models use vectors instead of scalars to parameterize 
strengths and weaknesses to capture multiple aspects of 
one’s ability. Using the aforementioned models, one can 1) 
obtain relatively stable estimates of learners’ ability levels 
by denoising learners’ responses and 2) estimate the qual-
ity of each assessment question.

 ■ Dynamic models—KT: KT models consist of the learner 
performance ( )f $6 @ and learner knowledge evolution mod-
els ( ) ,g $6 @  expressed as

( ), ( ),y f a a g at t t t 1+ + -

where t denotes a discrete-time index. Early KT models, 
such as Bayesian KT [16], treat knowledge ( )ht  as a binary-
valued scalar that characterizes whether or not a learner mas-
ters the (single) concept covered by a question. Performance 
and knowledge evolution models are simply noisy binary 
channels. Later, factor-analysis-based KT models used a set 
of handcrafted features, such as the number of previous at-

tempts; successes; and failures on each concept, to represent 
a learner’s knowledge levels. These models require expert 
labels to associate questions to concepts, resulting in excel-
lent interpretability because they can effectively estimate the 
knowledge level of each learner on expert-defined concepts. 
Recent KT models incorporate deep learning, especially 
recurrent neural networks into the KT framework, where 
knowledge is represented as a latent vector .at  These mod-
els achieve state-of-the-art performance in predicting future 
learner responses, although in some cases, the advantage is 
not significant despite the loss of some interpretability.
The existing learner assessment models have several bot-

tlenecks. First, there are not many models with both the abil-
ity to achieve state-of-the-art performance in data fitting, (i.e., 
future performance prediction) as well as feedback generation 
(i.e., providing interpretable feedback to learners and instruc-
tors for downstream tasks, such as personalization). Therefore, 
it is imperative to develop new deep learning-based models 
that not only inherit the flexibility of neural networks to accu-
rately predict learner performance but also build in cognitive 
theory-inspired structures to promote interpretability and enable 
the generation of meaningful feedback. As an example, in the 
recently developed attentive KT (AKT) model [17] (Figure 5), 
we combined state-of-the-art attention networks with cogni-
tive theory-inspired modules. We used a monotonic attention 
mechanism where weights exponentially decay over time and 
question embeddings are parameterized by the 1PL IRT model 
to prevent overfitting. Experimental results show that the AKT 
model not only outperforms existing KTs but also exhibits some 
interpretability [17]. The existing learner assessment models 
operate almost exclusively on graded learner responses; how-
ever, converting raw learner responses to graded responses leads 
to considerable information loss. 

For multiple-choice questions, different distractor options 
are not created equal; choosing certain incorrect options over 
others might indicate that a learner exhibits a certain miscon-
ception. However, this information is lost when the learner’s 
option choice is converted to a graded response. Moreover, due 
to their superior pedagogical value, open-response questions 
have been widely adopted; the specific open-ended response 
a learner enters contains rich information about his/her knowl-
edge state. Therefore, it is vital to develop models that go deeper 
than the graded response level and into the raw response level. 
These models allow for personalization at even finer levels; 
for example, after each step as a learner solves an open-ended 
mathematical problem step by step and by enabling personal-
ized education systems to attend to learner difficulties in a more 
timely manner.

Another consideration in effective learner evaluation is that 
assessment and performance prediction models must be tailored 
to different learning environments and platforms. For instance, 
the accurate prediction of students’ future college performance 
based on their ongoing academic records is crucial to carrying 
out effective pedagogical interventions so that on-time, satisfac-
tory graduation is ensured. However, foretelling student per-
formance in completing degrees (e.g., college programs) 
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is significantly different from 
that for in-course assessment 
and intelligent tutoring systems. 
The following describes the 
most im  portant reasons for why 
this is so.

 ■  First, students differ tremen-
dously in terms of back-
grounds as well as the study 
domains (majors, specializa-
tions), resulting in different 
selected courses. Even if the 
courses are similar, the 
sequences in which the stu-
dents take the courses might 
differ significantly. Therefore, 
a key challenge for training an 
effective predictor is to handle 
heterogeneous student data. 
In contrast, solving problems 
in intelligent tutoring systems 
often follow routine steps that 
are identical for all students. 
Similarly, predictions of stu-
dents’ performance in courses 
are often based on in-course 
assessments that are identical 
for all students.

 ■  Second, although the stu-
dents often take several 
courses, not all of them are 
equally informative for pre-
dicting the students’ future 
performance. Utilizing the 
student’s past performance in 
all courses that he/she has 
completed not only increases 
complexity but also introduc-
es noise in the prediction, 
thereby degrading the perfor-
mance. For instance, while it 
is meaningful to consider a 
student’s grade in linear alge-
bra for predicting his/her 
grade in linear optimization, 
the student’s grade in chem-
istry lab may have much 
weaker predictive power. 
How  ever, the course corre-
lation is not always as ob -
vious as in this example; 
therefore, to enhance the 
accuracy of performance 
predictions, it is essential 
to discover the underlying 
correlation among courses.
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 ■ Third, predicting student performance in a degree program 
is not a one-time task; rather, it requires continuous tracking 
and updating as the student finishes new courses over time. 
An important consideration is the following: The predic-
tion shall be made based on not only the most recent snap-
shot of the student’s accomplishments but also the 
evolution of the student’s progress, which may contain 
valuable information to improve the prediction’s accuracy. 
However, the complexity can easily explode because just 
mathematically representing the evolution of student prog-
ress itself can be a daunting task. Treating the past progress 
as equally as the current performance when predicting the 
future may not be a wise choice either because old infor-
mation tends to be outdated.
Finally, we would like to emphasize the following: Similar 

to an offline system, in AI-powered personalized education, 
an assessment does not remain limited to evaluating the per-
formance of individual students in different tests in a single 
online education portal. Indeed, evaluation might be neces-
sary not only for individuals but also for a collection of stu-
dents as well as other stakeholders, such as educators, policy 
makers, and the providers of online education. In particular, 
the fair and precise comparison, analysis, and accreditation 
of online education portals, as well as the degrees and cer-
tificates provided by such portals, are crucial. The reasons 
include the following: 1) Distance education has grown into a 
broad industry in the past decade, 2) the majority of learners 
rely on certificates of online classes as approval for obtaining 
the necessary knowledge and skills, and 3) online education 
is inherently international and crosses boundaries. Similar to 
improving the evaluation of students, AI and ML methods, 
together with bid data analysis, can assist in the accredita-
tion and comparison of online portals and the degrees and 
certificates issued; this includes, e.g., comparing the average 
student’s performance with an online degree to that of a tra-
ditional, yet accredited, degree. A detailed discussion of such 
topics has several perspectives and is therefore beyond the 
scope of this article.

Lifelong learning
Lifelong learning emphasizes holistic education and the fact 
that learning takes place on an ongoing basis as a result our daily 
interactions with others and with the world around us in dif-
ferent contexts. These include not only schools but also homes 
and workplaces, among several others. Because of its ongoing 
nature, making foresighted learning plans is crucial for lifelong 
learning to achieve the desired outcome.

In the school context, a specific challenge for developing a 
learning plan is the course sequence recommendation in degree 
programs [14]. Recent studies show that the vast majority of 
college students in the United States do not complete college 
in the standard time frame. Moreover, today, compared to a 
decade ago, fewer college students graduate in a timely manner. 
Although several factors contribute to students taking longer 
to graduate, such as credit losses resulting from a school trans-
fer, uninformed choices due to low advisor-student ratios, and 

poor preparation for college, the inability of students to attend 
the required courses is among the leading causes. If a student 
selects courses myopically without a clear plan, he/she may end 
up in a situation where required subsequent courses are offered 
(much) later, thereby (significantly) prolonging the graduation 
time. Hence, to accelerate graduation, students should essen-
tially select courses in a foresighted way while taking the course 
sequences (shaped by courses being mandatory, elective, or pre-
requisite) into account. 

It is also essential to observe the time period in which the 
school offers various courses. More importantly, as the number 
and variety (in terms of backgrounds, knowledge, and goals) of 
students is expanding rapidly, the same learning path is unlikely 
to best serve all students. Therefore, it is crucially important to 
tailor the course sequences to students. To this end, it is nec-
essary to learn from the performance of previous students in 
various courses/sequences to adaptively recommend course 
sequences for current students. Obviously, this depends on 
the student’s background and his/her completion status of the 
program to maximize any of a variety of objectives, including 
the time to graduate, grades, and the tradeoff between the two. 
To make such plans, AI is a tool of great potential; however, 
designing AI technologies for personalized, foresighted, and 
adaptive course planning is challenging in several dimensions, 
as described in the following.

 ■ First, course sequence recommendation requires dealing 
with a large decision space that grows combinatorially with 
the number of courses.

 ■ Second, there is a great deal of flexibility in course sequence 
recommendation as multiple courses can be taken simulta-
neously, while it is also subject to many constraints due to 
prerequisites and availability.

 ■ Third, any static course sequence is suboptimal as the 
knowledge, experience, and performance of a student devel-
ops and evolves during the process of learning.

 ■ Finally, students vary tremendously in their backgrounds, 
knowledge, and goals.
For example, in [14], we develop an automated course 

sequence recommendation system to address the aforemen-
tioned challenges. To reduce complexity and enable tractable 
solutions, we solve the problem in two steps, as illustrated 
in Figure 6:
1) The first step corresponds to offline learning, in which a set 

of candidate recommendation policies are determined that 
minimize the expected time to graduation or the on-time 
graduation probability using an existing data set of anony-
mized student records based on dynamic programming.

2) The second step corresponds to online learning, in which 
for each new student, a suitable course sequence recom-
mendation policy is selected depending on this student’s 
background using the learned knowledge from the pre-
vious students.

In other lifelong learning contexts (e.g., the workplace), al-
though similar challenges may still be present, new challenges 
are likely to emerge, and hence, foresighted learning plans must 
be tailored to the specific context.



46 IEEE SIGNAL PROCESSING MAGAZINE   |   May 2021   |

Recent research shows a significant gap between the lectures 
offered in schools and job requirements, especially in emerg-
ing disciplines like data science. Soft skills such as communica-
tion and teamwork are often even more important than typical 
technical skills. Future research on lifelong learning shall bridge 
this gap. Indeed, there is a systematic demand for the research 
community to identify and study the skills that significantly 
contribute to professional perspectives instead of maximizing 
achievement in schools. Educators can take advantage of the 
findings to adjust school curricula and educational activities to 
better prepare students for the future. The centerpiece of pos-
sible approaches is to fuse a student’s school records with future 
employment outcomes, possibly tracked over a long period, as 
well as other data sources such as course syllabi and job post-
ings, to identify the crucial skills that extend from the classroom 
(virtual or otherwise) to the profession. There is also a need for 
research labor studies to conduct interviews with 1) employers, 
to understand their requirements; 2) job seekers, to identify the 
skills to acquire; and 3) training providers, to clarify the skills 
that can be taught in a part-time or on-the-job way rather than 
through centralized educational programs, given workers’ real-
life constraints.

Incentives and motivation
Thus far, one crucial aspect of personalized education has been 
largely left aside, namely, motivation and incentive design. This 
is unfortunate as these factors significantly contribute to a learn-
er’s perseverance and engagement, and thereby, overall student 
achievement. As such, they affect not only individuals but also the 
entire society in terms of the efficiency of resource expenditure.

In educational sciences, motivation is regarded as a concept 
that involves several learning-related features, such as initia-
tion, goal orientation, intensity, persistence, and the quality of 
behavior [7]. Therefore, as described by Hartnett in [18], moti-
vation is an unobservable dynamic process that is difficult to 

measure directly, but it is inferable from observations. Similar to 
the other crucial factors of successful education, such as talent 
and interest, motivation originates and is influenced by personal 
factors, including goals and beliefs. As such, it is reasonable to 
conclude that intelligent personalization affects motivation to a 
large extent.

Motivation can be intrinsic or triggered by external factors. 
Accordingly, the various features of personalized education, 
such as recommending a proper series of content or creating 
educational networks, might implicitly improve a learner’s 
motivation by increasing the engagement level. Such efforts 
make the learning experience more pleasant, thereby improv-
ing a learner’s satisfaction level. This is, however, insufficient. 
It is imperative to integrate direct motivating methods into per-
sonalized education and the learning platform. To this end, in 
the following sections, we describe a few frameworks that can 
accommodate motivation and its relevant concepts appropriate-
ly (see [18] for more information).

Behavioral economics
Any personalized education platform should be able to appro-
priately connect, interact, and interface with humans. Hence, 
proper operation significantly depends on various character-
istics of the members of the target group that shape their deci-
sion making behavior. Indeed, a utility function is the most 
seminal computational model for the interests of learners. For 
a rational decision maker, the utility function is convention-
ally increasingly concave and is to be maximized. However, 
humans often demonstrate unusual patterns in their utility 
functions and decision making due to the following reasons:

 ■ Humans make mistakes, often due to inaccurate beliefs and 
imprecise predictions.

 ■ Humans often act irrationally and based on heuristics.
 ■ Humans think and act in different ways as a result of their uni -

que backgrounds, including personality and experiences [19].
Behavioral economics accommodates and 
formalizes such aspects; therefore, one 
can take advantage of behavioral econom-
ics for efficient incentive design and moti-
vation in learning platforms [20].

Self-determination theory
This theory asserts that humans have 
an intrinsic urge to be self-autonomous, 
competent, and connected with respect 
to their environments [21]. Although be-
havioral economics is appropriate for in-
vestigating motivations that result from 
external rewards, self-determination 
observes motivations from an internal 
perspective. Indeed, any environment, 
including the learning platforms that 
satisfy the aforementioned needs of hu-
mans, awakens the intrinsic motivation, 
rendering external triggers mostly un-
necessary. As such, promoting intrinsic 
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motivation is significantly more effective than extrinsic motiva-
tion as it is often associated with lower cost when compared to 
material rewarding and has a long-lasting effect [18].

Self-efficacy theory
This concept corresponds to an individual’s confidence in his/
her capability of performing a specific task to be undertaken; for 
example, learning in an online learning platform or performing 
at a certain level [22]. Researchers show that humans constantly 
assess their self-efficacy, mainly based on the observed informa-
tion from the environment and past experiences [22]. Similar to 
the self-determination theory, self-efficacy considers the intrin-
sic motivation, implying that a feeling of efficacious triggers the 
internal motivation feeling in learners. Other relevant concepts 
include interest and goal orientation [18].

The main challenge is how best to utilize AI and ML to moti-
vate the learners of a personalized learning platform, based on 
the aforementioned theories that formalize and explain human 
behavior. To clarify this, consider the utility function of a learner 
in a personalized learning platform as an example [20]. The func-
tion quantifies the learner’s well-being while using the platform, 
and, consequently, his/her (future) engagement. Some learners 
exhibit hyperbolic preferences, overweighting the presents ones 
so much so that future rewards are largely ignored. Some learners 
show strong reactions even to nonmonetary rewards, while other 
learners demonstrate reference-dependent preferences, imply-
ing that the utility is largely determined by its distance from a 
reference point; for example, a predefined goal or the average 
performance. By using ML and AI methods, a learning platform 
can take advantage of the available data and a learner’s feedback 
to estimate the utility function of that learner, thereby predicting 
his/her reaction to the potential triggers of incentive and moti-
vation. Consequently, the platform can adjust and allocate the 
reward among learners efficiently and fairly. 

As another example, consider the self-determination theo-
ry. Based on this theory, a sophisticated personalized learning 
platform guarantees choice, connectedness, and the feeling of 
competence for the learner. To this end, the design of recom-
mendation tools based on AI and ML methods should allow 
for enough alternatives, both at the micro- and macrolevels, 
to ensure autonomy. Moreover, the suggested learning content 
should be based on the learner’s feedback and the results of accu-
rate assessment to avoid inducing a feeling of incompetence in 
the learner. In addition, promoting network formation or estab-
lishing a link between coherent learners and intensive interac-
tion results in connectedness. This is also in accordance with the 
self-efficacy theory, in the sense that by providing appropriate 
feedback and suitable side information, the platform increases 
the positive belief of a learner in his/her ability to perform well 
on a learning platform.

Building learning networks
A potential negative effect of personalized education, especially 
in an online environment, is a loss of peer interactions and of the 
sense of community that are usually present in traditional class-
rooms. Fortunately, the rise of online social networks seems 

to facilitate interaction and networking between teachers and 
learners, as does the coproduction of content both inside and 
outside the classroom. Learning applications and pedagogy can 
also be built based on online social networks to bridge formal 
and informal learning as well as to promote peer interactions 
on both curricular and extracurricular topics. Moreover, various 
education-related social networks have been created to facilitate 
collaboration, post/answer questions, and share resources; how-
ever, a formal method to build these learning networks and a 
deep understanding of their effectiveness are absent.

The core of learning networks is peer interaction, which has 
important implications for personalized education when teach-
ing resources are limited. For example, peer review serves as 
an effective and scalable method for assessment and evaluation 
when the number of students enrolled in a course far exceeds 
the number of teaching assistants; however, in learning networks, 
effective peer review poses new challenges [23]. On the one 
hand, peer reviewers have different intrinsic capabilities, which 
are often unknown. On the other hand, peer reviewers can choose 
to exert different levels of effort (e.g., time and energy spent in 
reviewing), which is unobservable. Identifying unknown intrin-
sic capabilities corresponds to the adverse selection problem in 
game theory. A natural candidate for solving this problem is to use 
matching mechanisms, i.e., assign reviewers to students. Existing 
works on matching mechanisms focus on one-shot peer interactions 
and design one-shot matching rules. However, their assumptions 
do not hold in peer-review systems, where the review quality 
depends crucially on the reviewers’ effort. 

Motivating reviewers to exert high effort corresponds to 
the moral hazard problem in game theory. One way to address 
this problem is to use social norms, where each peer reviewer 
is assigned a rating that summarizes his/her past behavior and 
recommends a “norm” that rewards a reviewer with good rat-
ings and punishes those with bad ratings. However, existing 
works on social norms assume that peer reviewers are homo-
geneous. This assumption does not hold in peer-review systems 
because different reviewers have different intrinsic capabilities. 
Because a peer reviewer’s ultimate review quality is determined 
by his/her intrinsic capabilities and effort, designing effective 
peer-review systems in learning networks becomes significantly 
more challenging due to the presence of both adverse selection 
and moral hazards. Therefore, new peer-review system designs 
should simultaneously solve both problems so that peer review-
ers find it in their self-interest to exert high effort and receive 
ratings that truly reflect their capabilities.

Another primary function of learning networks is to foster 
learning content coproduction and sharing. Building such learn-
ing networks is vastly different from building traditional networks 
(e.g., computer and transportation networks); as with learning net-
works, individual learners create and maintain the links. Because 
links permit the acquisition and dissemination of learning con-
tent, it is theoretically intriguing and practically valuable to have 
a deeper understanding of the networks that are more likely to be 
formed by self-interested learners. Game theory is a useful tool to 
formulate and understand the strategic behavior of learners. The 
formulation must capture the heterogeneity of learners in terms 
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of goals, capabilities, costs, and self-interest nature [24]; that is, 
each learner intends to maximize his/her benefit from content 
coproduction and sharing, minus whatever the cost is to estab-
lish the links.

Our previous work [25] studies the endogenous formation of 
networks by strategic, self-interested agents who benefit from 
producing and disseminating information. The results showed 
that the typical network structure that emerges in equilibrium 
displays a core-periphery structure, with a smaller number of 
agents at the core of the network and a larger number of agents 
at the periphery of the network. Furthermore, we established 
that the typical networks that emerge are minimally connected 
and have short network diameters, which are independent of the 
size of the network. In other words, the theoretical results show 
that small diameters tend to make information dissemination 
efficient, and minimal connectivity leads to minimizing the total 
cost of constructing the network. These results are consistent 
with the outcome of numerous empirical investigations. Such 
theoretical analyses and tools are essential guides for building 
learning networks. Also, based on this analysis, one can create 
protocols to motivate selfish learners to take actions that pro-
mote systemwide utility.

Future research into learning networks hinges on under-
standing the knowledge flow between students via peer inter-
action. Such an understanding enables educators to effectively 
moderate peer interactions and to encourage the interactions 
that promote peer learning. Peer learning is especially valu-
able as education extends into more diverse settings, such as 
remote online learning during the COVID-19 pandemic. In 
these settings, it is difficult for instructors to moderate learn-
ing activities remotely; hence, peer learning through online 
course discussion forums becomes essential. It is therefore 
vital to understand

 ■ interaction tendencies and students’ behavior in these dis-
cussion forums [26]

 ■ the flow of knowledge by combining discussion forum 
activities with grades

 ■ the factors that enhance knowledge flow
 ■ the design of automated strategies that moderate student 

activities when necessary. 

Diversity, fairness, and biases
Experimental studies show that AI-driven personalization such 
as student assessment, feedback, and content recommendation 
improve overall learning outcomes; nonetheless, certain stu-
dent subgroups may benefit more than other subgroups due to 
the biases that exist in training data [27]. This imbalance jeop-
ardizes students who are already underserved, particularly be-
cause they often have limited access to advanced, digitized edu-
cational systems and are infrequently represented in the data 
sets collected by these systems [28]. As a result, it is essential to 
develop AI tools that promote fairness among learners with dif-
ferent backgrounds, thereby making education more inclusive 
for future generations.

To mitigate biases and to promote fairness and equity in AI 
methods, currently, researchers pay significant attention to devel-

oping approaches that promote fairness, primarily in the context 
of predictive algorithms:

 ■ The first major research problem studied is how to properly 
define fairness. Many definitions of fairness exist, including 
individual fairness, which requires that users with compara-
ble feature values be treated similarly; parity in the predict-
ed probability of each outcome across user groups (drawn 
using sensitive attributes); parity in the predicted probability 
of each outcome given actual outcomes regardless of sensi-
tive attributes; and counterfactual fairness, which requires 
that the predicted outcome for each user remains mostly 
unchanged if the sensitive attribute changes. 

 ■ The second major research problem concerns developing 
methods that enforce fairness in predictive algorithms. 
Existing approaches include preprocessing the data to select 
only the fair features as inputs to algorithms, and postpro-
cessing the output of algorithms to balance across user 
groups. The most promising approach is to impose regular-
izers and constraints while training predictive algorithms. 
These methods result in better fairness at the expense of 
sacrificing some classification accuracy; however, they are 
empirically shown to obtain better tradeoffs between fair-
ness and accuracy than other fairness-promoting methods.
Promoting fairness and equity is a necessity of education 

that requires a comprehensive approach for it to be fulfilled: We 
need to not only design fair personalization algorithms but also 
develop systematic principles and guidelines for their applica-
tion in practice. In other words, we need a set of tools to regulate 
the use of AI algorithms.

Finally, despite its great promise, AI-driven personalization in 
education can also bring risks that have to be closely monitored 
and controlled. Recently, there have been calls for a U.S. Food 
and Drug Administration-type framework for other AI applica-
tions, such as facial recognition. It is essential to establish a simi-
lar ecosystem in education with a set of regulations around the 
issues of data ownership, sharing, continuous performance mon-
itoring, and validation to control every step of the process, from 
ensuring the diversity and quality of the collected data, devel-
oping algorithms with performance guarantees across different 
educational settings, to identifying misuse and implementing a 
fail-safe mechanism. 

COVID-19 and AI-enabled personalized education
Among its several other adverse effects, the COVID-19 pan-
demic has disrupted or interrupted the functionality of conven-
tional education systems around the globe. Not surprisingly, 
students have experienced this adverse effect to varying degrees 
depending on several factors, including country/region, family 
status, and individual characteristics. The complications dif-
fer over a wide spectrum and include reduced learning ability, 
depression, loss of concentration, and a decline in physical fit-
ness. Such issues arise mainly due to spending less or no time 
at school, where students receive educational materials and sup-
port in learning, interact with their peers and teachers, develop 
incentives, and are evaluated. Furthermore, many students can-
not take full advantage of replacement resources such as  online 
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materials, e.g., in the absence of an appropriate technological 
device/a reliable Internet connection or a suitable learning 
 environment at home. As a consequence of its vitality, the impact of 
COVID-19 on education has attracted a great deal of attention. For 
example, in [29], the authors describe the influence of pandemic-
triggered growth in online learning on students’ performance and 
equity. Several other works, such as [30], study the domain-specific 
educational effects of the pandemic, evaluate available solutions, 
and provide suggestions for policy makers to compensate for the 
pandemic’s negative educational consequences.

Personalized and distance education had already been trend-
ing upward in the past decade. Still, the COVID-19 pandemic 
has urged both public and private sectors to rapidly increase 
investigations into R&D in this area to earn individual and/or 
social profit. For instance, the pandemic has increased the use of 
online learning tools for signal processing education, especially 
at the undergraduate level. These include web-based laborato-
ries for digital signal processing [31] and online ML education 
modules [32]. Although it is essential to carefully study this tre-
mendous push toward revolutionizing education from several 
perspectives, in the scope of our article, we confine our attention 
to the role and influence of AI and ML.

As described previously, AI and ML have great potential 
to enhance online education in different ways, e.g., through 
improving the quality of learning materials, enabling fairness 
and diversity, generating proper tests, and allowing for the con-
struction of knowledge networks. The latter way is a universal 
aspect of applying AI and ML methods in distance and asyn-
chronous education regardless of the current pandemic; never-
theless, such methods can additionally assist in accelerating the 
rebuilding of education systems and in mitigating the pandem-
ic’s detrimental effects. For example, by using ML methods on 
the available data, policy makers can classify students based on 
their exposure to the educational effects of a pandemic; using 
this classification, one can allocate resources efficiently while 
satisfying fairness constraints. As another example, by taking 
advantage of ML methods, one can optimize a school’s closure 
plan based on different features, such as neighborhood, size, 
grade, and so forth.

Summary and conclusions
Enabling personalized education is one of the most precious 
merits of AI, relative to education. This paradigm significant-
ly improves the quality of education in several dimensions by 

adapting to the distinct characteristics and expectations of each 
learner, such as personality, talent, objectives, and background. 
Besides, online education is of the utmost value under abnor-
mal circumstances, such as the COVID-19 outbreak or natural 
disasters. Indeed, conventional education requires significantly 
more resources than the online format with regard to education 
space, scheduling, and human resources, which makes it prone 
to failure with even a small shift in conditions. As such, emerg-
ing alternatives are inevitable. Despite having the potential of a 
revolutionary transformation from traditional education to mod-
ern concepts, personalized education faces several challenges. In 
this article, we discussed these challenges, provided a brief over-
view of the state-of-the-art research, and proposed some solu-
tions. Table 2 summarizes some of the future research directions.
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INNOVATION STARTS WITH EDUCATION

Clive Cheong Took, Stephen R. Alty,  
Anush Yardim, and David M. Howard

D igital signal processing (DSP) education has traditionally em-
ployed more demanding mathematics than most topics found 
among courses in electrical/electronic/computer engineering. 

In some cases, the technical challenges posed by some courses 
have made it difficult for students to complete those courses suc-
cessfully. Here, we advocate for creativity to be nurtured in the first 
place, after which the science will flow naturally. To foster cre-
ativity, our pedagogical approach includes a variety of solutions 
incorporating exploratory exercises, open-ended multidisciplinary 
coursework, blended lecture–laboratory sessions, and a colorful 
working environment. We firmly believe that creativity is the way 
forward. Student feedback supports our approach.

Introduction
Royal Holloway, University of London (RHUL) took the decision 
to open a new Department of Electronic Engineering, with its first 
cohort of students enrolling in 2017 [1]. This gave us a welcome 
opportunity to develop our electronic engineering course, and sub-
sequently computer systems engineering, around a strong strand 
of DSP, adopting an experimental perspective free from legacy 
commitments that will foster the creativity so readily achievable in 
modern-day DSP practice.

The common trend indicates that research and academia tend 
to focus on the theoretical solution (by proposing new mathemati-
cal models and algorithms), whereas industry spends more time 
on solving the problem (by understanding the data) [2]. We are of 
the opinion that these two elements need to be balanced out. To 
strike such a balance, we aim to assess student understanding and 
performance proficiency by a mix of approaches that incorporate 
computer-supported simulations, data exploration, and traditional 
hand calculations.

Related works
Creativity stems from divergent thinking (i.e., the generation 
of ideas) rather than convergent thinking (i.e., analysis and evalu-
ation) [3]. Analysis and mathematical rigor are part and parcel of 
signal processing, such as bounded-input, bounded-output (BIBO) 
stability for filters, convergence, and steady-state analyses for 
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 adaptive filters. As such, it is typically difficult to inculcate creativ-
ity in DSP-oriented modules. However, there are many research 
efforts in other engineering disciplines that help creative thinking/
learning. As there is not one kind of education that fits all [4], a set 
of good practices and their corresponding learning outcomes for 
creativity are as follows:

 ■ exploratory exercises allowing students to investigate/explore 
new ideas or concepts or models on their own [5]

 ■ open-ended problems that can be solved in a multitude of ways 
for students to think independently [6]

 ■ learning opportunities for students to take independent respon-
sibilities or initiatives [6]

 ■ collaborative work for students to brainstorm and generate 
ideas [7]

 ■ multidisciplinary approaches whereby students borrow princi-
ples from other engineering domains to solve problems [8].
Most importantly, the value of instructors believing in creativity 

was particularly highlighted in [9]. While believing in creativity is 
not a method for teaching creativity, it is a decisive factor in teach-
ing it [7], [8]. However, the research did not consider the particulari-
ties of DSP education. To this end, our course development focuses 
on practical skill sets and promotes creativity by considering all of 
these pedagogical sets of good practices. We have designed three 
final-year DSP modules:

 ■ Digital Signal Processing Design (EE3010), which provides a 
grounding in DSP practicalities

 ■ Fundamentals of Biomedical Engineering (EE3060), which 
gives the opportunity for students to explore biomedical signals 
and systems

 ■ Voice Technologies (EE3050), which offers diverse applica-
tions of speech signal processing ranging from voice cloning to 
voice forensics.
The rationale for these DSP modules stems from the demands 

from industry for qualified graduates in such enabling technology 
for communications, sensors and instrumentation, medical appli-
cations, very large-scale integration, avionics, audio industries, 
radar, and many other key sectors. To put into context how these 
three DSP modules fit into the undergraduate study, Table 1 shows 
our overall program; the pathway highlighted in yellow illustrate 

the DSP theme. For example, the prerequisite for EE3010 is the 
course Signals, Systems, and Communications (year 2), and that 
of EE3050 is EE3010. However, there is also some degree of 
interdependence between the different pathways. For instance, 
the Fourier series taught in Mathematics for Engineers 2 (the 
general engineering theme) could be used to model the periodic-
ity of electrocardiograms (ECGs) in Fundamentals of Biomedical 
Engineering (the DSP theme). Students exploit their background 
of electronic circuit designs from the blue pathway and embedded 
systems from the purple pathway and their DSP knowledge from 
the yellow pathway in EE3060.

One of the innovations of the Digital Signal Processing Design 
(EE3010) module is to adopt a blended approach by delivering 
the lecture session in a laboratory environment. Thus, the students 
move between theoretical concepts and immediate practical illus-
trations—a teaching strategy to make the mathematical content 
more engaging. On the other hand, the other courses, EE3050 and 
EE3060, do not take this blended approach as they are inherently 
application oriented (where students can more readily contextual-
ize their usefulness). At the end of course EE3010, the students are 
expected to be able to

 ■ examine the scientific principles underpinning practical signal 
processing and apply the knowledge gained from the major 
aspects of DSP to solve problems efficiently

 ■ apply a modeling approach to engineering problems to 
appreciate the application of relevant technologies in signal 
processing

 ■ design systems using effective software instrumentation tools 
that facilitate rapid proof of concept.
Our DSP analysis emphasis is on the verification of DSP 

time- and transform-domain relationships closely supported 
by illustrative simulation experiments relying on MATLAB, 
Simulink, and DSP_Speedster [10], the latter allowing for a 
virtual instrumentation environment that piggybacks on the 
previous two. We are especially keen on Simulink models 
because they convey dynamic DSP scenarios, which are nearly 
as effective as benchtop instrumentation exercises while also 
furnishing flexibility through easy program/parameter chang-
es. This is aided by simultaneously appealing to students’ 

Table 1. Creativity is inherently embedded into our undergraduate program, e.g., creative team project 1. The color-coded legends show the themes 
of courses, i.e., yellow (DSP), blue (electronic circuit design), orange (computer science), gray (general engineering), pink (project), and green 
(sustainable and power engineering). All courses are mandatory except for those labeled with (O).

Year 1 Year 2 Year 3

Term 1 Term 2 Term 1 Term 2 Term 1 Term 2
Embedded systems  

creative team project 1
 Embedded systems  

creative team project 2
Final year project

Electronic Circuits 
and Components

Communications 
Engineering

Signals, Systems,  
and Communications

Electronic Materials and 
Devices

Introduction to  
Project Management 

Digital Systems 
Design

Programming in 
C++

Internet Services Analog Electronic  
Systems

Professional and  
Sustainable Engineering

Digital Signal  
Processing Design

Power Systems (O)

Mathematics for 
Engineers 1

Mathematics for 
Engineers 2

Software Engineering Control Engineering Fundamentals of  
Biomedical  
Engineering (O)

Advanced  
Communication  
Systems (O)

(O) = optional Information Security (O) Voice Technologies (O)
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visual and auditory senses through observing soft-instrumen-
tation scopes and listening to outputs. Such time-varying/adaptive 
model usage far surpasses the motivational impacts provided 
by static analysis through pencil and paper exercises or even 
MATLAB-powered numerical tabulated solutions.

The DSP_Speedster lab kit environment is especially help-
ful when dynamic evolutionary situations (such as time-varying 
filtering or adaptive processing) require monitoring and control. 
“Snapshotting” through static MATLAB computations often falls 
short of providing the required operations insight, where benchtop 
instrumentation could excel. Yet this is where Simulink modeling 
delivers a computationally attractive virtual instrumentation alter-
native. Simulink/DSP_Speedster modeling is quick and natural, 
establishing a bridge to later, more extensive design and prototype 
refinement activities.

We fully appreciate and acknowledge the necessity for tight 
coupling between theory and practical realizations. All experi-
mental work is motivated and focused as a follow up to the pre-
liminary theoretical background, which is always pivotal in a 
field like DSP, having such exceptional and intrinsic alignment 
with mathematical underpinnings. Our approach is to blend 
analysis and preparatory hand calculations with MATLAB-
supported analysis and plots of expected performance. This is 
what we feel is the static phase of the student’s journey toward 
creative design. The dynamic phase comprises the instrumenta-
tion and exercising of the operational aspects of solution imple-
mentations. This stage typically involves benchtop activity with 
extensive laboratory equipment alongside Simulink modeling 
and performance assessments. Finally, the assimilation of find-
ings and reflection on results informs a fresh wave of experi-
mentation and refinement.

The two examples that follow are typical scenarios that our stu-
dents experience in the third year of EE3010 in the DSP design 
module. There are similar experiments that second-year students 
undertake as well to bolster their understanding of modulation and 
modern communication trends, such as software-defined radio. The 
learning outcomes for creativity of these two examples encourage 
students to explore new models on their own through the develop-
ment and evaluation of those models and take independent respon-
sibility and initiative.

Example 1: BIBO stability experiment
Students are expected to build the model given in Figure 1 and in-
vestigate the behavior of this system (running at 20,000 samples/s) 
under dynamic conditions, for example, by first varying the feed-
back parameter in the slider gain block. The input is a periodic 
impulse train with a period of 300 samples. Here, “del” is a differ-
encer, and “TPMA” is a two-point moving averager with impulse 
responses {1, –1} and {0.5, 0.5}, respectively.

Each student builds the model depicted in Figure 1 and com-
mences experimentation. The questions they need to answer are 
whether the system is BIBO-stable [11, p. 24] as the model is 
initially specified and which range of the feedback parameter val-
ues will make the system become stable/unstable. Consequently, 
students are invited to explore and be curious about this system at 
first. So far, no equations are needed. They realize early on how 
a system that they built can become unstable very quickly under 
certain conditions. Normally, this is not experienced by students in 
most courses; they are given either a stable or an unstable system, 
and once they find out that the poles are outside of the unit circle, 
they declare instability—with little appreciation of the journey that 
led to it.

Fixed Impulse
Train

Slider
Gain

Delay

Signal Analyzer

del

0.03 z –1 TPMA

Fixed Impulse
Train,

Period:
N = 300

+
– S

FIGURE 1. A stability investigation of a feedback system.
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In this scenario, students have to explain why the system behaves 
this way by obtaining the z-domain transfer function and analyz-
ing its pole–zero pattern (PZP) after they encounter the unbounded 
nature of the output. This gives the motivation for analytical explo-
ration; students see the “what” first, and now they have to answer 
the “why.” Extensions to the investigation involve swapping the 
“del” and “TPMA” blocks and other configurations in the feedfor-
ward and feedback paths to investigate the model behavior. Within 
DSP_Speedster, they have access to many other blocks, such as 
more exotic filters, that can be introduced. Immediately, the inves-
tigation becomes not only individualized (thus avoiding collusion) 
but also enables students to think creatively to design an overall 
BIBO-stable system. A further extension is to design a compensa-
tor to guarantee an overall set of specifications by exploring cascade 
and parallel compensator configurations.

All results, models, and plots, including impulse response 
behavior, spectral gain, and PZP, are then submitted online together 
with a brief report. A typical plot of the unstable response is given 
in Figure 2.

This style of experimental activity has provided an excellent 
framework for practical MATLAB/Simulink-based tests and exami-
nations during the academic term. Feedback from past students indi-
cated a strong preference for these rather than the classical pen and 
paper examination. After all, this is very much how we engineers 
operate in the real world—by being curious and creative with the 
support of well-crafted tools to solve open-ended problems.

Example 2: Adaptive notch filtering
This experiment primarily aims at eliminating additive tonal inter-
ference from a background random white process using an adaptive 
notch filter. Meanwhile, an alternative learning viewpoint is that (as 
well as achieving tone removal) this system moreover furnishes a 
useful frequency estimation capability for noisy tone-hopping situ-
ations [12], [13]. Students design and operate the system depicted 
in Figure 3, where they manipulate the sinusoid frequency, the con-
vergence factor (mu), and the signal-to-interference ratio.

The students adjust the parameters in the signaling environment 
such that the system is able to satisfactorily home onto and sup-
press the contaminating tone. The “Seepig Filter Analyzer,” which 
is not available in mainstream Simulink [10] but is part of DSP_
Speedster, enables the instantaneous tracking and visualization of 
any changes in the PZP, impulse response, and gain of the filter. 
While it is not highlighted here, other filter characteristics, such 
as group delay, phase, phase delay, zero-phase gain, total impulse 
response energy, average delay, and impulse response center of 
gravity, are readily available for dynamic measurement and dis-
play. No gradient-search adaptive notch filter like the DSP_Speed-
ster block seems to be furnished in standard Simulink or in the 
DSP toolbox. The entire search algorithm is realized in elemental 
Simulink blocks, and its detailed action can be viewed by students.

The green plots in Figure 4 are time and spectrum plots before 
the experiment starts, and the red plots indicate when the tuning 
error has converged to zero.

All of the exercises are totally paperless; students receive their 
instructions by opening the blue “info” box in the top right corner of 
the model (Figure 3). Of course, it must be noted that students also 
experience the sound of the tone before it is extinguished as well as 
the narrowband sweeping chirp as the notch filter steers toward the 
tone’s spectral location. So, they see, hear, and absorb—they are 
being creative in their exploration.

For conciseness, only isolated specimen experiments are pre-
sented. Students have undertaken MATLAB-based (which includes 
DSP_Speedster) practical exams, and feedback is strongly in favor 
of the approach that we have reported here.

In the Fundamentals of Biomedical Engineering (EE3060) 
course, the students learn about biosignal processing techniques 
(e.g., time–frequency analysis) as well as the particularities of 
the biosignals. However, biosignal processing goes beyond these 
two elementary know-hows. To have a more holistic view on bio-
signal processing, students are expected to exploit their practical 
knowledge gained from nonsignal processing courses (e.g., ana-
log electronics and embedded systems) to solve signal processing 

FIGURE 2. A snapshot showing BIBO instability.
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problems. As such, by the end of this course, the students should be 
able to work in teams to do the following:

 ■ Address and analyze problem-driven (instead of theory-driven) 
DSP tasks with no unique solution and with no constraints 
except financial constraint. This type of open-ended assign-
ment gives the opportunity for students to be creative. An 
example of such a problem-based assignment is to develop a 
smart system to detect drowsiness and alert the individual, as 
illustrated in Figure 5.

 ■ Build a complete DSP system from start to finish. This 
involves designing the data acquisition system (i.e., circuit 

analysis and implementation), investigating the appropriate 
biosignal processing algorithm to undertake the real-time anal-
ysis (e.g., frequency analysis), developing a smart system (e.g., 
coding an embedded system) to actuate on the results of the 
DSP data analysis, and manufacturing 3D objects to improve 
the esthetics of their DSP product.

To achieve these outcomes, students learn about:
 ■ Biodata exploration: To be able to exploit the properties of bio-

medical signals, the students learn about the particularities of 
electroencephalogram (EEG) for the brain, the ECG and the 
photoplethysmogram for the heart, and the electromyogram 

FIGURE 3. An adaptive notch filtering model. SNR: signal-to-noise ratio. 

FIGURE 4. A notch filter adaptation for a noisy sinusoid.
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(EMG) for muscles. Moreover, the students also learn about 
medical imaging and appreciate the difference between ana-
tomical and functional imaging.

 ■ Biosignal acquisition and instrumentation: The students design 
circuits for two main purposes—filtering and amplification. 
Examples of filtering applications include notch filtering to 
remove a 50-Hz power line, high-pass filtering to remove 
motion artifacts, and low-pass filtering to alleviate unwanted 
noise outside the frequency range of the biomedical signal. 
Amplification of those biosignals is achieved via both differen-
tial amplifiers and instrumentation amplifiers. Differential 
amplification is particularly useful for signals such as ECG, 
which is measured using the potential difference between the 
left and right side (polarity) of the body. This difference also 
helps in terms of denoising as the instrumentation amplifier 
inherently cancels the common-mode noise.

 ■ Biosignal processing and learning methods: Students learn 
about windowing and its effect on the spectral properties of the 
windowed data, time–frequency analysis, and signal-dependent 
methods, such as for the detection of the QRS complex in ECG 
and the segmentation of EMG in terms of muscle contraction 

and relaxation. Students also gain fundamental knowledge in 
terms of real-time learning algorithms (such as the perceptron). 
Thereafter, the students can take advantage of these learning 
methods to make automated decisions in their bio-DSP system.
For the group coursework on building a complete bio-DSP 

system, the learning outcomes for creative learning are to enable 
students to 1) brainstorm and generate ideas, 2) borrow principles 
from other engineering modules to solve problems, and 3) take 
independent initiative.

Example 3 gives us a flavor of the type of experiment carried 
out in Fundamentals of Biomedical Engineering. In this exercise, 
the students are not only exposed to hardware experimentation to 
capture the biosignal but also take a “white-box” approach to gener-
ate such biosignals synthetically. This approach reflects one of the 
strengths of DSP, giving us control over the design parameters. And 
its learning outcomes for creative learning are to empower students 
to think independently and take independent responsibility.

Example 3: QRS analysis and synthesis for ECG
In this experiment, the students “learn by doing” ECG analysis. The 
common approach is to acquire ECG signals and then undertake 
peak-to-peak analysis (such as between two R peaks). However, 
the students are then asked additionally to generate their own ECG 
signals synthetically. The value of such an experiment is that 1) it 
gives the opportunity to the student to be creative (e.g., the periodic-
ity of ECG cycle can be achieved in various ways, such as Fourier 
series of an ECG cycle or looping an ECG cycle); 2) students ap-
preciate the variability of biomedical signals; 3) it reinforces the 
learning of the student “by doing” rather than by memorization; 
and 4) the synthetic data can be used as “controlled data” as too 
often students overlook the importance of controlled experiments in 
biomedical analysis. An example of a real-world ECG signal and its 
corresponding synthetic version are illustrated in Figure 6.

The aim of the Voice Technologies (EE3050) course is to pro-
vide students with advanced knowledge of voice production, syn-
thesis, recognition, and processing in the context of present-day and 
future engineering systems that make use of a voice input or output. 
At the end of this course, the student should be able to

 ■ examine the engineering principles and techniques necessary 
to understand and analyze how voice can be created or record-
ed, processed, stored, and delivered to the user

 ■ apply a holistic approach to voice synthesis, recognition, and 
processing through the application of the relevant technologies

 ■ show the context in which engineering knowledge can be 
applied to voice synthesis, recognition, and processing

 ■ extract and evaluate pertinent data and apply engineering anal-
ysis techniques in the solution of unfamiliar problems.
As such, the students have the opportunity to learn about 1) 

human voice production for speech and singing; 2) electronic syn-
thesis of human speech and singing in terms of the sound source 
and sound modifiers to create synthetic voice signals; 3) signal pro-
cessing techniques used, for example, to track vocal pathologies, 
monitor the changes in vocal skills during voice trauma recovery 
speech therapy or the development in vocal skills during acting or 
singing voice training, enhance voice quality, remove background 
noise, and improve perceived voice quality; 4) the design of hearing 

(a)

(b)

FIGURE 5. (a) An EEG sensing system in a 3D printed enclosure to detect 
drowsiness. (b) An actuating system to provide response to a drowsiness 
state via a 3D printed fan, LCD display, and melody player (buzzer). 



57IEEE SIGNAL PROCESSING MAGAZINE   |   May 2021   |

aids including cochlear implants; and 5) techniques used for auto-
matic speech recognition, such as Apple’s Siri system.

The innovation in this course is to focus on the technologies rather 
than the mathematical models in speech processing. Students tend 
to learn and understand more about a subject if they can appreciate 
its application and therefore find it useful. Thus, the applicability of 
these speech technologies is illustrated in synthetic voice generation, 
hearing aid design, clinical and research voice monitoring systems, the 
impact on perceived voice quality, and an overall understanding of the 
spoken message. On the other hand, a traditional speech processing 
course would typically focus on mathematical models, such as the 
Levin–Durbin recursion for linear speech prediction or the derivation 
of the transfer function of the vocal tract with poles and zeros. We do 
not take this traditional approach. As such, our laboratory sessions are 
based on voice technologies widely used in the speech community, 
such as Audacity [14] and Praat [16]. 

Audacity [14] is an open source multitrack editor and recorder 
for audio recordings. Students make a recording of their own voice 
in the first week, which includes isolated words, counting forward 
and backward from 0 to 20, and reading a section of the phonetic 
read passage “Arthur the rat” [15]. They then prepare their signals 
for analysis using Audacity, thereby having a hands-on learning 
experience directed toward the transmitted signal itself rather than 
any underlying mathematical models.

Praat [16] is a free tool for phonetics research that enables the 
students to do speech capture, manipulation, waveform, and spectral 
analysis as well as formant and articulatory synthesis. In our labora-
tory sessions, Praat enables students to study multiple items. 

 ■ Time-domain analysis: The students isolate individual spoken 
sounds and measure their durations where appropriate while 
gaining an understanding of the dynamic nature of running 
speech and transitions between phonemes.

 ■ Frequency-domain analysis: The students explore the formant 
structures of different vowels, with special exercises relating to 
the effect on the output of varying the analysis filter bandwidth 
in the context of wideband and narrow-band spectrograms, 
particularly in the context of the dynamic nature of formant 
transitions in diphthongs and the spectral nature of consonants 
during running speech.

 ■ Time- and/or frequency-domain analysis: Fundamental fre-
quency estimation is explored in the time and/or frequency 
domain in the context of a hands-on experience of the advan-
tages and disadvantages of each approach in the context of 
human speech as well as the acoustic analysis of “connected” 
speech, such as the acoustic analysis of syllables and the analy-
sis of a word in different contexts.

 ■ Linear predictive coding (LPC): The students investigate the 
frequency response of the vocal tract and that of the sound 
source through LPC and its application in telephony. Having 
used LPC to code and decode a speech signal, they attempt to 
resynthesize speech, having replaced the larynx input with 
nonspeech sources, such as music for fun, along the lines of 
Sparky’s Magic Piano [17].

 ■ Voice cloning: Students are able to explore time- and frequen-
cy-domain differences in the speech of different speakers in 
the context of why they sound different and yet the spoken 
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FIGURE 6. An ECG signal and its corresponding synthetic counterpart. This exercise encourages the students to appreciate heart variability and reflect 
more carefully on the different ECG wave components, especially those that are not so visible in the ECG signal.
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FIGURE 7. (a) A wideband spectrogram analysis of the word “voice” spoken in air (left) and in helium (right) with the first two formants indicated by the 
red dots, showing the upward shift in formant frequencies due to helium. (b) A time waveform (upper) and wide-band spectrogram (lower) of a “curious” 
sound that is left as a creative thinking exercise for the student to explain how it was created.

message can still be understood, firstly through the synthesis 
and analysis of different vowels, and then through running 
speech generation using the CereProc [18] online speech syn-
thesis system.

 ■ Hearing loss: Having learned the principles of human hearing, 
students explore the frequency-domain nature of their own 
hearing (via headphones and being aware of the local acoustic 
noise) using a simple audiometer implemented in Pure data or 
Pd—an open source graphical programming audio creation and 
manipulation system [19]. In addition, having explored noise-
induced hearing loss (NIHL) introduced in a lecture, students 
perceptually investigate which speech sounds should be affect-
ed adversely and then test their hypotheses by exploiting notch 
filters in their laboratory session to mimic the spectral (not the 
signal level as this would pose a direct health and safety threat) 
effects of NIHL and confirm (or otherwise) their predictions.

Example 4: Forensic analysis of curious sounds
This experiment allows students to explore “curious” voice sounds 
set in a context of forensic audio comparisons that have been dis-
cussed in the associated lecture, including an original voice of a 
person and other related voices, such as

 ■ his voice after inhaling helium saying the same words
 ■ his voice mimicked by a professional
 ■ formants as sine waves [20]

 ■ a voice from a talking elephant and a seal
 ■ the Laurel and Yanny illusion voice [21].

Spectrographic analysis is linked to the basis of how the hear-
ing system works, and some creative lateral thinking is encouraged 
through the consideration of nonspeech sounds. Students are asked 
to analyze sounds such as those depicted in Figure 7 and to think 
about how they have been created. As such, the learning outcomes 
for creative learning were to enable students to think independently 
and take independent responsibility or initiative.

To focus on the practical skills acquired by the students, the 
main assessment for voice technologies was a 2-h practical exami-
nation that ended up being taken remotely by students who had left 
campus due to the COVID-19 pandemic. Each student was given a 
different (to avoid any direct collusion of measured values) spoken 
version (16-bit, 44,100-Hz sampled mono .wav file) of the sentence 
“She said to her friend, can I go out tonight to see the opera with 
you?” to be phonetically transcribed and analyzed in terms of fun-
damental frequency statistics, formant frequencies of a selection of 
vowels to enable a link to be made with their tongue position within 
the vocal tract, the nature of frication energy for a few fricatives, the 
acoustic similarities and differences in the three “n” sounds in the 
sentence, and the acoustic nature of sentence stresses. 

The assessment was designed as a creative exercise, where stu-
dents had the freedom to choose any DSP analyses. In their solu-
tion, the students carried out those analyses, from which they were 
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expected to appreciate the acoustic variation in speech output from 
an individual speaker—something that would be highly relevant for 
speech recognition, transmission, synthesis, and storage.

Unlike traditional DSP courses that focus on communication-
based problems, these three courses facilitate student learning in 
relation to their everyday life activities and experiences, e.g., their 
usefulness in wearables, healthcare tracking, and forensic technolo-
gies. However, these DSP courses alone are not adequate to foster 
creativity and the learning process, which leads us to the next factor 
in our endeavor to enhance learning—the environment.

The environment
To maximize student engagement, a lecture theater [Figure 8(a)] 
was jointly designed by students and academics to

 ■ allow students to be seated in teams so that peer learning can 
be facilitated

 ■ enable the lecturer to roam around the class (including between 
each row of seats) so that students are not in their comfort 
zone, and the lecturer is not confined to the front of the class

 ■ use different color lighting to gauge the mood of the students. It 
has been reported in chromotherapy [22] that red light can stimu-
late the body and mind and increase circulation (e.g., during 
important parts of the lecture), whereas blue light is believed to 
soothe illnesses and treat pain (e.g., during breaks within a lecture).
Our lecture theaters are also equipped with the Panopto video 

platform [23], which captures our lecture sessions. This allows our 
students to catch up with missed lectures or even revisit the lecture 
when things start “clicking.”

For brainstorming sessions where creativity is key, we have 
adopted the Google approach: we have our creative thinking room 
[Figure 8(b)] that provides ample and colorful space for students to 
have lightbulb moments with adaptable furniture and screen dis-
plays for discussions.

In the lecture theaters, everyone is the same. All academics are 
seated in an open-plan office. This inclusivity does not stop with 
academics. All students of electronic engineering have access to 
the open-plan office. Our open-door (office) policy encourages our 
students to engage with academics with impromptu discussions—
when creativity comes to light and science follows.

Feedback on the courses
To evaluate the impact of our innovative approach in teaching, 
Tables 2 and 3 summarize two surveys from our students. The first 
survey in Table 2 was undertaken externally by an agency, Ipsos 
MORI; this survey is known as the National Student Survey and 
therefore provides us a benchmark against other universities in the 
United Kingdom [24]. However, the first survey does not focus spe-
cifically on creativity in teaching. To this end, a second survey on 
creativity (Table 3) was carried out to investigate the impact of our 
teaching on creativity. The first survey interviewed our first cohort 
of graduates (13 students), whereas the second survey was based on 
our current cohort (30 students).

Discussion
Although not all questions in Table 2 are directly relevant to our 
approach on creativity, the survey does offer a useful benchmark 

at the national level. Relevant questions are highlighted in bold in 
Table 2, whereas all of the questions in Table 3 focus on creative 
and practical learning.

Student engagement initiatives 
More than eight out of 10 students found that the staff made the 
subject interesting. Perhaps this is due to our ongoing effort to 
contextualize the theories with applications, e.g., notch adaptive 
filtering in audio applications or ECGs in wearables [25]. We have 
always endeavored to make our course intellectually stimulating 
by exposing students to open-ended problems or exploratory exer-
cises. In fact, nine out of 10 students agreed. Likewise, the statistics 
for the question on learning opportunities to explore ideas in depth 
in Table 2 corroborate with those of question 5 in Table 3. Another 
contributing factor (not discussed in this article) that engages stu-
dents while promoting their independent and creative thinking is 
research projects, as found in [26].

Practical-oriented teaching 
Our project-led coursework encouraged our students to bring in-
formation together from different topics. For instance, they had to 

(a)

(b)

FIGURE 8. (a) The lecture theater designed jointly by students and aca-
demics. (b) The creative thinking room with funky furniture whose colors 
were inspired to reflect the resistor color codes. 
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Table 3. The student survey specifically addressing creativity and 
practical examinations.

Questionnaire Yes No Neither
Practical-based examinations
Q1. Do you feel that practical-based 
examinations are more appropriate than 
traditional paper-based examinations to 
assess your technical knowledge?

83% 7% 10%

Q2. Do you feel that practical-based 
examinations are more appropriate for 
students with disabilities than traditional 
paper-based examinations?

57% 17% 26%

Creativity
Q3. Do you think creativity is an impor-
tant aspect of engineering?

100% 0% 0%

Q4. Do you feel your creativity is 
stretched more by open-ended course-
work than coursework with unique solu-
tions?

83% 7% 10%

Q5. Has the open-ended coursework 
motivated you to research materials 
beyond the materials available for the 
module?

77% 17% 6%

Q6. Was the creative thinking room 
helpful in your studies?

60% 13% 27%

Q7. Have learning opportunities that fos-
tered your creativity at RHUL consolidat-
ed your independent thinking?

77% 10% 13%

Q8. Do you feel that you have been 
encouraged to be more creative by your 
study at RHUL?

70% 10% 20%

apply concepts from circuits and embedded systems to solve 
a biomedical signal processing problem in EE3060. Our prac-
tical approach to teaching has been successful, with 92% of 
our students acknowledging that they applied what they have 
learned. It is not a surprise, therefore, that most students prefer 
practical-based examinations (see question 1 in Table 3). The 
importance of the practical element in DSP education has al-
ready been highlighted [27].

Environment 
Our open-door policy also facilitated students getting prompt feed-
back on their work as well as academic support in general. Table 2 
confirms that this is the case. Students believe creativity is crucial in 
engineering, and they have been encouraged to be creative in their 
work (e.g., questions 3 and 8 in Table 3). On the other hand, the stu-
dents did not value the working environment as much as other fac-
tors. Only six out of 10 students believed that the creative thinking 
room was helpful in their study. Although the impact of this factor 
is not as apparent as the others, it is in the creative thinking room 
where the students would typically brainstorm. We tend to value 
the product design rather than the product process, which might 
explain the lower statistics for the environment [9]. In fact, it was 
found by several researchers that color and furniture play an im-
portant role in creativity [28], [29]. Our creative thinking room [il-
lustrated in Figure 8(b)] provides our students such an environment.

Conclusions
Divergent thinking leads to creativity, yet we are trained to focus 
on convergent thinking when we emphasize evaluation and analy-
sis [3]. There is not just a single kind of education that can teach 
creativity. As such, we have adopted a variety of good practices to 
encourage our students to be creative. These include open-ended 
problems, exploratory laboratory exercises, project-based course-
work that requires multidisciplinary and teamwork skills, and a cre-
ative working environment. Student feedback confirms that creativ-
ity is an important aspect of engineering. We hope that this article 
encourages educators to take more risks and embed creativity in 

Table 2. The feedback on our teaching from our first graduate cohort in 
2020. More details available from the National Student Survey [24]. 
Questions in bold font are relevant to our innovation in education, i.e., 
creativity and openness, including easy accessibility to staff.

Questionnaire
Actual 
Value

Sector 
Average in 
the United 
Kingdom

Teaching on my course
Staff are good at explaining things. 83% 84%
Staff have made the subject interesting. 83% 75%
The course is intellectually stimulating. 92% 86%
Learning opportunities
My course has provided me with opportunities 
to explore ideas or concepts in depth.

83% 78%

My course has provided me with opportunities 
to bring information and ideas together from 
different topics.

83% 82%

My course has provided me with opportunities 
to apply what I have learned.

92% 78%

Assessment and feedback
The criteria used in marking have been made 
clear in advance.

83% 67%

Marking and assessment has been fair. 83% 74%
Feedback on my work has been timely. 92% 61%
I have received helpful comments on my work. 75% 64%
Academic support
I have been able to contact staff when I  
needed to.

92% 86%

I have received sufficient advice and guidance 
in relation to my course.

92% 76%

Good advice was available when I needed to 
make study choices on my course.

83% 71%

Organization and management
The course is well organized and is running 
smoothly.

92% 65%

The timetable works efficiently for me. 92% 78%
Any changes in the course or teaching have 
been communicated effectively.

83% 75%

Learning resources
The IT resources and facilities provided have 
supported my learning well.

83% 84%

The library resources (e.g., books, online  
services, and learning spaces) have supported 
my learning well.

75% 84%

I have been able to access course-specific 
resources (e.g., equipment, facilities, software, 
and collections) when I needed to.

83% 87%

Learning community
I feel part of a community of staff and students. 83% 67%
I have had the right opportunities to work with 
other students as part of my course.

100% 89%
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their DSP teaching. We find it fitting to end this article by citing an 
old cliché used by Oppenheim as (for many of us) our DSP journey 
started with his textbooks.

1 + 1 = 3 [30]. Be creative.
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Multidisciplinary Project-Based Learning
Improving student motivation for learning signal processing

Due to its open-ended nature, project-based learning (PBL) 
is a suitable methodology to achieve student motivation and 
enrich creativity skills. This article describes the design of 

PBL activities in two undergraduate courses on digital signal 
processing techniques. The academic context is a bachelor’s 
degree in telecommunication engineering at the Universidad de 
Extremadura in Spain. Full specifications for five project pro-
posals that other instructors could use are explained, including 
an in-depth analysis of one of them in relation to the learning 
outcomes. The results of a survey designed to gain insight into 
students’ perceptions of the PBL process are provided. All of 
the participants agree or strongly agree that PBL improves the 
long-term retention of knowledge and provides learning with a 
more practical orientation toward real goals than conventional 
learning. Also, 91% of them consider that PBL motivates them 
more than traditional methodologies. The instructor’s conclu-
sions after the project development and assessment are that PBL 
considerably helped the students to think more creatively and 
increased their motivation in comparison to other activities.

Introduction
In the current context of high pressure for innovation, the need 
for engineers with creativity skills is often emphasized [1], [2]. 
PBL is an attractive methodology to improve these skills [3]. 
Whereas many teaching–learning activities in engineering 
education focus on constrained problems leading to a unique 
right answer, open-ended PBL allows for the enrichment of 
divergent thinking skills. Also, student engagement increases 
when the projects refer to real-world applications.

Engineers must be able to work across disciplinary bound-
aries. Addressing PBL from a multidisciplinary perspective 
allows students to establish links among different areas of 
knowledge. Multidisciplinary projects also promote out-of-
the-classroom discussions, giving the students the possibility 
to create connections with experts in other areas [4].

Signal processing has been defined by the IEEE Signal 
Processing Society as the “science behind our digital life.” 
Therefore, signal processing courses are a suitable place to 
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incorporate a multidisciplinary perspective. While PBL meth-
odology is not new in engineering education, there is much 
room in the literature for contributions about the design and 
implementation of challenging real-world, multidisciplinary 
projects in signal processing courses.

This article reports on the design of activities for two 
undergraduate signal processing courses at the Universidad de 
Extremadura. Detailed specifications for five multidisciplinary 
project proposals are provided, including an in-depth analysis 
of one of them in relation to the learning outcomes. Also, an 
assessment of the application of PBL in these two courses is 
presented, including students’ perceptions obtained through a 
survey and the instructor’s reflections.

Academic context
The context of this educational experience is a bachelor’s de-
gree in telecommunication engineering, accredited with the 
European Accredited Engineer label, EUR-ACE. This study 
program includes two compulsory cours-
es on digital signal processing. The first 
course is Digital Processing of Audio and 
Video Signals (DPAVS) and provides six 
European Credit Transfer and Accumula-
tion System (ECTS) credits. It is placed 
in the fifth semester and covers some of 
the fundamentals of digital signal process-
ing: analog-to-digital conversion, discrete 
Fourier transform, the implementation of infinite-impulse 
response and finite-impulse response filters, and multirate 
signal processing.

The second course, named Digital Audio (DA), also pro-
vides six ECTS credits. It is placed in the seventh semester and 
focuses specifically on speech and audio signal processing. 
The contents in this case are: the fundamentals of speech and 
audio signal processing, analysis techniques, biomedical appli-
cations of acoustic signals, speech and audio compression, and 
a concise overview of multiple application areas of speech and 
audio signal processing.

Both courses are run using a combination of the following 
methodologies: expository lectures, paper and pencil exercises, 
guided practical sessions, and PBL activities. Guided practical 
sessions take place in a computer lab and have been designed 
to provide hands-on training on MATLAB programming to 
solve digital signal processing problems.

PBL-based methodology
A student-centered PBL methodology has been designed and 
applied based on the following aspects:

 ■ open-ended project assignments
 ■ real-world connection
 ■ multidisciplinary context
 ■ different project assignments that require overlapping 

knowledge
 ■ time management through the use of Gantt charts
 ■ multifaceted assessment through rubrics, in which creativi-

ty is included as a criterium.

Open-ended project assignments are designed to enrich 
divergent thinking skills. Only some specifications are given, 
while the rest of the project is open, encouraging the students 
to reach their own solutions. This is a key aspect in promoting 
their creativity and innovation capacity.

Students are organized into teams of two people, and sev-
eral teams are grouped into a cluster. Each team develops a 
project. Each project assignment contains particular activities 
for clusters of teams (named “variations” in the assignments). 
The grouping of teams into clusters is different for each activ-
ity within the same project assignment. The proposal of sim-
ilar (but not identical) projects to different teams allows for 
the establishment of two different collaboration levels: strong 
collaboration between the two students within each team and 
collaboration among different teams.

A factor that favors creativity is to propose a long-term 
project with a minimum time-frame of four weeks from the 
project proposal to the delivery of the written report and at 

least three additional days between the 
delivery of the report and the oral pre-
sentation. The generation of new ideas 
requires creative moments, which are often 
spontaneous and difficult to fit into a very 
tight time frame. Long-term projects also 
benefit students in terms of a better knowl-
edge retention. 

To be comfortable generating new ideas, 
a student needs “creative confidence” [5]. The facilitator’s 
attitude is a major factor in developing this confidence by 
creating an environment where new ideas are never nega-
tively criticized, especially in classroom discussions and 
oral presentations.

The design of project proposals
In the current context of a strong emphasis placed on educa-
tional technologies, effort should be invested by the instructors 
on deciding the challenges that students face. One of the key el-
ements for a successful PBL methodology is a careful design of 
the project proposals in terms of the learning outcomes. Some 
general aspects about the design of the five project assign-
ments presented are covered in the “General Aspects of Project  
Design” section, whereas the “Project Example: An Acoustic 
Rainfall and Hail Sensor” section gives an in-depth analysis 
of one of them.

The general aspects of project design
Project specifications are provided in “Project Topics” and 
the “Project Example: An Acoustic Rainfall and Hail Sen-
sor” section. These specifications could be directly used 
by any instructor to run a PBL activity. The topics (and 
the course in which they are proposed) are the follow-
ing: an acoustic rain detector (DA), audio steganography 
(DPAVS), spectral analysis of bird chirps (DPAVS), he-
lium speech and formant synthesis (DA), and audio clas-
sification for hearing-aid applications (DA). See “Project 
Topics” for further details on these topics. 

Due to its open-ended 
nature, project-based 
learning (PBL) is a suitable 
methodology to achieve 
student motivation and 
enrich creativity skills.
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For extension reasons, this sidebar focuses on four project 
proposals. Other project-based learning assignments 
were designed and tested, for example, about the spec-
tral analysis of marine sounds, audio fingerprinting with 
spectrograms, and digital music synthesis with low com-
putational requirements.

The development of the projects requires a preliminary 
task related to time management and a final task consist-
ing of preparing written reports and oral presentations, 
which are common to all of the proposals, as explained 
in the “Project Example: An Acoustic Rainfall and Hail 
Sensor” section. To avoid repetition, they are not includ-
ed here.
Audio steganography
Steganography studies the techniques that allow for the 
concealment of messages so that their existence is not per-
ceived. In contrast to cryptography, which focuses on 
making information understandable to any unauthorized 
person, steganography tries to hide the existence of the 
message. Specifically, a message of this type is con-
cealed in another message that contains it (called a carri-
er), whose knowledge can be public and does not raise 
suspicions. Steganography can be used for legal and ille-
gal purposes.

When the message is hidden in an audio file, the pro-
cess is called audio steganography [S1]. An example tech-
nique of sound steganography consists of hiding an image 
in a spectrogram. This project focuses on this technique. 
The different activities to be performed are explained next.
Search for applications 
The students should search for information and make a 
summary of the findings with an extension of 150–200 
words. The topics depend on the cluster of teams. They 
include: for variation 1, a legal use of digital steganogra-
phy, including source referencing; for variation 2, an ille-
gal use of digital steganography, including a citation of an 
actual piece of news (not older than three years).
Search for an audio file
This activity consists of getting a suitable audio file. It must 
contain a hidden image that is visible through the calcula-
tion of a spectrogram (i.e., the audio file is the result of 
applying audio steganography). Each team can obtain 
such a file by directly performing an Internet search (files 
with Creative Commons license) or search for freely avail-
able code to create it. Proper source citing is mandatory. 
Each team will use different audio files. The coordination 
will be done in the classroom.
Spectral analysis on simple test signals 
The student teams will generate spectrograms from audio 
signals hiding an image. However, to make the interpre-
tation of these spectrograms easier, it is proposed that 

students perform a test with simple signals as a prelimi-
nary step. Using MATLAB, students should investigate the 
influence of segment length and window type on the 
results of the analysis. Time and frequency resolution will 
be taken into account.

The test signal will be created as the concatenation of two 
segments of cosenoidal signals, with amplitudes A1  and 
A2  and frequencies f1  and f2 . The sampling frequency 
will be 44,100 Hz, and the length of each segment is 
Nsample  samples. The teams should modify the frame length 
used in the short-term spectral analysis (keeping the 
window type constant) and also check the influence  
of the window type (keeping the frame length constant).  
The specifications for the first cluster of teams (vari-
ation 1) are: , ;N 12 000sample = ;AA 11 2= = Hz,,2 003=f1   

, Hz;f 2 5032 =  rectangular and Blackman windows will be 
compared; to study the influence of segment length, rectan-
gular windows will be used. For the second cluster of 
teams (variation 2), the specifications are: , ;N 9 000sample =  

;A A 21 2= =  Hz,,1 600f1 =  , Hz;f 2 6002 =  rectangular and  
Hamming windows will be compared; to study the influence 
of segment length, Hamming windows will be used.
Spectral analysis with real audio steganography signals 
Once the main aspects of spectrogram analysis are under-
stood through the use of simple signals, the students should 
perform a spectral analysis of the audio file containing the 
hidden image obtained before. In a similar way to that 
proposed in the aforementioned section, the students 
should investigate the influence of segment length and win-
dow type on the results.
Spectral analysis of bird chirps
A sinusoidal signal consisting of a frequency sweep over 
time is called chirp (https://es.mathworks.com/help/ 
signal/ref/chirp.html). The frequency can increase or 
decrease, and the variation can be nonlinear. Also, the 
amplitude envelope does not have to be constant. In gen-
eral, a signal is considered to be chirp-like if its amplitude 
envelope shows a slow evolution compared to its frequen-
cy variation.

Nature offers numerous examples of chirp-like sounds. 
For example, some animals (birds, bats, frogs, dolphins, 
whales, and so on) emit this type of sound, which is of 
great interest in the field of bioacoustics. By identifying 
specific acoustic features, it is possible to perform auto-
matic species classification. In this project, spectral anal-
yses will be performed on chirp-like signals recorded 
from birds.
Search for information about bird species emitting chirps 
Extremadura is a region in Spain especially known for the 
conservation of some of the most threatened bird species 
in Europe. The different clusters will search for information 
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about the following topics and make a summary of the 
findings with an extension of 150–200 words: bird spe-
cies that are present in this region and emit chirp-like 
sounds (variation 1) and research studies where spectro-
grams of bird chirps have been used (variation 2).
Spectral analysis on simple signals 
First of all, the main concepts involved will be worked out 
through the use of simple synthetic signals. A synthetic 
chirp signal will be generated with the following specifica-
tions: for variation 1, a linear frequency variation from 
150 to 700 Hz in 2 s, at a sampling rate of 2,000 Hz; for 
variation 2, an exponential frequency variation from 200 
to 800 Hz, in 1 s, at a sampling rate of 4,000 Hz.

A short-term spectral analysis will be performed on the 
synthetic signal to create a spectrogram. The impact of 
frame length and windowing type on the results should be 
analyzed. To do this, the window type will be fixed while 
the frame length is varied, and afterward, the frame length 
will be fixed, and the window type will be varied. The 
fixed window type will be rectangular (variation 1), Bartlett 
(variation 2), or Hamming (variation 3). The comparison 
will consider rectangular versus Blackman windows (varia-
tion 1), rectangular versus Bartlett windows (variation 2), 
and Hamming versus Blackman windows (variation 3).
Search for sound data files 
To perform the next task, the students need a sound file 
that corresponds to a chirp-like sound of a bird. The teams 
will search for sound files available (with Creative 
Commons license) on the Internet, or they will make the 
recording themselves. An example of an online database 
is https://www.xeno-canto.org/, but it is not mandatory to 
use it. It is recommended that the sound produces an easy 
to interpret spectrogram (i.e., the frequency sweep can be 
seen as clearly as possible). This depends not only on the 
sound but also on the parameters chosen for the spectral 
analysis so this section should be considered together with 
the next one.
Spectral analysis on bird sounds 
A short-term spectral analysis will be performed on the 
bird signal, and the spectrograms will be interpreted. The 
impact of the frame length and windowing type on the 
results will be analyzed. The final report will include a dis-
cussion about all of the results. Window types should be 
the following: a Tukey window with different values of its 
cosine factor parameter (variation 1), a Kaiser window 
with different values of its shape factor (variation 2), and a 
Chebyshev window with different values of its sidelobe 
magnitude factor (variation 3).
Helium speech and formant synthesis
This project deals with the analysis of helium speech as a 
context for learning about the source–filter model of 

speech production and formant synthesis of speech. The 
helium effect is easy to understand by considering the 
source–filter model of speech production. Inhaling helium 
changes the formants of speech (and therefore the spec-
trum envelope), but it does not change the pitch.

Although the vocal tract shape can be complex, its effect 
can be modeled by one or more acoustic tubes. The sim-
plest model is based on a single cylindrical tube with a 
uniform cross section that is closed at the location of the 
vocal folds and open at the mouth. A more accurate 
model can be obtained by connecting two or more uni-
form tubes with different cross-sectional areas [S2]. The 
resonance frequencies depend on each particular vocal 
tract geometry. For a tube with length L, the lowest reso-
nant frequency takes the value F1 = c/4L, where c is the 
speed of sound in the tube. Due to this dependence on 
the speed of sound, formants are considerably affected by 
helium. Helium is lighter than air, and sound waves travel 
more quickly through it.

Because it sounds very funny, helium voice often appears 
up in movies and television shows. “The Helium Insufficiency” 
episode of the popular television series The Big Bang 
Theory is a well-known example. Deep-sea divers also 
breathe in an atmosphere based on a helium-rich gas mix-
ture, with a consequent impact on their voices. We will use 
a fragment of helium speech and a fragment of normal 
speech in air to analyze the helium effect. After the analy-
sis tasks, some synthesis tasks will be addressed. Formant 
synthesizers are based on the source–filter theory of 
speech production. The transfer function of the vocal tract 
is modeled by a connection of simple resonators simulat-
ing formant frequencies and bandwidths. The proposed 
synthesis tasks refer to this technique. 

Search for information about helium speech unscramblers 
The teams will search for information about helium speech 
unscrambler technology available for communication with 
sea divers. They should describe a commercial product 
from one manufacturer and give a technical description in 
150–200 words. Different clusters of teams will focus on 
manufacturers from different world regions: Europe and 
Africa (variation 1), North and South America (variation 2), 
and Asia and Australia (variation 3).
Analysis of speech in helium versus speech in air 
The teams need sound samples corresponding to the 
same speaker before and after inhaling helium from a 
balloon. It is relatively easy to find videos on the Internet 
showing the experiment (for example, on YouTube). The 
students should not perform the experiment themselves but 
search for available sound files or videos. Using the filters 
available for advanced search, only videos freely offered 
under a Creative Commons license will be considered.

(continued)
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The topics were selected to engage the students. Some 
of the projects in the DA course involve the use of machine 
learning techniques. The combination of signal processing 
and machine learning has a lot of interest in today’s market-
place since it allows for addressing many different multidis-
ciplinary projects.

These PBL activities are aimed at contributing to the 
achievement of different transverse and specific learning 
outcomes. The transverse ones are common for all of the 
project proposals, although the level of acquisition pursued 
is different depending on the course. They are the follow-
ing: to synthesize and extract the necessary information to 
solve a problem, to work in an active and autonomous way, 
to develop creative solutions, to develop a lifelong learn-

ing mindset, to work collaboratively, to learn technical 
vocabulary in English (since the students are Spanish native 
speakers), to communicate results through the preparation 
of technical reports and oral defenses, and to improve time 
management skills.

The specific learning outcomes are: to know the applica-
tions of spectral analysis, to understand the impact of segment 
length and window type on a spectral analysis, to apply feature 
extraction techniques from audio signals, to understand rule-
based speech synthesis, and to produce programs in MAT-
LAB. See “Project Topics” for more details.  

All of the aforementioned learning outcomes are related to 
program outcomes and match the institution’s vision of devel-
oping “a model of its own identity with quality teaching” and 

Vowel segments will be considered. The specifications for 
the different clusters are the following: for variation 1, 
vowels/æ/(bat) or/T /(but); for variation 2, vowels/ 2 /
(ahead) or/ ] :/(her); for variation 3, vowels/i:/(beat) or/
I /(bit); for variation 4, vowels/u/(boot) or/M /(book).
Formant extraction 
The formant frequencies of different vowels obtained from 
ordinary speech and helium speech will be compared. The 
results will be compared with the theoretical predictions 
made with acoustic tube models. Only the concatenation 
of simple lossless tubes with uniform cross sections will be 
considered. To extract the values of the formant frequen-
cies from a speech segment, it is suggested that students 
calculate the roots of the linear prediction polynomial.
Formant-based synthesis of vowels 
The formant synthesis of speech is based on a set of rules 
that control a highly simplified source–filter model, where 
the vocal tract characteristics are modeled by the inter-
connection of second-order all-pole filter sections, one 
per formant. These second-order resonators can be com-
bined in parallel or cascade configuration. In this sec-
tion, we focus on vowel sound synthesis, for which the 
cascade approach is more suitable. In a cascade config-
uration, there is no need to specify gains for each for-
mant resonator, and two parameters only are necessary 
for each single section: the resonance center frequency 
and the bandwidth. Resonator coefficients can be com-
puted from these two parameters and the sampling rate.
Cascade formant synthesis of stationary vowels 
The next step will be to implement a MATLAB function that 
generates a stationary vowel sound using formant synthe-
sis. The function will allow students to model speech in air 
or speech in helium. The necessary specifications are the 
fundamental frequency, duration, sample rate, and con-
crete vowel. The input to the first resonator will be the glot-

tal source, modeled as a pulse train (Rosenberg model 
[S3]). Thereafter, the input to a resonator is the output of 
the previous one. Also, a radiation model will be added 
after the resonators. After implementing the function, the 
vowels specified for each cluster of teams will be synthe-
sized in air and helium. Also, the teams will investigate 
the influence of the number of formants considered in the 
final quality.
Formant synthesis of vowel sequences 
In the previous task, stationary vowels were synthesized. In 
this section, the teams will go a step further by modeling a 
time-varying vocal tract so that sequences of vowels can 
be generated. To get a natural transition, the formants of 
one vowel must gradually change in small steps to the 
ones of the subsequent vowel so that an abrupt discontinui-
ty is avoided. Each team will choose the parameter values 
for the algorithm so that the transition is as natural as pos-
sible. The algorithm will be tested by generating several 
vowel sequences in which the formant frequencies and 
bandwidths gradually change over time.
eSpeak text-to-speech converter
eSpeak is an open source software speech synthesizer 
based on a formant synthesis method. After downloading 
the software (http://espeak.sourceforge.net/), the teams 
will execute it to obtain speech in Spanish and test the intel-
ligibility of the synthetic speech by using the following sub-
jective tests: a simple version of the Diagnostic Rhyme Test 
based on a small number of word pairs (variation 1) or a 
simple version of the Modified Rhyme Test based on a small 
number of word pairs (variation 2).
Audio classification in the context of hearing aid 
applications
Different acoustic environments require different hearing 
aid settings to achieve the best sound quality. Therefore, 
hearing aids usually include a module to classify sounds 
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sensed by the microphone. Then, the sound is processed 
using different algorithms depending on the result. 
Classification systems consider a set of features, carefully 
chosen to emphasize signal characteristics that allow it to 
perform a discrimination. The goal of this project is to 
develop a classification system of sound types based on 
wavelet features.
Search for information about commercial hearing aids 
The student teams will search for information about sound 
classification used in hearing aids in the current market. 
Although it can be difficult to find out all of the technical 
details of a commercial product, it will always be possible to 
provide an explanation of functionality from the user’s point 
of view. The technical description will be as deep as the 
availability of public information allows. The extension 
should be 150–200 words. The different clusters of teams 
will look for commercial products of manufacturers from dif-
ferent world regions: Europe and Africa (variation 1), North 
and South America (variation 2), and Asia and Australia 
(variation 3).
Preparation of the sound database 
Sound samples will be necessary to check the perfor-
mance of the system. There are multiple sound databases 
freely available; however, each team will create its own 
database. It is recommended that they take into account 
the daily life situations of people using hearing aids.
Feature extraction 
A major step in the design of a classification system is the 
selection of an efficient set of features that are capable of 
discriminating the signals. Short-time Fourier transform is 
traditionally used in audio feature extraction for time–fre-
quency decomposition. The main drawback is its resolu-
tion limitation, which is dependent on the window size: the 
shorter the analysis window, the better the time resolution, 
but the poorer the frequency resolution.

To overcome the limitation of a fixed analysis window, 
the wavelet transform uses short windows at high frequen-
cies and long windows at low frequencies. The result is 
that different resolutions are obtained for different frequen-
cies. For this reason, this type of analysis is known as mul-
tiresolution analysis [S4].  

In this project, a decomposition of the audio signal based 
on the discrete wavelet transform will be used. Using the 
MATLAB wavelet toolbox (https://es.mathworks.com/ 
products/wavelet.html), it is possible to divide the spectrum 
of the signals into sub-bands. Then the energy distribution 
in each sub-band will be calculated. These energies are 
the features on which the classification is based. The num-
ber of extracted features depends on the number of levels 
of decomposition performed in the wavelet transformation.

The MATLAB wavelet toolbox includes several families 
of wavelets that are commonly used. The specifications 
for the different clusters of teams are the following: 
Daubechies (variation 1), Symlet (variation 2), and Coiflet 
(variation 3). The different teams will investigate the impact 
of different decomposition levels and wavelet order on the 
classification performance. A discussion will be included 
in the report.

Classification 
This classification task is proposed in the same way as in the 
“Project Example: An Acoustic Rainfall and Hail Sensor” section.
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providing “a firm and resounding orientation toward research, 
innovation and its consequent transfer.” They also match the 
University of Extremadura’s mission statement, which includes 
the following aspects: “integral formation,” “quality teaching 
and research,” “key role in the development of the regional 
society,” “pursuit of excellence,” and “national and interna-
tional projection.”

PBL should help students establish connections to the real 
world. Therefore, all of the project proposals involve the pro-
cessing of realistic signals. In the case of the lower course, 
the project assignments include a first activity based on ideal 
synthetic signals. The motivation behind this is that some sig-
nal processing concepts are easier to understand if they are 
first applied to an ideal signal. This is just a preliminary step 

in the projects that are always focused on an application with 
realistic signals.

Project example: An acoustic rainfall and hail sensor
This section presents an example of a project specification and 
discussion. The assignment was used in the DA course in the 
academic year 2019–2020, when the student survey reported 
in the “Students’ Perceptions of PBL” section was carried out. 
The different aspects taken into account in the design are ana-
lyzed. The paragraphs included in the students’ assignments 
are shown in italics. 

The project deals with the development of algorithms for 
automatic rainfall and hail detection from acoustic record-
ings by using signal processing and machine learning. The 
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assignment belongs to the area of pure PBL since there is not 
a theoretical lecture about machine learning techniques in 
the course, and, thus, the students learn through the project. 
Also, some of the acoustic features used were not previously 
explained in a theoretical lecture.

Apart from other goals usually present in PBL activities, 
this proposal was conceived with the aim of promoting sus-
tainable and socially responsible engineering. It was taken 
into account that the United Nations’ Sustainable Develop-
ment Goals (SDGs) should be increasingly present within 
the universities’ learning programs in an effort to reach 
the United Nations 2030 Agenda. The assignment presents 
this motivation:

Due to climate change, the risk of flooding is increas-
ing. In this context, rainfall and hail sensors are im-
portant as they can provide an alarm system for areas 
highly prone to floods or landslides. Placing these sen-
sors would allow to detect if rainfall or hail rates are 
exceeding threshold levels.

In the scientific literature, it is possible to find sev-
eral contributions on acoustic rainfall sensing systems. 
These systems are based on recorded sound produced 
by impact of raindrops or hail particles and provide 
near real-time data. Most of current acoustic systems 
for rainfall detection have been proposed for sound re-
corded with hydrophones in the sea [9]. Some examples 
of low-cost and portable acoustic sensors can also be 
found in terrestrial environments [10]. 

Power distribution of rainfall and hail sound through 
the spectrum is not the same for different environments. 
For these reasons, the scenario must be taken into ac-
count. Also, the sound is different depending on the pre-
cipitation intensity.

In this project, a simple system for automatic detec-
tion of heavy rainfall and hail events by using acous-
tic recordings in a terrestrial environment will be 
designed and coded in MATLAB (see Figure 1). Also, 
the students should provide some ideas about how to 
implement a complete detection system for a concrete 
application.
Creativity is fostered on several occasions through the 

assignment. The first time the assignment text refers to cre-
ative solutions is the following:

The environment to consider depends on the cluster 
of teams, as follows: forest environment (variation 1), 
urban environment (variation 2). Each team can freely 
choose the specific characteristics of the forest or ur-
ban environment. This is an open-ended project, where 

many different systems are possible. Please feel free 
and use your creativity to develop your own system.
The development of the project includes the preparation 

and update of a project schedule. The requirement of a Gantt 
chart one week after proposing the project is proven to have 
improved students’ time-management capabilities. It is pro-
posed as follows:

Project schedule needs to be planned at the beginning. 
This involves creating a list of project tasks (and stu-
dent assigned, for team work efficiency) and project 
timeline, with the aid of Gantt charts. The initial plans 
might suffer modifications so that the final Gantt chart 
might be different from the initial one. These deviations 
should be reflected in the final report.
Connection with the real world is emphasized by promot-

ing the realization of realistic own recordings to create the 
sound database:

One task of this project is to create a sound data set. 
This dataset will include rainfall and hail sounds, 
completely different sounds and also other sounds that 
could be easily confused with rain or hail. The files 
can be, if possible, recorded by the students or can be 
downloaded from data sets (under Creative Commons 
license) from the Internet.
The different learning styles and capabilities that students 

have must be addressed by projects that allow extensions with 
varying levels of difficulty. For example, in the creation of 
the database, different solutions were allowed: own record-
ings, audio files downloaded from the Internet, or hybrid solu-
tions. Due to rainfall scarcity (especially hail) in the Spanish 
region where the university is located, some teams used a 
hybrid approach (own recordings combined with downloaded 
files), whereas other teams directly chose the easiest way, i.e., 
to download files from the Internet. The latter is also useful 
for increasing the ability to search for and analyze informa-
tion. Potential differences in the recording conditions of the 
sound samples and their potential impact on the results were 
analyzed only by some teams.

Many possible features could be used to perform class dis-
crimination. Figure 2 plots a spectrogram displaying spectral 
differences between rain and hail sound segments as well as 
a third segment in which only traffic noise was present. The 
motivation to propose features was that the extraction process 
was based on simple algorithms that are easy to understand 
by the students. The suggested features were band energy 
ratio and the following spectral descriptors: centroid, spread, 
skewness, kurtosis, entropy, flatness, crest, flux, slope, 
decrease, and roll-off point. These descriptors were not spe-
cifically defined and explained in a theoretical lecture but 
learned through the project. The project is open ended, and 
different teams used different feature subsets as the assign-
ment proposed:

Features are any measurable aspect of an audio signal 
that might be used for classification purposes. A major 
step in the design of a signal classification system is the 
selection of an efficient set of features that are capable 

Preprocessing Feature
Extraction Classification

Rain

Hail

None

FIGURE 1. The sound classification system.
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of discriminating the classes. In general, the magnitude 
of the spectrum increases with rainfall intensity. How-
ever, this increment is more noticeable in specific fre-
quency bands. The band energy ratio (the ratio of the 
energy in specific frequency-bands to the total energy) 
can be used as a feature to discriminate sounds. Other 
spectral features than can be used for classification 
purposes can be tested (https://www.mathworks.com/
help/audio/ug/spectral-descriptors.html). Each team 
can choose a suitable set of features that are able to 
discriminate the different classes.
The preferred features chosen by most of the teams were 

spectral centroid and roll-off, followed by band energy ratio. 
Two features not mentioned in the assignment—but theo-
retically studied in the lectures—were short-term energy and 
zero-crossing rate, and these were included by more than one 
half of the teams.

Multidisciplinarity is introduced through the application of 
machine learning techniques. It is used as a tool to increase 
student motivation. This new topic could be difficult to work 
out by a single team; however, assignments for different teams 
require some overlapping knowledge. During project devel-
opment, there will be discussions about machine learning 
involving different teams. This has proven to be very effective 

in the learning process of a new topic. Therefore, both learn-
ing outcomes (i.e., to work collaboratively and to synthesize 
and extract the necessary information to solve a problem) are 
addressed. Also, creativity is fostered again by the last two sen-
tences in the following paragraph of the assignment:

Classification experiments will be conducted to check 
system performance. Pattern recognition techniques 
can be used to automatically classify objects into cat-
egories using a training dataset. There are multiple 
classification engines that could be tested. However, 
since this course is mainly about digital audio process-
ing, it is suggested that the students invest more effort 
in the feature extraction process and focus on a con-
crete type of classifier. Discriminant analysis or sup-
port vector machines are recommended. For predictive 
accuracy estimation, a leave-one-out cross-validation 
method is suggested. Each team will decide and set-up 
its own classification experiments. Creative ideas will 
be highly appreciated.
Although variations were accepted, all of the teams decid-

ed to use discriminant analysis [7] and, concretely, the clas-
sify function in MATLAB. The probable reason was that 
the project introduced a completely new knowledge field, 
and students did not feel self-confident enough to introduce 
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FIGURE 2. The spectrograms of different sounds [6]. (a) Rain, (b) hail, and (c) no rain or hail, just traffic.
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variations. Since the project is proposed in an audio signal 
processing course, machine learning tasks are proposed in a 
complementary way, and it is difficult to go deep in this area. 
For the same reason, automatic feature selection was avoided, 
and the instructor simply recommended the use of a small fea-
ture subset selected by the students. Some creative solutions 
were provided, for example, by setting an additional binary 
discrimination task where rain and hail sounds constituted a 
single precipitation class.

Lab projects often have a poor connection with the real 
world because they lack a system perspective. For this reason, 
it is required that the students conceive the whole system. This 
task also promotes creativity because students can propose 
their own application scenarios. The text in the assignment is 
as follows:

Some ideas about how to implement the 
complete detection system for a concrete 
application should be included as future 
directions.
To become aware of new challenges that 

it is possible to face in a field provides moti-
vation to create a lifelong learning mindset. 
With this goal in mind, the following task is 
included in the assignment:

Each team should propose a new topic 
in the area of environmental signal processing.
Concerning the development of communication skills, the 

following tasks were proposed:
After completion of the experiments, the following deliv-
erables should be uploaded to the Moodle virtual class-
room: a technical report prepared according to a given 
format (IEEE double-column template for conference 
papers) with a limit of 6 pages; slides for a 10 minute  
(5 minute/person) oral presentation; the source code 
and any data that is necessary to replicate the results.
Oral presentations in small groups (six students and the 

professor compose the audience) are a key aspect to building 
self-confidence in a low-risk environment.

The key role of grading rubrics as assessment tools
Grading rubrics are key tools to help instructors and students 
focus their attention on the most relevant aspects of an assign-
ment. Assessing creativity is particularly difficult because 
it is a subjective concept. However, it is necessary to define 
some subcriteria so that students know that the risk of making 
mistakes by trying innovative ways will be recognized in the 
final grade. Creative thinking is assessed through the follow-
ing subcriteria:

 ■ propose ideas that might be uncommon or risky but that 
show some potential to become useful

 ■ propose and test multiple solutions and critically evaluate 
their performance

 ■ propose changes to the assignment specifications to enrich 
the project facing new challenges

 ■ relate the challenge to other situations in different applica-
tion contexts

 ■ use original visually engaging elements in the oral 
presentation.
Two rubrics are used to evaluate the project assignments 

in both courses, one for the report and another one for the oral 
presentation. The first one includes the following criteria: 
results, depth of analysis, conclusion, bibliography, structure 
and organization, use of equations, figures and tables, format, 
language (since students are Spanish, writing in English is 
positively assessed), quality of writing (word choice, spelling, 
and grammar), teamwork, creativity, and innovation.

The rubric used for the oral presentation includes the fol-
lowing assessment criteria: subject knowledge, organization, 
quality of the slides, visually engaging elements, language (if 
it is written in English), delivery techniques (elocution, enthu-

siasm, posture gestures, and eye contact).

Students’ perceptions of PBL
During the academic year 2019–2020, the 
students responded to a questionnaire de-
signed to collect information on their per-
ceptions about this PBL methodology. The 
survey was implemented online within 
the institutional Moodle virtual classroom 
environment. Participation in the survey was 
voluntary and anonymous. The target groups 

were 27 students in the DPAVS course (13 of which voluntarily 
participated in the survey) and 22 students in the DA course 
(with 11 voluntary participations). In the DA course, the proj-
ect was the rainfall detection system described in the “Project Ex-
ample: An Acoustic Rainfall and Hail Sensor” section.

The results of questions 1–3 (Figure 3–5) illustrate that the 
participants mostly think that PBL increases their moti-
vation for the subject (91% agree or strongly agree), gives 
the learning experience a more practical orientation toward 
real objectives (100% agree or strongly agree), and improves 
the long-term retention of knowledge (100% agree or strongly 
agree). In the case of DA, these results confirm that the strate-
gies followed in the design of the rainfall and hail detection 
project to achieve students’ engagement had fruitful results.

In the case of question 3 (Figure 5), the results obtained 
from the fourth-year students are considered more reliable 
because they experienced the methodology one year before 
and thus had a better perspective of the long-term retention 
of knowledge.

According to the responses to question 4 (Figure 6) in both 
courses, 70% of the students would reduce (62%) or eliminate 
(8%) the number of expository lectures.

The answers to question 5 (Figure 7) reveal that guided 
lab sessions are considered necessary for most of the stu-
dents, which means that students expect some initial guided 
practical training. Even in the case of the higher-level course, 
where many students have good MATLAB programming 
skills, 36% of them would increase the number of guided 
practical sessions.

The answers to question 6 (Figure 8) reinforced the idea 
that the PBL methodology is useful since 96% of the students 

Even in the case of the 
higher-level course, where 
many students have good 
MATLAB programming 
skills, 36% of them would 
increase the number of 
guided practical sessions.
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total workload of this course does not change, I would … the number of 
expository lectures.
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ing experience a more practical orientation toward real goals.
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would keep or increase the workload of this type of activity. 
Only one student would reduce the workload, and none of 
them would eliminate the PBL activities.

Discussion
The considered courses are based on a combination of method-
ologies. A pure PBL scenario has not been tested. The author 
considers that some traditional instruction is still necessary at 
the undergraduate level to provide some background informa-
tion and basic concepts. One of the main difficulties in apply-
ing pure PBL, especially in the fifth semester, is that students 
are not sufficiently used to this methodology. This is also the 
students’ perception since only two out of the 24 surveyed 
students considered that expository lectures should be com-
pletely removed.

Guided lab sessions have a high formative value because 
the students actively participate. Since they try to finish the 
tasks within the session, they don’t lose concentration. Many 
university courses rely entirely on this type of activity. As 
previously mentioned, due to the limited time schedule and 
closed-ended nature of the exercises, there is little place for 
divergent thinking.

PBL has proven to be very effective in meeting the diverse 
learning needs of all of the students. Students have different 
levels of motivation, learning styles, and responses to instruc-
tional practices. Student-centered methodologies are very 
powerful in facing the scenario of student diversity. PBL has 
also demonstrated its effectiveness concerning the enrichment 
of divergent thinking skills. Similar challenges have led to a 
wide variety of solutions.

Since the DA course uses knowledge from the DPAVS course, 
the author has been able to positively assess the retention of 
knowledge from the instructor’s point of view. The author’s per-
ceptions are in agreement with the students’ responses. The con-
cepts and techniques related to short-term spectral analysis have 
been assimilated by the students, and they remember them the 
next year.

Apart from the aforementioned benefits, the experienc-
es have allowed for the identification of a positive collateral 
result. When students perform traditional learning activities 
or even innovative activities, but in the disciplinary context of 
their engineering field, they do not speak very much about it 
outside of the academic context. In contrast, multidisciplinary 
projects are more susceptible to dissemination. Currently, 
there is a shortage of engineering vocations. Multidisciplinary 
PBL helps to create a learning environment that transcends 
the classroom. This should contribute to explaining the role 
of engineers in society and consequently engage more young 
talent in engineering studies [8].

Conclusions
PBL methodology has been successfully applied to teach sig-
nal processing in two undergraduate courses at the Universidad 
de Extremadura in Spain. Survey results have demonstrated 
that students have a positive view of these activities.

Due to the benefits of cthis methodology, initiatives 
aiming at sharing PBL experiences and material should 
produce a positive impact on the digital signal processing 
teaching–learning community. Future work should focus 
on the design and sharing of new PBL resources with a 
social dimension that helps to explain the important role 
of engineers in society within the framework of the United 
Nations SDGs.
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 INNOVATION STARTS WITH EDUCATION

Meinard Müller, Brian McFee, and  
Katherine M. Kinnaird

In this artaicle, we illustrate how music may serve as a vehicle to 
support education in signal processing. Using Fourier analysis 
as a concrete example, we demonstrate how the music domain 

provides motivating and tangible applications that make learning 
signal processing an interactive pursuit. Furthermore, we indicate 
how software tools, originally developed for music analysis, pro-
vide students multiple entry points to delve deeper into classical 
signal processing techniques while bridging the gap between edu-
cation and cutting-edge research.

Introduction
Music is a ubiquitous and vital part of our lives. Thanks to the 
proliferation of digital music services such as Spotify, Pandora, 
and iTunes, we can enjoy music anytime and anywhere, interact-
ing with it in a variety of ways, both as listeners and active partici-
pants. Aside from human speech, music may be the most familiar 
form of structured audio to most people. Conversely, as a scien-
tific discipline, signal processing can be obtuse and unfamiliar to 
newcomers. The conceptual and practical understanding of signal 
processing requires a rather sophisticated knowledge of advanced 
mathematics, which can make the subject intimidating—even at 
the introductory level. 

In this article, we show how music may serve as a vehicle to 
make learning signal processing an interactive pursuit, whether 
through concrete examples, hands-on exploration, or experi-
mentation. The inclusion of music bridges the gap between the 
humanities and more typical signal processing communities such 
as mathematics, computer science, and engineering. This is the 
reason why one can find music as an integral part of books on 
multimedia and audio signal processing [1], [2]. Throughout this 
article, we show how music yields an intuitive entry point to sup-
port education on various levels. This leads to a learning approach 
that Guzdial [3] calls a “contextualized educational experience” 
for signal processing.

This article presents a scaffold for incorporating interactive 
music-based examples and music technology into an existing 
signal processing course. The proposed pipeline moves students 
through Bloom’s taxonomy (Figure 1), helping them transition 
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from passive learners to engaged researchers and practitioners [4], 
[5]. This scaffolding resembles “legitimate peripheral participa-
tion” [6], aligning classroom learning more closely to the appren-
tice model of how signal processing is actually researched and 
practiced. Presented as a series of small but meaningful steps, this 
scaffold adds music to a signal processing course, transitioning 
it from a standard lecture into one that is interactive and project 
based. Each step provides a more context-rich signal process-
ing course than the previous step. The examples in the presented 
scaffold are informed by the field of music information retrieval 
(MIR), which has interests in extracting the semantic content 
from audio signals.

The article is organized into two main parts. In the first part, 
we highlight how music processing can serve as a tangible and 
approachable real-world application of signal processing meth-
ods. As such, music-based examples aid students in moving from 
recalling and reciting signal processing concepts (the lowest level 
of Bloom’s taxonomy) toward comprehension and application 
(the second and third levels). In particular, we give a gentle intro-
duction to Fourier analysis motivated by music and discuss the 
basic properties of music signals via Fourier analysis.

In the second part, we discuss the role of software tools in sig-
nal processing education and detail how they add varying depths of 

interaction, supporting students’ development toward independent 
work in signal processing. We first explore constrained interaction 
through the FMP notebooks [7], which closely follow parts of the 
textbook Fundamentals of Music Processing [8] and provide inter-
active activities to enhance the teaching and learning of classical 
signal processing techniques. As such, the FMP notebooks carry 
students further up Bloom’s taxonomy, solidifying their abilities to 
apply signal processing concepts in musical examples. From the 
instructor’s perspective, the inclusion of the FMP notebooks adds 
interactive elements to the typical lecture-based signal processing 
classroom with little effort on the instructor’s part. 

We then discuss incorporating the Python package librosa 
[9], which enables broader experimentation with signal process-
ing concepts. With the experience gained using the FMP note-
books, students have the technical skills and conceptual fluency 
to synthesize their signal processing knowledge. Then, adopting 
and creating programming scripts from the elements in librosa 
allows students to delve deeper into the implications—in a music 
context—of altering and exploring the role of various parameters 
common in signal processing. From the instructor’s perspective, 
including librosa can add depth to examples in a typical lecture-
based course as well as provide the ingredients for an end-of-
semester project.

Recall

Comprehend

Apply

Analyze

Signal Processing Without 
Music Examples

Signal Processing With
Music Examples 

FMP Notebooks

FMP Notebooks

Librosa

Librosa

Memorize and Recite Signal
Processing Formulas

Reformulate Signal 
Processing Formulas Into 
Musical Ideas

Combine Signal Processing 
Ideas to Process or Remix 
Music in a Specific Way

Design a Program to 
Apply a Signal Processing
Concept to Music

Apply Signal Processing 
Concepts to Audio Settings

Compare Applications of 
Signal Processing to Music 
or Other Domains

Evaluate

Synthesize

FIGURE 1. An adaptation of Bloom’s taxonomy [4] based on levels from Starr et al. [5]. Students begin at the lowest level. Layering music examples, the 
fundamentals of music processing (FMP) notebooks, and librosa can help them transition to the highest levels of understanding.
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The music domain
A typical introductory course on digital signal processing covers 
a range of topics, including but not limited to: sampling theory, 
Fourier analysis and the discrete Fourier transform (DFT), con-
volution and filtering, time–frequency representations, and so on. 
Although these topics are each fundamental and broadly appli-
cable to a wide array of settings, they can also be conceptually 
difficult to grasp for newcomers.

When teaching a challenging concept, instructors attempt 
to find a compelling example that their students can hold onto 
through the sea of equations and subtleties. For signal process-
ing, music can be that motivating example and help anchor the 
abstract concepts in a concrete, familiar context. This kind of 
contextualized pedagogical practice has been shown to improve 
student retention in the computer science curricula [3]. As such, 
using music as a context for signal processing gives students 
an avenue for explaining signal processing in their own words, 
which moves students from simply recalling formulas and recit-
ing facts (the lowest level of learning on Bloom’s taxonomy) to 
deeper levels of comprehension.

As a multimedia domain, music offers a wide range of data 
types and formats, including text, symbolic data, audio, image, 
and video [8], [10]. For example, music can be represented 
as printed sheet music (often available in the form of digitized 
images), encoded as Musical Instrument Digital Interface (MIDI) 
or MusicXML files (structured textual data), and played back as 
audio recordings. In this article, our primary focus is on music sig-
nals or audio representations that encode acoustic waves as gener-
ated by an instrument (or voice) and are transmitted through the air 
as pressure oscillations. As opposed to scores and most symbolic 
representations, an audio representation encodes the information 
needed to reproduce a specific acoustic realization of a piece of 
music. This includes the temporal, dynamic, and tonal microde-
viations that make up the particular performance style of a musi-

cian. However, in an audio representation, note parameters such 
as onset times, pitches, or note durations are not given explicitly.

Audio representations of music connect to several standard 
concepts in signal processing. In Figure 2, we have the musical 
score, which is performed to create an audio representation. We 
can then derive several signal processing concepts, including the 
waveform, spectrogram, and fundamental frequencies. Construct-
ing these different representations and concepts can be a chal-
lenging signal processing problem, which, in turn, can provide 
a motivating example to understand and apply signal processing 
concepts appropriately. 

As a small side note, we want to mention in this context that 
the design of computational approaches for converting an acous-
tic music signal into some form of music notation—a task com-
monly referred to as automatic music transcription—is one of 
the most challenging and fascinating research problems in signal 
processing and artificial intelligence. As detailed by Benetos et al. 
[11], it comprises several subtasks, including multipitch estima-
tion, onset and offset detection, instrument recognition, beat and 
rhythm tracking, interpretation of expressive timing and dynam-
ics, and score typesetting, to name a few. In the remainder of this 
section, we explore the connection between music and signal pro-
cessing and how incorporating music examples into a standard 
signal processing course provides students with a method for a 
more nuanced understanding of the topic.

Understanding Fourier analysis through music
Music signals present numerous opportunities to pose natural 
questions that may be understood by a novice. At very short time 
scales, one might want to know the fundamental frequency of a 
played note; at longer time scales, one may ask about the timbre 
of different instruments; moving to even longer time scales al-
lows us to inquire about higher-level concepts such as melody 
and rhythm. Each of these questions can be addressed by  different 
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applications of Fourier analysis, and exposure to the same basic 
principle in multiple related contexts can help solidify a student’s 
understanding. Both the familiarity and complexity of music makes 
it an ideal motivation and a vehicle for learning signal processing.

The key idea underlying Fourier analysis is to represent arbi-
trary signals as combinations of sinusoids. When introducing 
Fourier analysis, it is natural to start with simple combinations 
consisting of a single sinusoid only, i.e., a pure tone. A sinusoid is 
completely specified by three parameters: its frequency (the num-
ber of oscillations/s, measured in hertz), its amplitude (the peak 
deviation of the sinusoid from its mean), and its phase (determin-
ing where in its cycle the sinusoid is at time zero). Thinking of 
frequency as the rate of vibration, it is easy to understand that the 
higher the frequency of a sinusoidal wave, the higher it sounds. 
This physical analogy yields an intuition for signal processing. 
For example, a sinusoid having a frequency of 440 Hz (physi-
cal attribute) corresponds to the pitch A4 (musical and perceptual 
attribute). Similarly, the amplitude of a sinusoidal wave relates to 
the intensity of the sound from a musical instrument. 

With this intuition in mind, the aim of Fourier analysis can 
be interpreted as a kind of reverse engineering problem. Given 
a music signal, the aim is to measure the intensity with which 
a sinusoidal wave of a given frequency occurs in (or, more pre-
cisely, correlates with) the signal. The collection of intensity val-
ues for all frequencies (concealing the role of the phase for the 
moment) is commonly referred to as Fourier transform. Plotting 
the intensity values over a frequency axis yields a visualization 
that reveals the signal’s frequency spectrum.

As an example, let us consider the note C4, having a funda-
mental frequency of 261.6 Hz. When playing this note on dif-
ferent instruments, we hear different sounds. Figure 3 illustrates 
the waveforms for C4 when played on a piano, trumpet, violin, 
and flute. Looking at the respective Fourier transform (frequen-
cy–intensity plot), one can observe peaks at the fundamental 
frequency f = 261 Hz and its harmonics 2f, 3f, 4f, and so on. 
However, these plots are not identical. While the peak values 
drop with increasing frequency for the piano and the violin after 
f = 261 Hz, the highest peak occurs at the fourth harmonic 
(4f = 1,046 Hz) for the trumpet and at the second harmonic 
(2f = 523 Hz) for the flute. The distribution of the signal’s energy 
across the harmonics is one important characteristic for the tim-
bre or tone color of an instrument.

The Fourier transform yields frequency information that is 
integrated over the entire time domain, but most signals are not 
stationary, and their frequency contents change over time. This 
observation leads to another central technique in signal process-
ing: short-time Fourier transform (STFT). Instead of considering 
the entire signal at once, the main idea of the STFT is to partition 
the signal into small sections in time and consider each smaller 
section individually. To this end, one fixes a window function, 
which is a function that is nonzero for only a short period of 
time (defining the considered section). The original signal is then 
multiplied with the window function to yield a windowed signal. 
To obtain frequency information at different time instances, one 
shifts the window function across the time axis and computes a 
Fourier transform for each of the resulting windowed signals. 

The STFT yields a 2D representation of the original signal that 
can be visualized by means of a 2D image known as a spectro-
gram. In this image, the horizontal axis represents time, and the 
vertical axis represents frequency. Musical signals provide a con-
crete demonstration of the utility of the STFT: changes in pitch, 
loudness, or other musically salient characteristics are directly 
observable in the spectrogram image.

The distinction between the STFT and a standard Fourier 
transform can often be confusing to students. Additionally, the 
STFT introduces new parameters not present in the standard Fou-
rier transform, notably the window length (also called the frame 
length) and the frame rate (as dictated by the hop length or num-
ber of samples between successive frames). Without a grounding 
context, these parameters have no obvious default setting, and 
students may not immediately grasp the effect of these param-
eters on the resulting analysis. However, musical signals provide 
a means for demonstrating the effects of these parameters and, by 
appealing to basic psychoacoustics, provide a way to connect the 
values of these parameters to real phenomena. For example, the 
frame length can be connected to a minimal (perceptible) non-
trivial analysis frequency. In this setting, music provides a distinct 
advantage over other example stimuli (e.g., speech or environ-
mental sound) as it is relatively easy to find (or construct) musical 
examples that probe the extremal cases of STFT parameters to 
demonstrate the behavior.

Returning to Figure 3, which shows the spectrograms for note 
C4, one can observe horizontal lines that are stacked on top of 
each other for all four instruments. These equally spaced lines 
correspond to partials, which are sinusoidal sound components 
that are not necessarily—but are often close to—harmonics. In 
the case of the piano, the higher partials contain less and less of 
the signal’s energy. Furthermore, the decay of a piano sound over 
time is reflected by the fading out of the horizontal lines. For the 
trumpet sound, the spectrogram indicates that the signal’s energy 
is concentrated more in the higher partials. Also, opposed to the 
piano sound, there does not seem to be any intensity decay over 
time, indicating that the trumpet player keeps the volume of the 
sound constant. 

While this is also the case for the violin and flute sounds, one 
can observe other phenomena that typically go along with certain 
playing styles, such as vibrato. For example, when looking at the 
waveform, one can observe periodic variations in amplitude, also 
referred to as amplitude modulation. In the spectrogram (particular-
ly visible in the flute example), these variations appear as the regular 
pulsation of intensity values along the time dimension. Amplitude 
modulations often go along with frequency modulations, which are 
regular, pulsating changes of frequency over time. In the spectro-
gram (particularly visible in the violin example), these modulations 
appear as wave-like oscillations along the time dimension. 

Both amplitude and frequency depend on two parameters: the 
extent of the variation and the rate at which the amplitude or fre-
quency is varied. Even though they are simply local changes in 
intensity and frequency, the modulations do not necessarily evoke 
a perceived change in loudness or pitch of the overall musical 
tone. Rather, they are features that are used by musicians to influ-
ence the timbre of a musical tone.



77IEEE SIGNAL PROCESSING MAGAZINE   |   May 2021   |

W
av

ef
or

m

0.
5

–0
.5

0
1

2
T

im
e 

(s
)

3

0

Amplitude

W
av

ef
or

m

0.
5

–0
.5

0
1

2
T

im
e 

(s
)

3

0

Amplitude

W
av

ef
or

m

0.
5

–0
.5

0
1

2
T

im
e 

(s
)

3

0

Amplitude

W
av

ef
or

m

0.
5

–0
.5

0
1

2
T

im
e 

(s
)

3

0

Amplitude

P
ia

no
T

ru
m

pe
t

V
io

lin
F

lu
te

W
av

ef
or

m
 (

Z
oo

m
)

0.
5

–0
.5 1.

05
1.

06
1.

07
1.

08
T

im
e 

(s
)

1.
09

1.
1

0

Amplitude

F
ou

rie
r 

T
ra

ns
fo

rm

S
pe

ct
ro

gr
am

0.
1 0

2,
00

0

1,
50

0

1,
00

0

50
0 0

0
50

0
1,

00
0

F
re

qu
en

cy
 (

H
z)

1,
50

0
2,

00
0

0
1

2
T

im
e 

(s
)

3

0.
05

Intensity

0.
1 0

0
50

0
1,

00
0

F
re

qu
en

cy
 (

H
z)

1,
50

0
2,

00
0

0.
05

Intensity

0.
2 0

0
50

0
1,

00
0

F
re

qu
en

cy
 (

H
z)

1,
50

0
2,

00
0

0.
1

Intensity

0.
2 0

0
50

0
1,

00
0

F
re

qu
en

cy
 (

H
z)

1,
50

0
2,

00
0

0.
1

Intensity

Frequency (Hz)

W
av

ef
or

m
 (

Z
oo

m
)

0.
5

–0
.5 1.

05
1.

06
1.

07
1.

08
T

im
e 

(s
)

1.
09

1.
1

0
Amplitude

F
ou

rie
r 

T
ra

ns
fo

rm

S
pe

ct
ro

gr
am

2,
00

0

1,
50

0

1,
00

0

50
0 0

0
1

2
T

im
e 

(s
)

3

Frequency (Hz)

W
av

ef
or

m
 (

Z
oo

m
)

0.
5

–0
.5 1.

05
1.

06
1.

07
1.

08
T

im
e 

(s
)

1.
09

1.
1

0

Amplitude

F
ou

rie
r 

T
ra

ns
fo

rm

S
pe

ct
ro

gr
am

2,
00

0

1,
50

0

1,
00

0

50
0 0

0
1

2
T

im
e 

(s
)

3

Frequency (Hz)

W
av

ef
or

m
 (

Z
oo

m
)

0.
5

–0
.5 1.

05
1.

06
1.

07
1.

08
T

im
e 

(s
)

1.
09

1.
1

0

Amplitude

F
ou

rie
r 

T
ra

ns
fo

rm

S
pe

ct
ro

gr
am

2,
00

0

1,
50

0

1,
00

0

50
0 0

0
1

2
T

im
e 

(s
)

3

Frequency (Hz)

T
ru

m
pe

t
V

io
lin

F
lu

te

0.
5

–0
.50

Amplitude

0.
5

–0
.50

Amplitude

0.
5

–0
.50

Amplitude

0.
5

–0
.50

Amplitude
0.

5

–0
.50

Amplitude

0.
5

–0
.50

Amplitude

0.
1 0

0.
05

Intensity

0.
2 0

0.
1

Intensity

0.
2 0

0.
1

Intensity

2,
00

0

1,
50

0

1,
00

0

50
0 0

Frequency (Hz)

2,
00

0

1,
50

0

1,
00

0

50
0 0

Frequency (Hz)
2,

00
0

1,
50

0

1,
00

0

50
0 0

Frequency (Hz)

FI
GU

RE
 3

. T
he

 w
av

ef
or

m
, F

ou
rie

r t
ra

ns
fo

rm
, a

nd
 s

pe
ct

ro
gr

am
 fo

r d
iff

er
en

t i
ns

tru
m

en
ts

 p
la

yi
ng

 th
e 

sa
m

e 
no

te
 C

4 
(fu

nd
am

en
ta

l f
re

qu
en

cy
 2

61
.6

 H
z)

.



78 IEEE SIGNAL PROCESSING MAGAZINE   |   May 2021   |

The practical application of Fourier analysis to music
So far, we have established that music can provide intuition for 
the Fourier transform and its short-time version, and we have 
demonstrated how the Fourier transform and STFT can provide 
an intuitive understanding of a music signal’s properties. With 
this connection between music and signal processing established, 
music scenarios such as singing (see Figure 2) can motivate stu-
dents to explore the potential of Fourier analysis in an interactive 
and playful fashion. Most students and schoolchildren are famil-
iar with music video games (e.g., “SingStar” or “Rock Band”), 
where the task is to sing along with the music to score points. To 
compare the singer’s input waveform with the game’s reference 
melody, one could employ Fourier analysis. This makes it pos-
sible to convert the waveform into a sequence (or trajectory) of 
fundamental frequency values. 

Such trajectories are often made visible in the video games, 
superimposed with piano roll-like visualizations of reference 
pitches. One can mimic the basic idea of such games by employ-
ing real-time-capable software for visualizing the frequency con-
tent of sounds while singing. Deepening the understanding of 
signal properties, such software also allows students to experi-
ment with algorithmic parameters that control the STFT’s time 
and frequency resolution as well as the intensity visualization 
(e.g., switching from a linear to a decibel scale).

Besides analyzing the melodic properties of music signals, the 
Fourier transform can be applied for many more music processing 
tasks, including harmony analysis, instrument recognition, rhyth-
mic analysis, and source separation. In the following, we examine 
beat tracking. Temporal and structural regularities are perhaps the 
most important incentives for people to get involved and interact 
with music [8], [12]. It is the beat that drives music forward and 
provides the temporal framework for a piece of music. Intuitively, 
the beat corresponds to the pulse that a human taps along with 
when listening to music [13]. The term tempo [often specified in 
beats per minute (BPM)] refers to the rate of the pulse and is given 
by the reciprocal of the beat period.

The beat tracking task seeks to extract the beat and tempo 
information from audio recordings, and it is one of the central and 
most well-studied research problems in MIR. Beat tracking is an 
instructive, challenging, and multifaceted application for teaching 
and learning signal processing. Most approaches to beat tracking 
are based on two assumptions: first, the beat positions correspond 
to note onsets (often percussive in nature), and second, beats are 
periodically spaced in time. Note that for certain types of music 
these two assumptions may be questionable. For example, in pas-
sages with syncopation, beat positions may not go along with any 
onsets, or the periodicity assumption may be violated for roman-
tic piano music with strong tempo fluctuations (played rubato). 
The explicit modeling of such simplifying assumptions is at the 
core of researching and teaching music processing.

The two assumptions to beat tracking motivate approaching it 
in two steps. Consider the short excerpt of “Another One Bites the 
Dust” by Queen, depicted in Figure 4, for a concrete visualiza-
tion as we examine each of these steps. In the first step, one often 
estimates the positions of starting times of notes or other musical 
events as they occur in a music signal—a task commonly referred 

to as onset detection. As illustrated in Figure 4, onsets often go along 
with a sudden change in a signal’s properties. Such changes may 
be seen as sharp amplitude increases in the waveform. For notes 
with soft onsets or complex music with several instruments playing 
at the same time, the detection of individual note onsets becomes 
much harder. In these cases, converting the signal into a spectrogram 
turns out beneficial. In particular, percussive onsets, as produced by 
a drum or hi-hat, result in vertical lines in the spectrogram. 

This phenomenon comes from Fourier analysis: the energy of 
transient events is spread across the entire spectrum of frequencies, 
thus yielding broadband spectral structures. To detect these struc-
tures, one basic idea is to compute a kind of distance between sub-
sequent column vectors of the spectrogram. This results in a novelty 
function (also known as the spectral flux) that captures the sudden 
changes in the signal’s frequency distribution. The peaks of such a 
novelty function are good indicators for note onset candidates.

In the second step, based on the assumption that beats are 
periodically spaced in time, the novelty function is analyzed with 
regard to reoccurring patterns. This is a particularly suitable, intui-
tive, and concrete setting for studying different techniques of peri-
odicity analysis—a central concern of signal processing and time 
series analysis. One approach based on autocorrelation analysis 
aims to detect periodic self-similarities by comparing a novelty 
function with time-shifted copies [14]. An alternative approach 
uses a bank of comb filter resonators, where a novelty function 
is compared with templates consisting of equally spaced spikes, 
with each template representing a specific tempo [15]. A third 
approach compares the novelty function with sinusoidal tem-
plates, each corresponding to a specific frequency. This is exactly 
the idea of Fourier analysis, yielding a frequency representation 
of the novelty function. 

Starting with playing and listening to music, a teacher can 
smoothly transition to introducing the basic concepts of signal 
processing. Singing analysis and beat tracking are two tangible 
example tasks that help transition learning signal processing from 
one of rote memorization to a contextually meaningful pursuit. 
Additional examples can be found in the Fundamentals of Music 
Processing textbook [8]. Although our focus in this section has 
been on the applications of basic Fourier analysis, many music 
analysis tasks can be easily adapted to more advanced topics, 
such as wavelet theory [16]. In the next section, we discuss edu-
cational software tools for teaching and learning such concepts.

Educational software tools
In addition to motivating and tangible music-based scenarios, 
the availability of suitably designed software packages that make 
signal processing more accessible is crucial in view of interac-
tive learning [17]. Over the last 20 years, as MIR developed as 
a research field, so did computational accessibility, and the MIR 
community has contributed with several excellent toolboxes that 
provide modular source code for processing and analyzing mu-
sic signals. Prominent examples are essentia [18], madmom [19], 
Marsyas [20], and the MIRtoolbox [21]. These toolboxes are 
mainly designed for research-oriented access to audio process-
ing, yielding code for audio feature extraction as well as for vari-
ous MIR applications. Here, we focus on two concrete software 
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 examples: the FMP notebooks [7] that have an explicit educa-
tional lens and the Python package librosa [9] that has become a 
standard in MIR research—and recently has also been incorpo-
rated into introductory MIR courses. We describe how these tools 
facilitate multiple entry points to delve deeper into classical signal 
processing techniques while bridging the gap between education 
and cutting-edge research.

FMP notebooks
FMP notebooks offer an interactive foundation for MIR and for 
teaching and learning FMP [7], which, when used in a traditional 
signal processing course, can enhance students’ understanding of 
the topic. By closely following the eight chapters of the textbook 
[8], the FMP notebooks provide an explicit link between struc-
tured educational environments and current professional practices 
in line with current curricular recommendations for computer sci-
ence [22]. Furthermore, these notebooks provide a vehicle for 
students to transition between comprehending signal processing 
ideas in their own words (the second level of Bloom’s taxonomy) 
toward applying these ideas interactively to music examples (the 
third and fourth levels of Bloom’s taxon-
omy). For many MIR tasks, fundamental 
algorithms and signal processing tech-
niques are discussed in detail. An over-
view of the main topics covered by the 
FMP notebooks is presented in Figure 5. 
Besides the treatment of the theory, the 
notebooks demonstrate how these tech-
niques can be implemented by providing 
specific Python code examples.

The FMP notebooks leverage the 
Jupyter notebook framework [23], which 
has become a standard in industry as 
well as in educational settings. This open 
source web application allows users to 
create documents that contain live code, 
text-based information, mathematical 
formulas, plots, images, sound examples, 
and videos. Jupyter notebooks are often 
used as a publishing format for repro-
ducible computational workflows [23]. 
They can be exported to a static HTML 
format, which makes it possible to gener-
ate web applications that can be accessed 
through standard web browsers with 
no specific technical requirements. By 
leveraging the Jupyter framework, the 
FMP notebooks bridge the gap between 
theory and practice by interleaving tech-
nical concepts, mathematical details, 
code examples, illustrations, and sound 
examples within the unifying Jupyter 
framework (see Figure 6). Additionally, 
the notebooks are essentially self-con-
tained in terms of content by including 
introductions for each MIR task, provid-

ing important mathematical definitions, and describing the com-
putational approaches in detail.

One primary purpose of the FMP notebooks is to provide audio-
visual material as well as Python code examples that implement 
the computational approaches step by step. Additionally, the FMP 
notebooks provide an interactive framework that allows students 
to experiment with their own music examples, explore the effect 
of parameter settings, and gain an understanding of the computed 
results by suitable visualizations and sonifications. These function-
alities are examples of “procedural literacy” [24], centering theo-
retical discussions around computational procedures.

The FMP notebooks, even though they contain a library of 
MIR functions (called libfmp), are not designed to be a toolbox 
per se. Instead, for a given music processing pipeline, the FMP 
notebooks introduce the code in a step-by-step fashion interleaved 
with explanations. This allows a student to access, visualize, and 
understand the intermediate steps. We illustrate this principle by 
coming back to our beat tracking scenario. In Figure 4, we intro-
duced a spectrum-based novelty function, the peaks of which 
indicate note onset candidates. 
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We now apply the same concept to an orchestral recording of 
Waltz No. 2 by Dimitri Shostakovich’s Suite for Variety Orchestra 
No. 1. Figure 7 illustrates the score (in a piano-reduced version) 
as well as the novelty function of a short excerpt of this piece. 
Note that the first beats (downbeats) of the 3/4 meter are played 
softly by nonpercussive instruments, leading to relatively weak 
and blurred onsets. In contrast, the second and third beats are 
played sharply (“staccato”), supported by percussive instruments. 
These properties are also reflected by the spectral-based novelty 
function: the peaks that correspond to downbeats are hardly vis-
ible or even missing, whereas the peaks that correspond to the 
percussive beats are much more pronounced. 

As for beat tracking, we again use Fourier analysis—this time 
applied to the novelty function rather than to the audio signal. 

As for the STFT, the idea is to locally compare a given novelty 
function with windowed sinusoids. This time, the frequency of 
the sinusoid is interpreted in terms of BPM (e.g., an oscillation 
rate of 1 Hz corresponds to 60 BPM). The resulting spectro-
gram is then called a tempogram, where the frequency axis 
is interpreted as a tempo axis. Besides the frequency, we also 
use the phase information of the complex STFT coefficients to 
determine for each time position a windowed sinusoid that best 
captures the local peak structure of the novelty function. This is 
illustrated in Figure 7. 

Instead of looking at the windowed sinusoids individually, 
the idea is to employ an overlap-add technique by accumulat-
ing all of the locally optimal sinusoids over time. As a result, one 
obtains a single function that can be regarded as a local periodic-

ity enhancement of the original novelty 
function. Revealing PLP information, 
this representation is referred to as a PLP 
function [25]. Having a pronounced peak 
structure, the beat positions can now be 
obtained from the PLP function using a 
simple peak picking strategy.

By looking at this concrete example, 
we illustrated how the FMP notebooks 
yield explicit access to all of the interme-
diate steps, starting with a musical score 
and ending with a sonification of the de -
tected beat positions superimposed with 
the original audio recording. Further-
more, this example showed how Fourier 
analysis could be applied for periodicity 
enhancement while highlighting the role 
of the phase. When teaching and learn-
ing signal processing, we advocate that 
it is essential to have a holistic view of 
the MIR task at hand, the algorithmic 
approach, and its practical implementa-
tion. Looking at all of the steps of the 
processing pipeline sheds light on the 
input data and its biases, possible vio-
lations of model assumptions, and the 
shortcomings of quantitative evaluation 
measures. Only by an interactive exami-
nation of all of these aspects will stu-
dents acquire a deeper understanding of 
the concepts, transitioning from merely 
explaining concepts (the lowest level of 
Bloom’s taxonomy) to applying their sig-
nal processing approaches both concep-
tually and in code. 

Furthermore, the imprecise defini-
tions of the MIR tasks allow for a richer 
discussion and cognitive interaction with 
signal processing and music. For exam-
ple, in beat tracking, there are a number 
of questions that naturally arise: What is 
an onset? Can it be described by a single 

Part Title Notions, Techniques, and
Algorithms

Basics

Basic Information on Python, Jupyter
Notebooks, Anaconda Package 
Management System, Python 
Environments, Visualizations, and 
Other Topics 

Overview
Overview of the Notebooks 
(https://www.audiolabs-
erlangen.de/FMP)

Music 
Representations

Music Notation, MIDI, Audio Signal, 
Waveform, Pitch, Loudness, Timbre

Fourier Analysis 
of Signals

Discrete/Analog Signal, Sinusoid, 
Exponential, Fourier Transform, 
Fourier Representation, DFT, FFT, 
STFT

Music 
Synchronization

Chroma Feature, Dynamic 
Programming, Dynamic Time Warping,
Alignment, User Interface

Music Structure 
Analysis

Similarity Matrix, Repetition, 
Thumbnail, Homogeneity, Novelty, 
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FIGURE 5. An overview of the main topics covered by the FMP notebooks (adapted from [7] and [8]). 
FFT: fast Fourier transform. 
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time instant? Does beat tracking make sense for certain musi-
cal passages (e.g., music with rubato)? Would humans agree 
when asked to specify a single tempo value? Is the evaluation 
metric relevant for a given application? In a curriculum on 
signal processing, wrestling with such questions illuminates 
to students the challenges of computational approaches in the 
applied sciences.

The librosa python package
The FMP notebooks provide an interactive framework in which 
students can learn about and experiment with signal processing 
and MIR algorithms. However, when students transition from 
learning to professional practice and research, we expect them 
to outgrow the FMP notebooks and begin developing their own 
digital signal processing methods and programs, corresponding 
to students’ arrival at the top of Bloom’s taxonomy. However, this 
transition can be difficult without proper infrastructural (i.e., soft-
ware) support. The librosa package was designed to fill this role, 
providing standardized and flexible reference implementations of 
many common methods in MIR [9].

Whereas the FMP notebooks are designed to introduce the 
fundamental concepts in signal processing, librosa is intended to 
facilitate the high-level composition of basic methods into com-
plex pipelines. As its original intended audience was the MIR 
research community, it was designed to facilitate the development 
of experimental research code. In the seven years since its first 
release, numerous scholarly publications have used librosa to pro-
vide the underlying signal processing framework, and many of 
these publications include open source software that students and 
researchers can download, use, and extend the work. The avail-

ability of open research software provides an avenue to train new 
researchers as they can directly see how prior work was done and 
have significantly less work to do if modifying or extending it to 
achieve a new goal.

Conversely, librosa itself provides reference implementations 
of many previously published methods (various feature extrac-
tors, phase retrieval methods, spectrogram decompositions, beat 
tracking algorithms, and so on) that can be used to independently 
replicate a method with relatively little effort. To demonstrate 
this, a collection of advanced examples are provided in the docu-
mentation, several of which demonstrate how to fully reproduce 
a published method by combining the building blocks provided 
by librosa. These examples can also be exported as Jupyter note-
books that a user can download and run on their own machine. 
This feature of the documentation serves a similar, interaction-
oriented goal as the FMP notebooks, except that it is aimed princi-
pally at researchers and software developers already familiar with 
the fundamentals.

The design of librosa
The application programming interface (API) of librosa was 
intentionally designed to present a low barrier to entry for new 
users, eschewing complex class hierarchies and object-oriented 
interfaces in favor of simple data structures (numerical arrays) 
and functions. This kind of function-oriented design can be easier 
for new users to learn as functions (in contrast to objects) have 
well-defined entry and exit points and no internal state for the pro-
grammer to understand (i.e., all parameters are explicitly visible 
in the call signature). Similarly, variable names are consistently 
defined across the package and are human readable (e.g., n_fft 
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FIGURE 6. An overview of didactical aspects of the FMP notebooks and their implementation using the interactive Jupyter notebook framework.
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instead of N for the number of analysis frequencies in a Fourier 
transform). (These design principles, among many others found 
in the scientific Python community, were clearly articulated by 
Gaël Varoquaux’s 2017 keynote address at the annual SciPy 
conference [26].)

Figure 8 provides a brief example code listing that follows 
the rhythm analysis example given in Figure 7. While the library 
allows a user to directly construct the PLP function from an audio 
signal (line 7), a user can also explicitly construct intermediate 
representations, such as the novelty function, directly (lines 10 
and 11). The resulting code is still compact and high level, but 
it also facilitates exploration and experimentation. For example, 
a user can easily change the calculation of the novelty function 
and leave the remainder of the PLP analysis fixed, allowing them 
to carefully measure the result of their interventions. This design 

philosophy is not limited to this one example but rather is seen 
throughout the library as a whole.

Beyond its API design, the library developers strive for com-
plete and thorough documentation, fully worked code examples 
for each function, and well-documented and readable source 
code. The latter point is enforced by stringent code review and 
ensures a high standard of quality for all source code contri-
butions. Well-written source code can be instructional, both in 
demonstrating clearly how any particular method works and in 
providing more general examples of how to structure complex 
programs and libraries. The intent behind the emphasis on code 
quality is to allow any knowledgeable user to look into the code 
and, with minimal effort, quickly be able to understand how it 
works—and potentially extend it with new contributions. More 
generally, the library itself provides an example of many   
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FIGURE 7. An illustration of the music processing pipeline for computing the predominant local pulse (PLP) function given a novelty function (see also Fig-
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(d) the novelty function with a windowed sinusoid, and (e) the PLP function. 
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software engineering best practices that 
can be readily adopted in research set-
tings, such as version control, code 
review processes, and continuous inte-
gration testing [27].

Both the FMP notebooks and librosa 
create opportunities for interaction in a 
traditional signal processing course. Add-
ing just the FMP notebooks adds interac-
tions similar to a “coding worksheet” that 
allows students to dynamically play with 
examples. Additionally, students become 
familiar with the Jupyter framework and 
Python syntax. Including librosa allows 
for broader experimentation with signal 
processing and provides a common lan-
guage for cumulative course projects, 
where students can demonstrate their 
familiarity and creativity with a number 
of signal processing topics. Furthermore, 
leveraging tools like the FMP notebooks and librosa provides 
opportunities for learning beyond signal processing. By employ-
ing these Python- and Jupyter-based tools, students are passively 
learning about open access and reproducibility, two topics that 
cut across disciplines.

Interactivity and learning
In this article, we have presented a scaffold to naturally tran-
sition students from starting to learn about signal processing 
to beginning independent research. Using music examples 
and technologies provide what Guzdial [3] calls a contextual-
ized educational experience for signal processing. Concrete-
ly, we have demonstrated how music-based examples can 
make Fourier analysis more tangible to beginners. We then 
demonstrated how the FMP notebooks provide a constrained 
scaffold for interacting with music examples for signal pro-
cessing. Building on the skills and conceptual understand-
ing gained through concrete and interactive music-based 
examples, students can explore more advanced applications 
of Fourier analysis through broader experimentation via the 
Python library librosa.

The incorporation of music into a signal processing course 
provides students an avenue for “inauthentic legitimate periph-
eral participation” [28] in the field of signal processing. Extend-
ing the work of Lave and Wenger [6] by defining “legitimate 
peripheral participation” as building a scaffold for introducing 
students to concepts similar to the apprentice structure, Guzdial 
and Tew [28] connect this model to computing courses that have 
media-based examples (such as photographs) as the basis for the 
coursework. In this article, we have modeled a similar extension, 
applying their framework to the specifics of music as a vehicle 
for learning signal processing by first engaging the highly struc-
tured FMP notebooks and then leveraging the range of tools 
in the librosa package. In effect, this structure brings students 
through Bloom’s taxonomy, helping them to reach the deepest 
understanding of signal processing concepts.

Signal processing is about finding structure in signals. Audio 
is a familiar signal modality, and music is explicitly and inten-
tionally structured audio. Leveraging the familiarity of music, 
Fourier analysis becomes more concrete, and examples from 
textbooks such as [1] and [8] can be easily incorporated into a 
traditional signal processing course. For instructors seeking to 
transition to an interactive alternative to the lecture-based class-
room model with a “sage on a stage” simply depositing knowl-
edge into students’ brains, the FMP notebooks provide one such 
alternative. Created in the Jupyter framework with an explicit 
connection to the Fundamentals of Music Processing textbook 
[8], the FMP notebooks provide an interactive environment 
where students are invited to grapple with concepts through 
small structured coding examples. The Jupyter framework 
underlying the FMP notebooks provides an experimental play-
ground for students to test signal processing concepts on music 
and manipulate music using signal processing ideas. Once stu-
dents are familiar with introductory signal processing and MIR 
concepts, they can continue experimenting via the examples in 
librosa presented as coding notebooks.

In this article, we leveraged the inherent familiarity of music to 
motivate theoretical signal processing and extend these examples 
to an interactive learning experience through the FMP notebooks 
and librosa. We have discussed how the interplay between music 
and signal processing leads to a variety of interactions: interac-
tion through applications, hands-on interaction with the material 
through experimentation, and interaction between the structure of 
a classroom and the experimentation of research. We have pro-
vided resources that instructors can use in their classrooms, and 
we have been diligent in describing how these resources can be 
implemented in terms of course activities, from enhancing lec-
tures to incorporating cumulative class projects.
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s today’s practitioners and educators, we bear responsibility 
for training our students to achieve the deep conceptual un-
derstanding that they require to be the next generation of 

signal processing innovators. This article describes our work 
using think-aloud problem-solving sessions to reveal student 
misconceptions and to design improved conceptual problems 
for use in active learning classrooms. In addition, we pres-
ent recently updated Signals and Systems Concept Inventory 
(SSCI) data demonstrating that courses incorporating active 
learning pedagogy produce larger gains in students’ concep-
tual understanding of signal processing.

Introduction
Innovation in signal processing requires a deep understand-
ing of core concepts, such as convolution, filtering, and the 
connection between time and frequency domain representa-
tions. Innovation also demands an ability to apply those con-
cepts flexibly to solve novel problems. People who organize 
ideas within a conceptual framework learn new information 
quickly and can apply their knowledge in unfamiliar situa-
tions [1, p. 17]. According to Montfort et al., conceptual un-
derstanding is “more transferable than computational ability” 
[2]. Those engineering educators define such comprehension 
as “an understanding of the phenomena underlying a calcula-
tion, including the context, purpose, necessary assumptions, 
and range of reasonable values expected.”

While the development of deep conceptual understand-
ing is an intended outcome of science, technology, engi-
neering, and mathematics (STEM) courses, research shows 
that traditional lecture-based instruction typically does not 
achieve it [3]. Felder and Brent [4, p. 161] identify three 
reasons why students can pass a course without attaining 
a strong conceptual foundation: 1) the instruction does not 
effectively promote the development of abstract frame-
works, 2) the tests don’t assess conceptual understanding, 
and 3) students’ misconceptions are too strong to be dis-
lodged. To address these issues, Felder and Brent suggest 
that a course should include learning exercises designed to 
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confront misconceptions and build conceptual understand-
ing, along with exam questions that probe the depth of stu-
dents’ mastery of the concepts.

Active learning [5], [6] is an alternative to traditional lec-
tures that incorporates this approach. Felder and Brent define 
active learning as anything students are asked to do besides 
observing a lecture and taking notes [4, p. 111]. Active learning 
incorporates frequent low-stakes assignments and formative 
assessments, building toward traditional high-stakes exams and 
summative evaluations [7, p. 139]. Including conceptual prob-
lems in both formative and summative assessments encour-
ages students to develop a strong conceptual understanding to 
 complement the computational skills built 
by more traditional problems. Freeman et al.  
[3] confirmed that STEM classes that includ-
ed active learning improved student perfor-
mance on exams and reduced the number 
of pupils who failed or withdrew. Active 
learning also plays an important role reduc-
ing performance gaps in STEM classes for 
students from economically disadvantaged backgrounds [8] 
and for females in predominantly male courses [9].

This article focuses on improving and assessing students’ 
conceptual understanding of undergraduate signals and sys-
tems (S&S), the first course in most signal processing cur-
ricula. The core concepts in S&S include linearity and time 
invariance, convolution, transform representations, filtering, 

and sampling. The SSCI is one option for summative assess-
ment in S&S courses [10], [11]. This article describes the think-
aloud problem-solving interviews that were used to refine and 
validate the SSCI, along with more recent think-aloud video 
problems. These sessions led to the development of better 
open-ended conceptual signal processing problems for forma-
tive and summative evaluation.

SSCI: A standardized assessment for S&S
Concept inventories (CIs) are multiple-choice tests designed 
to assess students’ understanding of foundational material in a 
given field. As described by Epstein in a discussion of the cal-

culus CI [12], “These are tests of the most 
basic conceptual comprehension of foun-
dations of a subject and not of computa-
tion skill.” A good conceptual question re-
quires minimal computation and provides 
little or no data to plug into memorized for-
mulas [10]. The incorrect multiple-choice 
answers, or distractors, are designed to 

identify common misconceptions. CIs are often given at the 
beginning and end of a course to measure students’ learning 
gains [4, p. 164], facilitating comparisons of different peda-
gogical approaches.

CIs first gained traction in physics with the Force Con-
cept Inventory (FCI) [13] and have since been developed for 
a variety of disciplines, including engineering [14]. Among 
these is the SSCI [10], originally developed as part of the 
National Science Foundation (NSF)-funded Foundation 
Coalition [14]. Concepts assessed by the 25-question instru-
ment include linearity and time invariance, convolution, fre-
quency representations, and filtering. The first and second 
authors of this article developed continuous-time (CT) and 
discrete-time (DT)  versions of the SSCI. Spanish translations 
of both versions are available. The problems discussed in this 
article are drawn from the CT SSCI.

Hake’s influential study of 6,000 students in Newtonian 
physics courses quantified the positive impact of active 
learning on pupils’ conceptual understanding by using nor-
malized gain, <g>=(posttest–pretest)/(100–pretest), where 
pretest and posttest refer to class average scores on the FCI 
[15]. Normalized gain can be interpreted as the fraction of 
the material students learned during a course. Hake found 
that active learning courses resulted in statistically signifi-
cantly higher gains than traditional lectures [15]. Using the 
SSCI, we confirmed that active learning provides similar 
improvements for S&S classes [6]. Freeman et al.’s [3] 
meta-analysis of 225 studies of STEM courses, including 
data from the SSCI, concludes that active learning is the 
“preferred, empirically validated teaching practice” since 
it reduces failure rates and boosts exam scores, particu-
larly those for CIs. While the formal SSCI development 
project concluded in 2009, we continued collecting data of 
opportunity during the past dozen years. Figure 1 provides 
updated SSCI gain information from 2,389 students. The 
average gain across all active learning courses (0.39) is 

FIGURE 1. SSCI gain data for 2,389 students in 69 courses. Each point 
represents one course. The abscissa is the SSCI pretest score, and the 
ordinate is the raw gain, defined as the posttest average minus the pretest 
average for a course. The low-, medium-, and high-gain regions are those 
defined by Hake [15]. The average normalized gain for the 18 traditional 
courses is . . ,g 0 23 0 11!G H=  and for the 51 active learning courses, it is 

. . .g 0 39 0 08!G H=
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more than a standard deviation above the average across 
all traditional lecture classes (0.23). This analysis further 
supports the benefits of active learning and highlights 
the need for the continued development of better tools for 
conceptual assessment.

SSCI interview study and other think-aloud exercises
As part of an effort to more deeply understand students’ 
thought processes when solving conceptual problems from 
the SSCI, in particular, those focused on convolution and 
filtering, the authors conducted an interview study in 
which pupils who had recently completed a CT S&S course 
participated in recorded think-aloud problem-solving ses-
sions. Students were given several questions from the SSCI 
and asked to talk through their reasoning as they answered 
each one.

The interviews took place at George Mason University 
(GMU) and the University of Massachusetts Dartmouth 
(UMassD) during four semesters, from 2006 through 2008. 
Forty-one students were interviewed. In a review of best prac-
tices for cognitive interviewing, Peterson et al. [16] suggest 
that a sample size of five to 15 is reasonable as the first step 
in a validation study, a figure that our study and the other 
two investigations [17], [18] cited later in this article com-
fortably exceed. They note that while some problems are not 
detected until the sample size exceeds 50, the “rate of new 
problem identification per interview declines, suggesting 
diminishing returns.” While most participants took a CT 
S&S course the semester before the interview, a few took 
the class one year earlier. Most were enrolled in a follow-on 
DT S&S course at the time of the interview. As regional 
public institutions, GMU and UMassD serve students from 
a wide range of socioeconomic backgrounds. In the most 
recent surveys, roughly a quarter of learners at both schools 
are first-generation college students.

The interviews followed a semistructured protocol; the 
interviewer asked each participant a common set of questions 
but was free to probe with follow-up inquiries. The inter-
viewer was an experienced S&S instructor, but no student 
was interviewed by his or her own teacher. Students received 
a nominal (US$20) incentive for participating. All questions 
were from the CT SSCI except for one that was designed 
specifically for these sessions [19, Fig. 2]. The set of ques-
tions participants were asked to solve evolved as the study 
progressed. The initial cohort of nine students was asked 
five conceptual questions focusing on frequency-selective 
filtering and the Fourier transform. We expanded the ques-
tion pool to include a convolution question for the next three 
cohorts (nine, six, and eight students). The interviews of the 
final cohort (nine students) added a new CT SSCI question 
about convolution.

Initial results of the interview study were published in 
[19], which describes students’ misconceptions about filtering 
and Fourier transforms, and in [20], which analyzes students’ 
responses to convolution and filtering questions and corre-
lates pupils’ SSCI answers with their solutions to similarly 

themed, open-ended questions on a final exam. One goal of 
the study was to better understand why learners were select-
ing (or eliminating) certain answers, in an effort to validate 
and revise the SSCI. This process sheds light on how broader 
conceptual assessments (not just CIs) can be designed, imple-
mented, and revised, and it highlights the value of open-
ended tasks  (including multiple-choice problems with an 
“explain your reasoning” component) for assessing students’ 
abstract understanding.

Video homework problems provide another avenue 
for investigating students’ comprehension of S&S con-
cepts within the normal flow of a course. Video problems 
require students to submit a short clip explaining their 
solution to a homework problem as if they were tutor-
ing a peer. These problems leverage the video recording 
software widely available on smartphones and tablets. 
Inspired by a Tweet from Prof. Rhett Allain in a physics 
education thread, the second author of this article includ-
ed eight video homework problems in his fall 2020 S&S 
class. They carried half the points for each assignment, 
providing incentive for students to do them well. Used 
this way, video problems provide a tool for instructors to 
focus students’ efforts on the most important topics. Some 
pupils submitted simple videos narrating their handwrit-
ten solution; others produced more elaborate clips. With 
an enrollment of about 50 students and a 3-min time limit 
for each video, these problems provided roughly 1,200 
additional minutes of students thinking aloud while solv-
ing S&S problems, revealing new misconceptions and 
confirming some previously identified ones. Video prob-
lems quickly reveal which pupils actually understand the 
solution they are presenting.

The interviews and video problems revealed that many 
students arrived at correct answers despite incorrect and 
incomplete understanding. The following sections highlight 
key misconceptions about convolution and filtering that were 
articulated by students. We present case studies illustrating 
how we designed improved problems for classes, homework, 
and quizzes that challenge students to confront misconcep-
tions. Felder and Brent [4] note that these confrontations are 
a necessary step in the process of developing better concep-
tual understanding.

Convolution insights
Convolution is a fundamental S&S concept that students 
often struggle to understand and implement [17], [21]. 
The think-aloud exercises revealed various misconcep-
tions and highlighted the difficulty of designing con-
volution questions that probe conceptual understanding 
instead of memorization and procedural calculus ability. 
The following discussion describes how the SSCI con-
volution questions were refined in response to the inter-
views and presents a new, open-ended problem designed 
to address misconceptions.

Three cohorts of students in the SSCI interviews answered 
a single convolution question, Q13 (question numbers refer 
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to the current version of the SSCI, v5), while the last cohort 
answered two (a modified Q13 and a new Q15). Both prob-
lems displayed plots of the impulse response h(t) of a linear 
time-invariant (LTI) system and the system’s input x(t) and 
asked students to identify the plot of the output y(t). In Q13, 
h(t) is a unit amplitude rectangular pulse, and x(t) is a unit 
amplitude square pulse; thus, y(t) is a trapezoid. In the first 
three cohorts, 21 of 23 students answered Q13 correctly, 
and the two who answered incorrectly selected the wrong 
trapezoid,  suggesting that they knew to expect that shape 
but could not accurately determine its parameters. More 
than half the students who got Q13 correct (12/21) added 
the starting/ending times of h(t) and x(t) to predict the 
starting/ending times of the output and select the correct 
answer, which was the only choice spanning those times. 
One student referred to this procedure as a trick, and others 
did not justify the approach. The remaining students (nine 
of 21) who answered Q13 correctly provided some descrip-
tion, with varying levels of detail, of the flip/shift opera-
tions required to compute the convolution.

Given the large percentage of students relying solely on 
predictions of starting/ending points to select an answer, we 
modified Q13 and designed the new Q15 to probe different 
aspects of convolution [21]. Those two questions were given 
to the last cohort (nine students). Analysis of their answers 
confirmed some of the earlier results and revealed other mis-
conceptions. The modified Q13 posed the original question, 
but its revised answers were designed to capture whether stu-
dents knew that they must convolve h(t) and x(t) and that y(t) 
will be a trapezoid. The correct answer was the only trapezoid 
among the choices. The majority (seven of nine) answered the 
revised Q13 correctly. The two who answered incorrectly 
chose a distractor, y(t) = h(t) + x(t). Interestingly, both of those 
students mentioned the word convolution in their answer; e.g., 
“Yeah, I mean, I don’t know if the correct words are convolv-
ing or whatever.”

The new Q15 defined h(t) and x(t) as unit–amplitude rect-
angular pulses with lengths of four and two and different start-
ing points. All of Q15’s answers had the same starting/ending 
points, eliminating students’ ability to use those cues to select 
their solution. The correct answer was a trapezoid, and all the 
distractors were trapezoids or triangles. As expected, Q15 
was more difficult, with only four of nine students selecting 
the correct answer. The most popular distractor (four of five) 
was the trapezoid with a peak amplitude of one (instead of 
two). Students justified that choice by saying that the input 
had an amplitude of one or that h(t) and x(t) were not “scaled 
by anything.” One cited the fact that the output in Q13 had an 
amplitude of one in justifying that the system did not change 
the amplitude of a signal, suggesting that the student did not 
understand what controlled the amplitude of the output. The 
Q15 responses also illustrated how students extrapolate from 
the limited examples they have seen. For example, a pupil 
commented that he had done this type of problem before and 
that the slope of the trapezoid should be one because “I’ve 
almost never seen the slope be anything other than one.” 

While the slope was one for Q15, this is certainly not true in 
general. Another student expected an answer that started at t = 
0 because h(t) starts at t = 0. This suggests that the student was 
used to seeing examples where both the input and the impulse 
response start at t = 0.

The SSCI think-aloud interviews provided several 
insights into students’ struggles with convolution. Many 
learners rely on the “trick” of adding the starting/end-
ing points to determine the output without really under-
standing why that works. Reflecting on our own classes, 
we realized that we often use unit–amplitude square and 
rectangular pulses in our initial set of convolution exam-
ples. As the interviews showed, these examples leave 
some pupils unclear about which signal features control 
the height and the slope of the output. Similarly, we often 
use examples where both x(t) and h(t) start at t = 0, and 
this leads some students to assume that all convolutions 
start at t = 0. Also, convolving boxes makes a nice example 
since it is the easiest integration to do. These interviews 
motivated us to alter that illustration to make the heights 
of the boxes equal to A and B so that students explicitly 
have to multiply A and B together and integrate the result. 
Then, we give an in-class problem that specifically asks 
what determined the slope and the maximum height of 
the output. We have also altered our lecture examples, in-
class exercises, and homework problems to include inputs 
and impulse responses with arbitrary starting and ending 
points so that students do not assume that convolutions 
always start at t = 0.

Obviously, students need to be able to convolve signals that 
are not boxes and, most importantly, learn to visualize what 
the output should look like. Motivated by responses to the Q13/
Q15 interviews, we developed the open-ended question shown 
in “Convolution Question.” This problem requires only a sim-
ple integration (so it still emphasizes conceptual understanding 
over computational agility), but it forces learners to think about 
the shape of the output and what determines the output’s maxi-
mum height. The problem displays multiple choices for the out-
put and asks students to justify their selection. This question 
has been used for summative assessment (one of the midterm 
exams) and subsequently for formative assessment (in-class 
discussion in small groups).

Filtering insights
Filtering is another fundamental concept in undergradu-
ate S&S. Students need to develop fluency moving between 
convolving in time and multiplying in frequency. The inter-
views included three linked CT SSCI problems that probed 
students’ understanding of Fourier transforms and filtering. 
All 41 pupils were given the filtering problems. We designed 
those questions to be linked, progressing from frequency-
selective filtering (Q6) and frequency representation of nar-
row-band tones (Q9) to a problem synthesizing both topics 
(Q25) [10]. This section discusses the questions and students’ 
responses, identifies misconceptions and incomplete models 
revealed in the think-aloud problem solving, and presents two 
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new open-ended exercises that build on the insights gained 
about common filtering misconceptions.

Q6 asked students to find the output of an ideal low-pass 
filter (LPF) when the input is a single-frequency cosine [10]; 
see “Three-Pulse Filtering Question.” (Space constraints 
preclude reproducing all the SSCI questions from the inter-
views. We identify previous publications that include the 
questions for the benefit of interested readers.) The LPF is 
specified by graphs of the frequency response magnitude and 
phase, with a gain of three, a cutoff frequency of ,200~ =  
and a constant phase shift. A large majority (34/41) of the 
students answered Q6 correctly. However, roughly two-
thirds of the students who chose the right answer (22/34) did 
not explicitly confirm that the signal frequency fell inside 
the passband before they read the gain and phase shift from 
the plots provided. In two sessions, the interviewer probed 
students who chose the correct answer with a follow-up 
query asking what would happen if the input were cos(250t) 
instead of cos(50t). Both students said the output would be 

3cos(250t), failing to recognize that the signal at 250 rad/
sample would fall outside the passband and be removed by 
the filter.

Q9 (numbered Q7 on version 4 of the SSCI [10]) presented 
students with time-domain plots of two windowed sinusoids, 
x1(t) and x2(t), with x2(t) being twice the frequency of x1(t). 
Given a plot of ( ) ,X j1 ~  students were asked to identify 
the plot of ( ) .X j2 ~ Most (33/41) answered correctly. Those 
answering incorrectly were evenly split between students 
who confused frequency with amplitude and those who 
properly identified x2(t) as having a higher frequency than 
x1(t) but then confusedly stated that the higher-frequency 
signal would have its peaks closer together in the frequen-
cy domain. Several pupils mentioned that while they knew 
there was a relationship between time and frequency, they 
could not remember it. Learners again relied on “tricks” they 
remembered more than a deep conceptual understanding: 
“The trick that I learned from one of my classmates was if 
you see double the cycles, it’s just shifted off that much in the 

The following question is designed to prompt students to 
think about convolution when the integrand is not a con-
stant. It prevents students from relying on starting point and 
end point tricks to eliminate possible answers and requires 
a justification.
Question
A linear time-invariant (LTI) system has the impulse response 

( ) ( )h t u t=  given in Figure S1(a). The input to this system is 
the signal ( )x t  in Figure S1(b). Figure S2(a)–(d) displays 
four signals. Indicate whether each signal could be the out-
put of the LTI system with impulse response ( )h t  when ( )x t  
is the input. Provide a brief justification for each answer. 
Answers without justification will receive no credit.

Convolution Question

FIGURE S1. (a) The impulse response ( ) ( )h t u t=  for the LTI system. 
(b) The input signal ( ) .x t
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Fourier transform .… I’m not sure what the math is behind 
that, to tell you the truth.”

Q25 [10, Fig. 1] requires students to predict the output sig-
nal for an LPF when the input is two narrow-band pulses. The 
pupils are given graphs of the input time signal x(t) and the 
Fourier transform magnitude X j~^ h  as well as a graph 
of the filter’s frequency response magnitude H j~^ h . The 
LPF’s gain is one in the passband. The lower-frequency 
pulse falls inside the filter passband, but the higher-frequen-
cy pulse is eliminated by the filter. As we expected, students 
found Q25 more difficult than Q6 and Q9: only 28/41 chose 
the correct answer. Roughly a quarter (eight of 28) of those 
choosing the right answer demonstrated the same incomplete 
thought process as in Q6: assuming that the low-frequency 
pulse would pass through the LPF without ever explicitly 
multiplying X j~^ h  with H j~^ h  or even comparing the 
signal frequencies to the filter cutoff frequency. This incom-
plete model was especially notable for three students who 
answered Q25 correctly after they answered Q9 incorrectly. 
All three made statements identifying the filter as an LPF 
and stating that the low-frequency pulse would therefore be 
the output, without any further verification of the filter cut-
off frequency.

A large majority of the students who answered Q25  in  correct  ly 
(nine of 13) chose the output containing only the high-frequen-
cy pulse. Eight of them properly identified the filter as an LPF 
and explained how to multiply X j H j~ ~^ ^h h in frequency but 

then linked the low-frequency peak in the filter output Y j~^ h 
to the high-frequency pulse in y(t). Many of these learners cor-
rectly answered Q9, working forward from time to frequency, 
but could not apply the same concept in the opposite direction, 
going from frequency to time.

Students exhibited another misconception in filter-
ing problems when they “masked” the input spectrum 
with the frequency response rather than multiplying the 
two. Learners confused about filters in this way treat the 
passband like a “mask” or cookie cutter that trims away 
any of the input Fourier transform falling outside the filter 
passband in frequency or amplitude. One justified choosing 
the Q6 distractor with the gain of one instead of three by 
comparing the frequency of the input cosine to the cutoff 
frequency of the LPF, also explicitly noting that the cosine 
amplitude of one was less than the filter passband gain of 
three. The same misconception appeared in roughly 15% of 
the answers submitted for a fall 2020 video problem about 
filtering. Students reasoned that the filter would only pass 
those parts of the input spectrum “inside” the passband in 
both frequency and amplitude. This misconception dem-
onstrates the value of think-aloud problems. The masking 
misconception was not one we identified prior to drafting 
the SSCI.

Reflecting on the insights from the interviews led us to 
design new problems for in-class exercises, homework, and 
exams. Those problems were often open-ended to enable us to 

The following open-ended synthesis question is designed to 
prompt students to explicitly consider filter cutoffs. The 
question has a range of possible solutions, better reflecting 
the engineering design problems students will face as 
practicing professionals.
Question
Let [ ]x n  be a discrete-time (DT) signal with three pulses. 
Figure S3 displays [ ]x n  using Matlab’s plot command. 
The signal is actually DT but is presented using plot 
instead of stem to reduce clutter. The DT Fourier trans-
form magnitude for [ ]x n  appears in Figure  S4. When 
the  signal [ ]x n  is the input to an LTI filter, the output is 
the signal [ ]y n  in Figure S5 (again, using plot 
instead of stem).

Sketch a frequency response magnitude H e j~^ h  consis-
tent with the information given. There may be more than 
one correct answer. Your sketch should cover the frequen-
cies 0# #~ r  and must label all important frequencies 
and amplitudes. Write a short explanation (three sentences 
or fewer) to receive full credit.

Three-Pulse Filtering Question

FIGURE S3. The DT signal [ ] .x n
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observe unanticipated misconceptions. To encourage students 
to compare filter cutoff frequencies with input signal frequen-
cies, we designed new filtering questions similar to Q25 but 
using three narrow-band input pulses and asking learners to 
draw the frequency response of a filter that 
could produce the given output; see “Three-
Pulse Filtering Question.” Students cannot 
deploy simplistic strategies, as many did 
on Q25, but must explicitly consider the 
middle-frequency pulse. This problem also 
pushes pupils to think more deeply about 
the role of gain, in contrast with ideal fre-
quency-selective filters, where the gain is always one or zero. 
In  addition to the version shown here, we also asked “three-
pulse” filtering questions in which the output contained one, 
three, or zero pulses. Students often find a zero output uncom-
fortable, as few textbooks and class examples portray this case. 
This discomfort opens the door to a deeper discussion of the 
role of filters in practical systems. Another variation on the 
filtering theme of Q25 graphed y[n], Y e j~^ h , and H e j~^ h  
and asked students which of six choices for the input x[n] were 
consistent with the information given. In all these problems, 
learners were required to justify their answers with two or 
three sentences to receive full credit.

To address the masking misconception, filtering prob-
lems must include amplitudes in the input transform X j~^ h 
that are greater than the gain of the frequency response 
H j~^ h  at some frequencies. “Masking Question” illus-
trates one such problem written in response to the inter-
views. The difference between multiplying and masking 
will be very clear in how a student’s sketch of  Y j~^ h  treats 
the triangle in X j~^ h in the region 50 501 1~- . 
Pupils filtering correctly will sketch the output in this frequen-
cy band to be a triangle with a peak of six. Students incorrectly 
masking will remove any of the triangle above two, leaving a 
large, flat plateau. Similarly, the output transform Y j~^ h will 
exhibit dramatic differences between the correct and incorrect 
approaches in other frequency bands.

Linking our findings to prior studies
Two other studies interviewed S&S students in think-aloud 
problem solving similar to the SSCI interviews [17], [18]. The 
problems students solved in those investigations combined 
conceptual and procedural knowledge and did not satisfy 
the definition of a concept question, given in [10], that one 
can identify the correct answer without requiring paper and 
a pencil. Nasr et al. [17] interviewed 24 students in the linear 
systems module of an aeronautical engineering course. Each 
pupil solved one of three problems about superposition and 
convolution in LTI systems. Jia et al. [18] asked 24 students to 
solve four problems about the trigonometric form of the CT 
Fourier series in a 1-h interview. As described in the follow-
ing paragraphs, several of our findings match those identified 
by Jia and Nasr.

Even though Jia et al. [18] focused on the Fourier series, 
they observed underlying challenges for students connecting 

time and frequency representations that were similar to those 
we found in the filtering problem. More broadly, they also 
identified students who relied on rote procedural techniques 
and tricks that left them adrift when a problem required more 

flexibility in exploiting the information 
given. Last, they found that students suf-
fered from a “disconnect” when translating 
between plots and equations, echoing com-
ments from our interviews. Nasr et al. [17] 
found that roughly half the students strug-
gled with each of the interview problems 
covering convolution. They observed a ver-

sion of the masking misconception in the context of multiply-
ing signals within the convolution integral. Students solving a 
graphical “flip-and-slide” convolution problem stated that the 
integrand ( ) ( )x h tx x-  would be zero for the region in time 
where the input was positive and that the impulse response 
was negative because when one signal was above the axis and 
the other was below the axis, they did not “overlap.” We have 

The following question is intended to unearth students’ 
masking misconceptions in filtering. If learners treat the 
frequency domain operation as masking rather than 
multiplication, the peak of each triangle will be clipped 
in the output Fourier transform.
Question
A continuous-time LTI system has an input ( )x t  and an 
output ( ) .y t  The frequency response ( )H j~  of the system 
is plotted in Figure S6. The Fourier transform ( )X j~  of 
the input is shown in Figure S7. Determine and sketch 
the Fourier transform ( )Y j~  of the system output.

Masking Question
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also observed that many students struggle with correctly 
interpreting the point-by-point multiplication of two signals 
presented graphically.

Conclusions
This article summarized what we learned about students’ S&S 
misconceptions from think-aloud interviews and video home-
work problems. We presented examples illustrating how we 
changed our teaching and assessments to challenge learners 
to develop deep conceptual understanding. In this section, we 
highlight two key insights from our analysis and encourage 
fellow instructors to experiment with think-aloud problems in 
their own courses.

The first insight is that many students seize on “tricks” as 
shortcuts to avoid developing deep conceptual understanding. 
Students repeatedly referred to tricks to describe procedures 
to solve convolution and filtering problems. Rather than rec-
ognizing these procedures as efficient approaches to com-
mon tasks, derived from S&S theory, learners treated them as 
magic spells to be memorized. Instructors may inadvertently 
encourage magical thinking when they use informal language 
to define and derive the procedure. How do we address this 
issue? Ambrose et al. [7, p. 3] remind us that “learning is not 
something done to students, but rather something students 
themselves do.” The key to getting students to stop viewing 
procedures as “magic” is to have learners derive and test 
methods themselves by working through a series of linked 

problems and then to ask them to reflect on what they learned 
from their answers.

Story problems are another technique to force students to 
focus on the assumptions underlying tricks. These exercises 
require pupils to adjudicate disagreements between fictional 
peers, some of whom articulate different misconceptions. 
“Phil and Connie” shows a story problem we developed to help 
students understand causality in LTI systems. Story problems 
fit neatly within Felder and Brent’s framework for address-
ing misconceptions, as they require students to commit to one 
view point and to confront a contradiction that ensues [4]. Story 
problems bring the additional benefit of challenging learners at 
a higher level of Bloom’s taxonomy [22], calling for the evalu-
ation and analysis of the concepts tested, not just application 
and understanding.

The second insight is that the examples we choose to 
illustrate S&S concepts have major consequences for what 
students learn. As instructors, we simplify examples to 
reduce the cognitive load when first presenting ideas. To 
teach convolution, we often focus so much on examples 
with rectangular pulses with unit amplitude that students 
conclude that the slope of the result has to be one since 
they haven’t seen anything else. When we design filtering 
problems, we always have at least one signal removed by 
the filter, enabling students to develop bad habits, such as 
failing to compare signal frequencies to passband edges. 
As instructors, we need to assemble comprehensive sets of 
exemplar problems to enable students to develop complete 
and accurate mental models. We also need to be mindful of 
how our problem sets might inadvertently present patterns 
we do not intend and cause pupils to overgeneralize. Ideally, 
we want students to be able to generalize their knowledge 
beyond the exemplars seen in a course. Active learning and 
think-aloud problems enable instructors to observe while 
students construct mental models and to prevent learners 
from “overfitting” to unimportant details.

We encourage our fellow S&S instructors to experi-
ment with more open-ended conceptual problems and to 
include think-aloud exercises in their classes. First, asking 
students to explain their thinking orally presents an oppor-
tunity for instructors to learn more about learners’ reason-
ing, providing valuable feedback to correct misconceptions 
before they are entrenched, and improve future versions 
of a course. Second, these oral explanations challenge stu-
dents to think about what they understand. Explaining a 
procedure to someone else helps pupils comprehend those 
procedures more deeply rather than simply going through 
the steps silently on their own. Orally explaining a solu-
tion to a problem (or sequence of problems) can challenge 
students to make connections between concepts and proce-
dures and hence develop a more complete grasp of complex 
ideas. Finally, students’ future careers will revolve around 
oral discussions during design reviews and team meetings. 
As instructors, we have a responsibility to prepare them to 
explain and defend technical choices to their peers. Students 
combining deep conceptual understanding with convincing 

This story problem challenges students to confront mis-
conceptions about causality. The second author of this 
article gratefully acknowledges Abelson and Sussman’s 
story problems in their Structure and Interpretation of 
Computer Programs course for inspiring him to create 
similar signals and systems questions.
Problem
Two classmates, Phil Turing and Connie Volution, are 
arguing about whether the system y n x n2=6 6@ @  is caus-
al. You must settle the argument.

Phil: “The system is causal. If the input ,n nx d=6 6@ @  
the output .y n nh=6 6@ @  Substituting nT6 @  and nh6 @  
into the system equation gives .n nh 2d=6 6@ @  From this, 
we see that nh6 @  is one when ,n 02 =  which is ,n 0=  
and otherwise, h n 0=6 @  for all other values of n. 
Since nh6 @  is zero for negative time, the system must 
be causal.”

Connie: “The system is not causal. Consider the out-
put when .n 2=  Then, .y x x2 2 42= =6 6 6@ @ @  The output 
at this value of n depends on the input x[n] at a future 
time sample, so the system must not be causal.”

Which student is right, Phil or Connie? What mistake 
did the incorrect student make?

Phil and Connie
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verbal explanations will be primed to be the next generation 
of signal processing innovators.
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Teaching Differently
The digital signal processing of multimedia content through  
the use of liberal arts

Generally, the curriculum design for undergraduate students 
enrolled in digital signal processing (DSP)-related engi-
neering programs covers hard topics from specific disci-

plines, namely, mathematics, digital electronics, or program-
ming. Typically, these topics are very demanding from the 
point of view of both students and teachers due to the inherent 
complexity of the mathematical formulations. However, im-
provements to the effectiveness of teaching can be achieved 
through a multisensorial approach supported by the liberal 
arts. By including the development of art and literacy skills in 
the curriculum design, the fundamentals of DSP topics may be 
taught from a qualitative perspective, compared to the solely 
analytical standpoint taken by traditional curricula. We postu-
late that this approach increases both the comprehension and 
memorization of abstract concepts by stimulating students’ 
creativity and curiosity. In this article, we elaborate upon a 
methodology that incorporates liberal arts concepts into the 
teaching of signal processing techniques. We also illustrate 
the application of this methodology through specific class-
room activities related to the digital processing of multimedia 
contents in undergraduate academic programmes. With this 
proposal, we also aim to lessen the perceived difficulty of the 
topic, stimulate critical thinking, and establish a framework 
within which nonengineering departments may contribute to 
the teaching of engineering subjects.

Introduction
Engineering courses related to signal processing rely on strong 
mathematical methods, such as linear-time-invariant systems, 
complex analysis, or transform theory, among others [1]. These 
are topics that are often very difficult to grasp.  They are also 
difficult to teach; the bottleneck is, most of the times, the 
complexity of the abstract mathematics underpinning the core 
concepts as perceived by the students. The development of at-
tractive and effective comprehension methods to enlighten the 
fundamentals plays a major role in facing the natural intellec-
tual barriers in this highly specialized field. Thus, the applica-
tion of new methodologies used to teach core concepts, which 
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take a multisensorial approach through the use of liberal arts, 
may trigger self-motivation and critical-thinking abilities, al-
lowing students to discover the meaning and implications of 
their analytical formulations.

Liberal arts education is commonly related to the disci-
pline of social sciences, while mathematics and physics are 
typically addressed in pure sciences and electrical engineering 
programs. Consequently, a historical divide has been estab-
lished in schools that separate arts from science, forming to 
two markedly different cultures: literacy-
based intellectuals and natural scientists [2]. 
Mixing the schools, however, brings a vari-
ety of benefits worth considering. A better 
education, achieved by bringing the two 
branches together, will empower students, 
offering a more complete understanding of 
the role played by technology and its impact 
on society (this subject is largely ignored by 
current academic programs [3]). According 
to [4], educational skills related to the arts of reading, writ-
ing, and communication as well as the appreciation of fine arts 
could contribute to an improvement in critical thinking and 
creativity, leading to better proficiency for engineers in their 
respective fields.

On the one hand, it is commonly accepted that the induc-
tive experience of appreciating and producing a work of art 
stimulates the production, discovery, and invention of novel 
technical solutions. However, deduction processes (which are 
commonly addressed in traditional courses) are more con-
cerned with the particular application of a general theory in 
the context of engineering applications. Blending inductive 
and deductive approaches leads to the formation of power-
ful skills that can be used to deal with the challenging prob-
lems facing society today. In this regard, the application of art 
concepts into the academic engineering program may lay the 
foundations for new solutions, stimulating both inductive and 
deductive abilities [4]–[6].

In addition, the transition from science, technology, en -
gineering, and mathematics (STEM) to science, technol-
ogy, engineering, arts, and mathematics [7], [8] has been 
advocated by several authors as a way to break down the 
distinction between disciplines traditionally seen as “cre-
ative” (like the arts or music) and STEM disciplines, which 
are usually seen as more rigid or strictly logical [9]–[12]. 
However, most of this research studies school education 
and rarely includes university-level classes. Moreover, this 
destruction of artificial boundaries could be a way to reduce 
the persistent gender gap found in STEM studies [13], [14], 
improving female enrollment in STEM courses and, fol-
lowing this, in physics, engineering, and computer-science-
related careers [15], [16]. 

Today, most engineering programs do not effectively 
integrate both cultures. Mixed academic programs provide 
courses that cover both technology and the appreciation of 
art. Some of these approaches allow engineering students to 
choose subjects offered by different departments, thereby 

promoting an interdisciplinary dialogue between arts and 
engineering [3]. For instance, some programs motivate stu-
dents to take part in cultural activities, such as museum 
visits or concerts [17]; they even offer the possibility to 
participate in academic projects that are coached by pro-
fessors from both the social sciences and STEM depart-
ments [18]. Other programs integrate arts and animation 
when teaching computer programming to increase stu-
dents’ motivation to learn [19]. In addition, through the 

use of emoticoding, the integration of 
algebra, geometry, music, and 3D art has 
been shown to improve student learning as 
well [20]. Another example involves web 
designers, who cleverly combine technol-
ogy, arts, and psychology to attract the 
attention of potential customers [21]. Final-
ly, in [22], the authors present abstract 
mathematical objects and concepts that 
have been turned into visual art using 

mathematical animations, thereby offering students a more 
tangible experience that can potentially improve and enrich 
their understanding.

Including arts and their corresponding inductive processes 
into engineering programs is a challenging endeavor. The 
aforementioned approaches illustrate useful points of contact; 
however, the effect of a tighter integration of the arts with 
the teaching of core concepts is still unexplored. Our cur-
rent research is part of an ongoing teaching innovation proj-
ect that improves the understanding of engineering concepts 
using arts as the motor core of a more complex process. It is 
hoped that this will eventually lead to greater student engage-
ment with their own learning development. When students 
are encouraged to interact with artistic production goals using 
engineering concepts, their internalization of key engineering 
topics is stimulated. Ambitiously, we intend to reinforce the 
understanding of key concepts by promoting the appreciation 
and creation of small pieces of art during the teaching of engi-
neering curricula.

In this article, we elaborate on a methodology that integrates 
art and engineering to more effectively teach core engineering 
concepts. We illustrate the use of the proposed methodology 
through specific classroom activities involving the use of sig-
nal processing techniques applied to multimedia coding. Using 
this approach, different engineering topics will be taught from 
a subjective standpoint. The tools used will include an elabo-
ration on narrative excerpts and their auditory representation 
by means of well-known musical scales and the processing of 
images by appreciating their composition. The students are 
prompted to write their own thoughts and opinions about the 
topic at hand, and their textual contribution is then used as the 
media upon which DSP concepts are later implemented. In 
this way, students will have a multisensorial experience when 
learning the core concepts in their field. The meaning behind 
their analytical definitions and implications will be exposed by 
the analyses and production of art created by writing, listening, 
and visualization.

Blending inductive and 
deductive approaches 
leads to the formation of 
powerful skills that can 
be used to deal with the 
challenging problems 
facing society today.
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We have chosen to employ this methodology in a telecom-
munications engineering program in which DSP techniques 
play a major role. By doing so, we seek to provide proof that 
this integration can be effectively implemented. We also aim to 
offer inspiration and motivation for colleagues teaching simi-
lar concepts, but also totally different, to use nonengineering 
disciplines to educate better and more well-rounded engineer-
ing professionals. Some hints and suggestions regarding the 
further application of the methodology to other DSP-related 
subjects are also discussed. 

Methodology
As discussed in the previous section, the introduction of art 
and critical thinking into an engineering curriculum is ben-
eficial to the development of more creative and socially aware 
engineers and could also promote vocations in STEM careers 
for women [15], [16]. This is, however, a challenging enter-
prise, mainly because the materials and resources need to be 
developed ad hoc. Some general principles, applicable to any 
subject, need to be observed during this process. In this regard, 
we have identified the following steps:
1) A small set of key or core concepts, 

underpinning the subject being taught, 
need to be identified. These should be 
the main concepts that students would 
need to retrieve from their memory in 
their future professional lives when fac-
ing new unforeseeable challenges. 
Therefore, the instructors’ goal is to find 
ways of making these concepts more suggestive, thereby 
reinforcing their persistence in memory.

2) Original and suggestive connections between the previous 
key or core concepts and arts must be found. This is a cre-
ative process that considers the connections’ motivational 
ability, where the elements of surprise and originality 
should be sought. It is a critical step that relies on the well-
established benefits of surprise, i.e., the emotional response 
to outcomes that do not match our expectations [23], to 
enhance learning [24]. Neuroscientific literature suggests 
that the prediction errors caused by this mismatch play a 
universal role in driving learning throughout the human 
brain [25], increasing attention that, in turn, leads to more 
effective memorization [26].

3) A set of activities to explore the previous connections 
needs to be designed. A requirement of these activities is 
that they promote critical thinking and creativity; that is, 
the application of mechanistic rules and closed solutions 
should be avoided. A proper balance of analysis and syn-
thesis procedures should be sought, promoting both deduc-
tive and inductive abilities in the students. In addition, 
these activities should be partially aligned with the multi-
media learning theory proposed by the authors in [27] 
because our students will be learning concepts that include 
both verbal and written content and more visually and 
auditory rewarding ideas. This will promote a more in-
depth understanding.

4) An assessment procedure tailored to evaluate the degree 
to which the core concepts are understood needs to be 
put in place.
In the following section, we illustrate the application of this 

methodology to enhance the learning of source coding theory 
in the field of communication systems.

Description of the academic course
We set out to apply the steps defined in the “Methodology” 
section to “Multimedia Information Coding for Communica-
tions,” a compulsory subject in the third year of a four-year 
bachelor’s degree in mobile and space communications en-
gineering, taught at Universidad Carlos III de Madrid. The 
main goal of the course is to provide an understanding of the 
coding and compression techniques used to process digital 
multimedia content such as speech, audio, image, and vid-
eo to reduce their storage requirements, equivalently, their 
transmission bit rate.

The original course comprises 14 lectures, with five semi-
nars to develop problem-solving skills and eight 2-h labs. The 

exercises we describe in the “A Proposal 
of Activities Regarding the Engineer-
ing Concepts and the Arts” section have 
been implemented during three of the lec-
ture’s time slots. The academic program 
addresses  common coding techniques 
that are based on the statistics or entro-
py of the source (Huffman, arithmetic, 
Golomb–Rice, and Lampel–Ziv) and on 

the perception of audio, images, and video (perceptual cod-
ing) to represent and transmit data. In addition, the evolution 
of the most relevant standards is presented, promoting dis-
cussion of the coding performance of current applications; 
these standards include MP3 for audio compression, JPEG 
for image, and H.26x or the MPEG family for video (see,  
for example, [28] and [29]). In addition, during the lab ses-
sions, students develop hands-on skills by programming cod-
ing algorithms using MATLAB.

The program surveys the following six topics:
1) Fundamentals of the digitalization of multimedia informa-

tion: This topic provides a quick review of the fundamen-
tals of analog-to-digital conversion; covers the representation 
by sequences, matrices, and time-varying matrices of 
audio, image, and video, respectively; and gives an over-
view of the fundamentals of compressing information. The 
students are already familiar with these concepts, so this is 
an introductory topic.

2) Speech coding: This topic establishes the mechanisms of 
human speech production as a way to introduce the basis 
of coding. Vocoder, hybrid, and waveform technologies 
are presented (together with their efficiency tradeoffs) for 
speech transmission over communication channels, such 
as those of mobile communication networks.

3) Audio coding: This topic covers a broader representation 
of sound in comparison to speech. Additional codes and 
a first survey of the related standards are taught. The 

A historical divide has 
been established in 
schools that separate arts 
from science, forming 
two markedly different 
cultures.



97IEEE SIGNAL PROCESSING MAGAZINE   |   May 2021   |

concept of perceptual coding is also explained, based on 
a model of human hearing and associated psychoacousti-
cal phenomena.

4) Image coding: This topic includes the analysis of 2D data 
in contrast with the previous two sections, where audio and 
speech were considered. 2D transforms are presented as a 
way to apply coding in a different domain to reduce stor-
age and transmission demands. The mixed solution of 
transformation and entropy coding is presented, together 
with the evolution of standards.

5) Video coding: This topic introduces how redundancy is 
reduced in video through the efficient processing of 
the evolution of its frames to account for motion in the 
sequence of images. Video formats, general coding 
strategies, and the related standards are illustrated in 
this section.

6) Transmission of multimedia information: This final 
topic covers the requirements for universal access to 
multimedia. Technologies and methods are presented 
by means of illustrative approaches, standards and 
network protocols.
Topics 2–5 are accompanied by lab assignments to imple-

ment very simplified examples of each of the coder types 
where reference decoder implementations are provided. The 
student’s goal is to produce coder implementations whose 
outputs can be properly decoded using the supplied refer-
ence decoders, as would be the situation in an organization 
that develops coding standards. Therefore, all of these top-
ics deal with the digital representation and processing of 
multimedia information. Implicitly, students need to imple-
ment basic DSP techniques, such as filtering, downsampling, 
upsampling, and transformations, to handle the proper func-
tioning of these coders.

Generally speaking, multimedia content is a data source 
with specific characteristics or patterns that may be exploited 
for compression purposes. For instance, the speech recording 
of a tenor voice has major differences when compared to the 
recording of a bass one. The fundamental frequency of the first 
is higher than that of the second. A similar distinction can be 
observed in audio signals because classical music presents dif-
ferent timbres and rhythms compared to jazz or soul. Images, 
on the other hand, exhibit huge differences in color and patterns 
depending of the age or art movement of their creation: paint-
ings from the Baroque period contrast strongly with Cubist art-
work, for example.

Coding techniques may exploit the peculiarities of media 
sources to give a better performance in terms of the data 
storage—or the equivalent rate of transmission—needed for 
a given quality of reproduction. This connection between the 
nature of the media source and the coding performance—
either in terms of the compression rate or the quality (or 
distortion) of the outcome—is mediated by the concept of 
redundancy or by the amount of information as measured 
by the entropy of the source. As the importance of these 
ideas traverses all of the topics on this subject, they will be 
chosen as the core concepts to be identified in the first step 

of the methodology defined in the “Methodology” section. 
The next section is devoted to illustrating the teaching of 
these core concepts through the design of specific hands-on 
exercises that relay on the analysis and synthesis of small 
pieces of art.

A proposal of activities regarding 
the engineering concepts and the arts
An appreciation of art may produce a better understanding of 
coding concepts and applications related to the digital process-
ing of multimedia content, provided that original connections 
involving elements of surprise are included, as explained in the 
“Methodology” section. In the “Description of the Academic 
Course” section, we identified entropy and redundancy as core 
concepts (step 1). We now need to find suggestive connections 
(step 2) between these concepts and a certain modality of art 
and develop open and creative activities that will make these 
connections apparent (step 3).

To this end, the proposed exercises are divided into two 
separate parts designed to foster both deductive and induc-
tive skills: first, illustrating the differences in coding per-
formance through the appreciation of representative pieces 
of art from a qualitative standpoint (analysis), and second, 
challenging  students to produce art based on the concepts 
and fundamentals of coding, thereby becoming part of an 
active process (synthesis). This organization resonates with 
several extremely important DSP concepts, such as dualities 
in linear transformations of sequences, and reinforces the 
complementarity of coding and decoding stages, which is 
essential in this subject. The analysis and synthesis assign-
ments will involve the implementation of DSP techniques to 
process text, sounds, and images. The following exercises 
describe these two directions in the topics of speech, audio, 
and image coding.

Exercise 1: Compressing the concept of entropy
This exercise is related to the concept of entropy. The students 
will produce a brief essay, preferably related to their understand-
ing of entropy. The whole process of writing, in and of itself, will 
make the students focus on the task at hand.

Once their assignments are written, the students are asked 
to read and record them into a raw audio file. Note that, 
semantically speaking, the informational content of both text 
and audio is the same, albeit in totally different modalities. 
Note here also that the vagueness of the definition of infor-
mation, a concept new to the students at this stage, is sought 
to trigger discussions that they must solve if they are to attain 
a solution.

In particular, the student should derive the following 
(analysis phase): 1) the entropy of the written script, 2) the 
entropy of the recorded speech, and 3) a comparison and 
a discussion based on the results of tasks 1 and 2. In the 
second stage of this exercise, students must produce a new 
text reflecting the same content but with fewer words (syn-
thesis phase). Note that this is a procedure of compression 
itself as students remove what they think is irrelevant or 
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less informational in the texts that they have produced. The 
students must complete tasks 1–3 again.

In addition to understanding the concept of entropy, dur-
ing the discussion, the students are expected to express their 
opinions about which of these two formats (the first or the 
second definition of entropy they have produced) seems to 
be more useful and comprehensible. This whole procedure 
is designed to help them consider the usefulness of this pro-
cess; that is, whether or not the concept is understandable after 
removing some of the irrelevant text, whether or not a person 
unrelated to engineering is capable of understanding it before 
and after the removal of redundant information, and to what 
extent uninformative data can be removed before the concept 
becomes unintelligible.

Additionally, students will develop DSP-related technical 
skills when implementing solutions to processing pieces of 
text. That is, obtaining histograms (when 
computing the entropy), recognizing pat-
terns (when identifying the appearance of 
letters in the written text), and estimating 
their corresponding probabilities, and so on.

Exercise 2: Listening to redundancy
This exercise proposes producing (non-
speech) sounds from a given written script. 
Globally, this could be referred to as sonifi-
cation, with applications not only in text-to-sound processes 
but also to images-to-sound and vice versa. Here we focus 
on the production of sound from a written script to gain a 
subjective measure of redundancy, another core concept of 
coding theory.

Redundancy concerns the existence of multiple replicas of a 
given attribute. A good coder will try to reduce the redundancy 
of the coded sequence to produce a more compact representa-
tion, benefiting from the fact that a redundant attribute (that 
is, an attribute with a high a priori probability) will be easier 
to predict.

In terms of sound, this may be reflected in multiple ways; for 
example, by assigning a chord to each of the symbols (i.e., each 
letter) used to code a text. If a particular letter is highly domi-
nant or redundant in a text, this will be noticeable; it may even 
be interpreted as the tonic chord. If the given text presents too 
many different attributes that are almost identically distributed, 
the music produced would sound much more chaotic. However, 
if there is a high number of symbols, the sonification will be 
difficult to perceive and achieve.

Therefore, in this exercise, we resort to a more nuanced 
sonification method based on the perception of the different 
timbres of a sound; in other words, the quality that allows 
us to distinguish between different musical instruments 
(related to the shape of the envelope of the spectra of the 
produced notes). A text with highly redundant symbols will 
sound as a different instrument than one where the symbols are 
equally redundant. Moreover, the reduction of the redundancy 
produced by an effective coder (in comparison to a less-effec-
tive one) could also be perceived as a different instrument.

Based on this interpretation, the analysis phase of this exer-
cise contains the following steps: 
1) to produce a written script by explaining some of the 

learned psychoacoustic principles. Specifically, the script 
must provide definitions for the following aspects (of no 
fewer than 15 words per item): psychoacoustic principle, 
the absolute threshold of hearing, time masking, and fre-
quency masking 

2) to encode the produced text and obtain a corresponding 
histogram of the produced symbols for two different cod-
ers: fixed length and Huffman 

3) to apply sonification techniques to produce sounds from 
the two obtained histograms

4) based on the produced sounds to derive concluding 
remarks regarding the capacity to reduce redundancy 
through the use of two coding techniques.

To illustrate a possible sonification 
strategy for item 4 we start with a histo-
gram representation of ,L pi i$  where Li is 
the length of the code obtained for symbol 
i and pi represents the a priori probabil-
ity, as depicted in Figure 1(a) and (c) for 
the fixed- and variable-length codes, 
respectively, used to code the letters of 
the alphabet. The histogram bars will 
be the attributes used to convert text into 

sound. The students must implement the following steps:
1) Reorder the histogram bars in decreasing order as 

depicted in Figure 1(b).
2) Interpret them as a Fourier series in which the produced 

sound will be the linear combination of pure tones that 
are harmonically related to Fourier coefficients, corre-
sponding to the amplitudes of the histogram bars.

That is, if the first bar’s amplitude is applied to a tone of 
440 Hz (the musical note “A”), the second bar will be the am-
plitude of its first harmonic, 880 Hz, and so on. The super-
position of these pure tones will have the same fundamental 
frequency but will exhibit a different timbre depending on 
the amplitudes of the bars.

The sonification of the written text must be compar-
atively analyzed for the two entropy coding techniques: 
fixed- and variable-length coding. Fixed-length methods 
will not introduce any additional compression on the 
given sequence based on redundancy (this is the case of 
the resulting bars in Figure 1(a) and (b). On the contrary, 
variable-length coding (exemplified by Huffman [30]) 
will benefit from this redundancy, reducing the coded 
sequence length by assigning shorter-length codes to the 
most repeated (in someway redundant) letters and longer 
codes to the less repeated ones. The amplitudes of the his-
togram bars in Figure 1(c) (variable length) will be flatter 
than those in Figure 1(a) as well as in Figure 1(d) versus 
Figure 1(b), after reordering. By reproducing these two 
cases, in accordance with the aforementioned sonification 
rule, it should be possible to distinguish the sounds of the 
two coders.

A requirement of these 
activities is that they 
promote critical thinking 
and creativity; that is, the 
application of mechanistic 
rules and closed solutions 
should be avoided.
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In the second part of this exercise, students must reduce 
redundancy by randomly erasing a quarter of the most 
repeated letters, “A” and “E” (the synthesis phase). This 
random erasure of symbols is similar to the compressing 
effect that perceptual coding has on data, which students are 
addressing in this topic. After erasing these extra, redundant 
letters, it is expected that the meaning of the text will still 
be understandable, which is something 
to be assessed by each student. Based on  
the h istogram of the reduced (com-
pressed) text, students must produce the 
new re lated sound following the same 
steps as before and devise comparative 
concluding remarks.

The students will also develop their 
DSP programming skills through this exer-
cise. They must program the coding of text 
using fixed- and variable-length coding techniques and then 
produce musical notes according to the histograms. Implicitly, 
students will be operating with the digital representation of the 
reproduced musical notes, which, in turn, corresponds to an 
understanding of the digital sampling principles used to pro-
duce sound.

Exercise 3: A meeting between  
Pollock and Picasso through the  
concept of redundancy
This exercise attempts to illustrate the concept of information 
entropy in the perception of images. At the same time, we 
aim to develop technical skills related to the use and ma-
nipulation of the bidimensional discrete cosine transform 

(DCT). The perception of entropy may be 
naturally inferred from images. To illus-
trate this, we have designed this exercise 
based on paintings by Picasso and Pollock 
[Figure 2(a) and (b), respectively]. The 
upper-left corner of Pollock’s painting has 
been selected to obtain a picture that is the 
same size as Picasso’s. Broadly speaking, 
the frame by Pollock seems to exhibit a 
higher entropy than that by Picasso, with 

regard to the variety of colors, intensities, and patterns used.
Again this exercise is divided into two parts. The first part 

drives the students to comparatively analyze the entropy 
present in Figure 2(a) and (b), based on which the analytical 
results are contrastingly considered regarding the perception 
of both images (analysis phase). In the second part, students 
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FIGURE 1. A histogram plot of L pi i$  for each of the letters of a given text. (a) The alphabetical order (fixed length), (b) the descending order (fixed 
length), (c) the alphabetical order (Huffman), and (d) the descending order (Huffman). 

The reduction of the 
redundancy produced 
by an effective coder (in 
comparison to a less-
effective one) could also 
be perceived as a different 
instrument.
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are required to produce a new image (synthesis phase). This 
is derived by a combination of both paintings in the frequen-
cy domain through the use of the DCT. There, the entropy 
present in the frame by Picasso is increased to meet Pollock’s 
entropy. The resulting frame is illustrated in Figure  2(c), 
where Pollock’s style of painting, included in the painting by 
Picasso, produces an increased perceived entropy.

Specifically, in the first part of the exercise, we suggest the 
representation of the image as well as the computation of 
the entropy of the image through the use of the DCT (analy-
sis phase). When generating the proper codes on MATLAB, 
the student must address the following items:
1) Obtain the matrix representation of these images and 

depict them in the proper plots.
2) Apply the DCT transform to each image in blocks of 8 × 8 

pixels.
3) Compute the histogram of the frequency components of 

the image  based on the obtained DCT for each block, and 
plot these as a 1D graph. 

4) Infer conclusions regarding the entropy of the frequency 
components. 

By solving this exercise, students are encouraged to de-
velop a feeling for the redundancy and entropy in the 
frequency domain while interacting with the image and 
analyzing the differences between the two frames. It is 
worth noting that the translation of such intuitions from 
the spatial domain to the frequency domain is conceptually 
quite complex, and the fact that the students have to reach it 
using their own reasoning reinforces the persistence of this 
extremely important notion in their memories.

The second part of this exercise is related to the produc-
tion of images based on the perception of entropy (synthe-
sis phase). In this direction, Pollock’s chaotic style will be 
incorporated into Picasso’s painting in the frequency domain 
through the DCT. Both styles will be mixed to devise a new 

frame, where the entropy of Picasso’s The Blue Cup will 
be increased through the replacement of its higher-frequen-
cy portion by content obtained from the painting by Pol-
lock. The resulting operation will produce frames similar 
to the ones depicted in Figure 2(c), where both styles are 
mixed, and thereby comparatively illustrate the impact of 
increased entropy.

To obtain the resulting frame in Figure 2(c), students 
must abide by the following steps:  
1) Obtain the DCT representation for both frames in 

Figure 2(a) and (b) in a block resolution of 8 × 8 pixels.
2) Replace the higher-frequency portion of the obtained 

DCT’s blocks from the painting by Picasso with the DCT 
content of the painting by Pollock.

3) Apply the inverse DCT to the resulting operation. 
The second step is applied as explained in Figure 3. The DCT 
blocks for each frame are obtained as indicated in Figure 3(a) and 
(c). Following this, a mask is defined, as depicted in Figure 3(b), 
to replace the higher-frequency portion of the DCT blocks from 
the Picasso painting with the DCT from Pollock’s painting through  
the  operation DCT DCT M DCTPic&Poll PIC Poll% %= +  M ,1-^ h  
where “%” represents the Hadamard, or element-wise, product and 
DCT , DCT ,Pic&Poll Pic  DCT ,Poll  and M are 8 × 8-square matrices 
representing the DCT transforms of the resulting operation, Picas-
so’s frame, Pollock’s frame, and a binary mask, respectively. After 
applying this linear operation, the resulting DCT is obtained, as 
depicted in Figure 3(d).

As a result, when including the higher-frequency content from 
the painting by Pollock in the painting by Picasso, the resulting 
entropy will be increased. As depicted in Figure 3(c), the synthe-
sized frame will exhibit much more randomness than will the 
original frame in Figure 3(a), but it will still show the composi-
tion by Picasso. In some respects, we are meeting both painters 
through the use of the DCT to ignite a discussion about entropy 
and spatial and frequency duality thorough a comparison of 

the results. Finally, students will develop 
their DSP technical skills concerning 
image processing when implementing 
and analyzing the results of the direct 
and inverse DCT transforms.

Quantitative and qualitative 
evaluation
Two types of evaluations have been 
carried out: first, a quantitative ques-
tionnaire about the concepts that have 
been acquired, and second, a qualita-
tive questionnaire used to gather the 
students’ opinions.

The quantitative questionnaire is the 
final exam in which a combination of 
theoretical and practical questions aim to 
assess the student’s performance in both 
types of skill. The same type of exam 
was carried out in previous editions of this 
course. Due to the COVID-19 pandemic, 

(a) (b) (c)

FIGURE 2. An illustrative example of a painter’s and of mixed styles. (a) Pablo Picasso’s The Blue Cup 
(1902). (b) Jackson Pollock’s Number 31 (1950). (c) The mixed style of Pollock and Picasso. 
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the examination in 2020 had to be conducted remotely, and 
some adaptations had to be made to the content. Specifical-
ly, it was a synchronous test carried out using the assess-
ment functions of the institutional Moodle-based learning 
platform. Certain measures designed to discourage answer 
sharing (e.g., the randomization of questions, sequentiality, 
and adequate time limitation) were implemented. In addi-
tion, the exam was adapted to allow students to consult their 
books, notes, or other sources. Surveillance was implement-
ed using Google Meet. The students were allowed to retake 
the exam only once, approximately one month later. 

We compared the results of the present 
questionnaires used with the average of the 
corresponding questionnaire in the last five 
editions of the course. This is the maxi-
mum number of editions we are allowed to 
retain data from according to the General 
Data Protection Regulation enforced in 
Europe. Our results show quite an improve-
ment on the scores: a median of 56.71 and 
a mean of 56.64 with 23 students taking 
the exam versus a median of 48.86 and a 
mean of 47.54 with 20.2 students taking the exam averaged 
over the previous five years. All of the scores were higher 
than 100. The maximum score is 100. The standard devia-
tions of the five-year average were 6.89, 5.22, and 2.58 for 
the median, mean, and number of students, respectively. 
Although the results are highly posi-
tive, we need to be cautious about the 
relatively low number of students and 
the fact that COVID-19 has certainly 
had impacts that are very difficult 
to quantify.

The results of the retake exam were 
not as promising; however, the number 
of students taking it was sensibly lower 
and their abilities are different (since the 
students are not able to retake the exam 
if they have already passed it) a median 
of 47.9 and a mean of 51.3 with seven 
students taking the examination versus a 
median of 51.66 and a mean of 51.6 with 
8.8 students averaged over the previous 
five years. The standard deviations of 
the five-year average were 7.6, 9.8, and 
3.56 for the median, mean, and number 
of students, respectively.

The qualitative test contained the 
following six statements, with several 
options for each of the three exercises 
(an average of 13.33 students answered 
this survey): 
1) The activity was (very interesting, 

interesting, barely interesting, not 
interesting); 91.07% of the students 
chose one of the first two options.

2) The activity was (very complex, complex, barely complex, 
not complex); 92.16% chose one of the first two options.

3) My previous knowledge on the contents was (enough, not 
enough) to complete the lab exercise; half of the students 
answered “enough.”

4) The information provided for the lab exercise was (very 
adequate, adequate, scarce, very scarce); 64% chose one of 
the first two options.

5) The instructor’s explanations (greatly helped me, barely helped 
me); 78.47% of the students chose “greatly helped me,” and 
21.53% selected “barely helped me.” 

6)  The lab exercise helped me (very much, 
somewhat, very little, not at all) to 
understand key concepts; 80.01% chose 
one of the first two options. The com-
plete breakdown of the answers can be 
found in Table 1.
From this we can conclude that the 

majority of the students found the ex -
ercises interesting and felt that they 
helped them to understand the key con-
cepts targeted. However, they also found 

the exercises somewhat complex (because of the efforts 
required to derive meaningful results), and some of them 
would have liked further guidance material. This under-
specification was a feature that we sought so as to keep 
the instructions open enough to foster creativity; this may 
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FIGURE 3. An illustrative example of a painter’s and of mixed styles. (a) Pablo Picasso’s The Blue Cup 
(using a discrete cosine transform) (1902). (b) A sample mask (using a discrete cosine transform). 
(c) Jackson Pollock’s Number 31 (1950). (d) The mixed style of Pollock and Picasso (using a 
discrete cosine transform).

In some respects, we are 
meeting both painters 
through the use of the 
DCT to ignite a discussion 
about entropy and spatial 
and frequency duality 
thorough a comparison  
of the results.
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be the reason for why the instructor’s indications were so high -
ly appreciated.

An overall satisfaction questionnaire was also appended 
to the third qualitative test and contained the following 
four statements: 
1) The activities were (very, somewhat, barely, not at all) origi-

nal and innovative; 71.43% of the students chose one of the 
first two options.

2) The activities were (very much, somewhat, barely, not 
at all) related to the engineering profession; 85.71% of 
the students chose one of the first two options.

3) The activities prepared me for critical thinking and 
reflection (very much, somewhat, barely, not at all); 
78.57% of the students chose one of the first two 
options.

4) The activities challenged me (yes, no); 92.86% of the stu-
dents chose “yes.” The complete breakdown of the answers 
can be found in Table 2.
We would like to highlight here that nearly all of the 

students found the activities challenging, which was one of 
our main objectives. They also very clearly perceived the 
relationship the exercises had with professional engineer-
ing. The scores on originality and critical thinking were 
also very positive but slightly lower.

Discussion
We used the proposed exercises detailed in the previous sec-
tion to raise our student’s interest in the liberal arts. The stu-
dents employed narrative techniques to produce their own 
scripts in exercise 1, they made adjustments so that the sound 
produced had better sonority or acoustic properties in exer-
cise 2, and they appreciated the composition of paintings in 
exercise 3.

The exercises were designed to combine both creative and 
more-guided learning processes. For example, exercise 1 re -
quired that students participate actively when writing and 
recording their own ideas; we expected them to express their 
concerns and proposals about the topics under analysis. Follow-
ing this, measuring the information entropy metric on a given 
text is a more standard procedure, during which they should 
follow straightforward specifications. The students should also 
become critical about the concept itself and its usefulness, which 
was verified empirically a posteriori once they had actively 
removed irrelevant content from their own excerpts of text. They 
proved themselves able to check that their text remains under-
standable, but observe at the same time, its length and entropy 
change, illustrating the perceptual coding strategies.

Exercise 2 illustrates the concept of re  dundancy in terms 
of sound perception. The students may appreciate the con-
cept of redundancy when they try to understand their own text 
after randomly erasing the most repeated letters. In this regard, 
redundancy is portrayed as the part of an object that may be 
removed without losing its descriptive ability. This idea is trans-
lated into sounds via sonification schemes, encouraging a per-
ception of redundancy by listening.

Finally, exercise 3 produces a visual representation of 
entropy to be contrasted with its value (analytically derived). 
Here we can perceive comparatively higher and lower values 
of entropy in the graphical content of paintings. The students 
also produce a mixed style of painters by incorporating addi-
tional entropy from one frame to the other. When trying to 
balance both frames from an information entropy stand-
point, the higher-frequency portion of one frame is replaced 
by the other. This mixture of analytical operations and the 
perception of the resulting images naturally facilitates the 
assimilation of the concepts of entropy and redundancy.

At the same time, students discuss the core concepts of 
engineering and develop technical skills related to DSP sub-
jects. In exercise 1, students reflect their understanding of the 
concept of entropy without the support of any mathematical 
formula, which gives a broaden idea of their comprehension 
of the topic. Exercise 2 reflects the concept of redundancy in 
terms of sound perception, while exercise 3 does the same 
through image. Considering the technical skills, hands-on 
activities involving core DSP techniques (sampling, represen-
tation, and transformation) are conducted when undertaken 
these exercises. The students develop the proper codes to read, 
store, analyze, process, and produce multimedia content (text, 
sound, and image). In addition, students are introduced to the 
basic implementation of the most common standards used to 
transmit multimedia content. The application of encoders and 
signal processing through the DCT are the basic elements of 
JPEG, MPEG, and H.26x standards.

Essentially, the proposed exercises are deliberately 
underdefined to give the students the chance to provide (and 
discuss) their own definitions of how redundancy should be 
measured for text, music, or images. In this respect, a con-
nection with nonengineering departments may support the 
introduction of some basic liberal arts concepts. For instance, 

Table 1. The qualitative tests for exercises 1–3 (the averaged 
percentage and standard deviation). The particular transcriptions of the 
options for each of the questions are described in the text. It is worth 
noting that questions 3 and 5 are binary.

Q Option 1 Option 2 Option 3 Option 4 
1 (21.29, 18.74) (69.78, 15.8) (4.76, 8.25) (4.17, 7.22)
2 (14.46, 20.17) (77.7, 19.73) (7.84, 13.58) (0, 0)
3 (49.02, 1.7) (50.98, 1.7) — —
4 (14.39, 8.36) (49.61, 13.57) (31.65, 15.92) (2.38, 4.12)
5 (78.47, 8.22) (13.03, 11.44) — —
6 (33.37, 10.5) (46.68, 3.59) (11.48,15.09) (6.55, 6.27)

Table 2. The qualitative tests for overall satisfaction (percentage) 
answered by 14 students. The particular transcriptions of the options 
for each of the questions are described in the text. It is worth noting 
that question 4 is binary.

Q Option 1 Option 2 Option 3 Option 4
1 28.57 42.86 28.57 0 
2 35.71 50 14.29 0 
3 28.57 50 14.29 7.14 
4 92.56 7.14 — —
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the teacher may introduce the elementary techniques used to 
develop narrative skills, wherein students are introduced to 
scriptwriting to support the solutions to exercises 1 and 2. A 
discussion of how to express the same concept but with less text 
and still preserving the meaning can also be carried out when 
developing solutions to exercise 1. Alternatively, the teacher 
may prompt a discussion about the perception of redundan-
cy in different musical rhythms; for example, they may pose 
questions such as “What is more redundant, classical music by 
Bach or the flamenco guitar by Paco de Lucía?”; “What sound 
attribute will be more useful to model and reduce redundan-
cy?”; and “Is there some correlation between redundancy and 
something as subjective as the quality of music?” Note that 
these issues will inspire a discussion even among specialists 
on the subject because the connections we are trying to evoke 
here are by no means straightforward. 

The evaluation of this study has proceeded in two direc-
tions: first, a quantitative questionnaire about the concepts to 
be acquired, and second, a qualitative questionnaire aimed 
at gathering student feedback. Our results show a positive 
improvement in the scores, although the sample of students 
is rather small. The qualitative test comprised six questions 
related to the students’ opinions of the three new exercises; the 
questionnaire covered students’ opinions regarding thought 
inspiration, the complexity of exercises, supporting theoreti-
cal background, and the completion of learning objectives. 
Four final questions concerning their overall opinions were 
appended to the last questionnaire, and the response showed a 
very positive attitude toward the new materials.

Future directions: Further DSP connections with the arts
Our methodology relies on the identification of core concepts 
in the targeted course and their connection with the arts as 
the main driving force. Here we suggest connections with 
other DSP core concepts. For example, the fundamentals of 
the digitalization of analog signals is mediated by Nyquist’s 
sampling theorem and its requirements for valid representa-
tions of continuous-time signals and systems in a discrete-
time domain. As is well known, the sampling theorem allows 
for the acquisition of equivalent discrete sequences from their 
analog counterparts. Similarly, discrete time-domain opera-
tions, such as discrete infinite-impulse-response filters and, 
most significantly, their discrete Fourier transforms, have 
output–input relationships equivalent to analog systems [1]. 
Both sampling and filtering, which allow the reproduction 
of analog signals and systems by their discrete-time counter-
parts, together with linear transformations such as Fourier’s 
(which bring a very convenient duality in time and frequency 
processing), are general and universal concepts in discrete-
time signal processing.

Several connections with the arts can be identified to illus-
trate, for example, the meaning and implications of the sam-
pling theorem. The impact of the sampling period on sound 
reproduction or the representation of images can be made (per-
ceptually) very noticeable in several creative ways. Besides 
the obvious (but also interesting) dependencies that can be 

observed by down- or upsampling the signals, musical elements 
such as rhythm and style, instrument tessituras, or vocal ranges 
can be exploited in relation to the sampling periods needed to 
process them in the discrete-time domain. For instance, Franz 
Schubert’s Ave Maria (Op. 52 No. 6), interpreted on a violin 
will provide a sharp contrast when compared to the main 
theme from the Interstellar soundtrack by Hans Zimmer, cov-
ered by a violoncello because of the higher-frequency tones 
used in the former. Similarly, the styles from certain art move-
ments (for example, pointillism techniques) will require more 
reduced sampling periods than will the blue period paintings 
by Picasso. Note that these last notions and their connections 
to the sampling frequency are more nuanced and conducive to 
discussion than purely engineering-based considerations.

In a similar fashion, the notion of filtering as applied to 
sound (a 1D filter) or to a given frame or photograph (a 2D 
filter) will modify our perception of the musical piece or the 
paint depending on the filter’s specifications. The impact of 
the design of the filters (i.e., low or high pass, and so on) can be 
discussed in connection with the instrumentation of a musical 
piece. Through the use of 2D filters can compare the results 
of smoothing and sharpening effects on visual pieces of art 
from two different art schools or periods. Again, for instance, 
smoothing effects will be more pronounced on pointillism 
than on the blue paintings by Picasso.

Conclusions
This ongoing research presented in this article introduced the lib-
eral arts as a way to improve the teaching of abstract concepts 
in engineering. By making innovative use of writing, sonifica-
tion, and image production techniques, we offered lab activities 
that interconnect the attributes of text, audio, and image with an 
active use of liberal arts concepts. We believe that this approach 
reinforces an understanding of key concepts and reduces student 
perceptions of their difficulty, not only through their analytical 
definition but also through the feelings or vibes they convey. 
This proposal also leads to the integration of nonengineering 
departments to design mixed curricula where both schools are 
integrated. Our evaluations indicated positive outcomes regard-
ing the learning objectives and appreciation of the course. Future 
directions include devising original exercises to cover new topics 
and key concepts and broadening the number and type of students 
involved to test their impact.
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One exciting challenge for future scientists and engineers 
will be to contribute to the development and introduction of 
self-driving cars. Under the objective of making young tal-

ent attending engineering-focused secondary schools and uni-
versities enthusiastic about this highly innovative topic, we have 
developed an educational platform for advanced driver assis-
tance systems (ADASs) and autonomous driving. Our platform 
is designed for a miniaturized environment with low cost and 
scalable complexity, simultaneously providing all of the sensors 
required to automate a vehicle. 

To make Miniaturized ADAS suitable for a wide range of 
students, we integrated our platform into a LEGO train as well 
as radio-controlled (RC) model cars and developed an assign-
ment catalog that includes several levels of difficulty. The main 
focus of this catalog is to convey the basic functionality of the 
sensors as well as the underlying signal processing techniques 
in a hands-on manner. Depending on the educational level 
and desired learning objectives, interested lecturers have the 
opportunity to select arbitrary modules to build up practical 
courses in accordance with their preferences.

In this article, we provide insight into this multidisciplinary 
educational project developed together with students for stu-
dents. In addition, we introduce the most important sensors cur-
rently used in ADASs and self-driving vehicles. To illustrate the 
broad spectrum and multitude of possibilities of this project, 
we further give a rough overview of the applied signal process-
ing strategies and highlight the weaknesses and strengths of 
the individual sensors. To give an impression of what practi-
cal courses for university-level students based on Miniaturized 
ADAS might look like, we finally present an exemplary assign-
ment catalog for a radar-based ADAS. The reason for focus-
ing on radar is that, to the best of our knowledge, Miniaturized 
ADAS is the only educational platform supporting frequency-
modulated continuous wave (FMCW) radar sensors.

Introduction
Nothing is constant but change—from a technical and eco-
nomic point of view, this statement has been especially true 
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since the first industrial revolution at the end of the 18th 
century. This point in time marked the transition from hand-
crafted production to machine manufacturing, which led to 
the mass production of products for the first time in human 
history. While the first machines, like the loom, had to be 
operated manually, subsequent engines were driven by wa-
ter and steam power. This progress led to the first effectively 
working steam locomotive—or rather, steam car—designed 
and built by William Murdock and based on patents by James 
Watt in 1784 [1]. By establishing the electrical current at the 
end of the 19th century, even more automation became pos-
sible, which ultimately led to the second industrial revolu-
tion. The most common innovation from that time is probably 
represented by the assembly line work successfully realized 
by Henry Ford in 1913 [2]. This step made the automobile 
affordable for new customers and therefore suitable for the 
mass market. 

The third industrial revolution, or digital revolution, typi-
cally dated to the middle of the 20th century, embodies the 
conversion from mechanical and analog electronics to digital 
electronics. This technological improvement enabled the inte-
gration of ADASs, such as adaptive cruise control (ACC) or 
the lane keep assistant (LKA) into high-class cars around the 
turn of the millennium [3]. The development of these safety 
features significantly decreased the number of injuries and 
fatalities on the road [4]. Further, it seems obvious that these 
numbers can be reduced even more by introducing self-driving 
cars, which are an essential part of the fourth industrial revolu-
tion, also denoted as Industry 4.0.

These technical advancements are accompanied by the 
emergence of a huge number of new research areas and pos-
sibilities in the field of signal processing and machine learn-
ing. Obviously, it is essential to excite young researchers and 
engineers to work in these areas. But beyond that, it should 
also be of the utmost importance to adequately educate young 
students to be well prepared for the challenges ahead. Due to 
the fact that technological progress and the associated changes 
have become significantly faster, we should adapt our educa-
tional system accordingly. 

Besides imparting important well-founded fundamental 
knowledge, it is also necessary to promote students’ creativ-
ity and problem-solving competencies on the system level. 
According to David Kolb’s experiential learning model, this 
may be efficiently done in a hands-on manner in which the 
students receive direct feedback and can reflect on their devel-
oped and implemented solutions [5]. Motivated by these con-
siderations, we started a collaboration between Infineon and 
the Institute of Signal Processing at Johannes Kepler Univer-
sity (JKU) Linz, with the aim to develop an ADAS in a min-
iaturized environment. Extending this cooperation to various 
educational institutions with different focuses finally led to 
this project.

In the following, we give insight into this multidisciplinary 
educational project, with a special focus on signal processing, 
and describe how it can be integrated into engineering-focused 
secondary school courses and university lectures or courses.

The Miniaturized ADAS project
The idea to develop self-driving model vehicles has already 
been realized by different institutions. Typically, such a de-
velopment goes along with competitions such as the Carolo-
Cup [6], the NXP-Cup in Europe, the Middle East, and Africa 
(EMEA) [7], or the Audi Autonomous Driving Cup (AADC) 
[8]. The objective of these contests is to develop a self-driving 
vehicle that is able to master various tasks within the time 
frame of one year. Although the mentioned competitions seem 
to be similar at first glance, they substantially differ from each 
other. The Carolo-Cup, organized by Technische Universität 
Braunschweig, requests that contributing students develop, 
build, and demonstrate a cost- and energy-efficient 1:10 model 
of an automated vehicle from scratch [9]. The problem defini-
tion of the AADC, on the other hand, is fundamentally dif-
ferent. Here, a 1:8 scale replica of an Audi Q2 is provided to 
student teams in the course of the competition. This means 
that every team is forced to use the same hardware to master a 
given obstacle course [8]. As a third variant, the current edition 
of the NXP-Cup EMEA allows the students to either use an 
existing NXP Cup car kit, acquire a commercial kit, or even 
build their own kit [7].

By comparing the mentioned competitions, we came to 
the following conclusions. Providing an already prefabricated 
hardware platform—including a tested industry-standard soft-
ware environment like that for the AADC—enables the stu-
dents to focus on the design and implementation of the decision 
logic. This saves time since there is no necessity to deal with 
the integration of the sensors. On the other hand, a disadvan-
tage of this powerful platform is its very high price. In contrast, 
allowing the students a high degree of freedom by letting them 
build the vehicle from scratch significantly widens the required 
tasks and expertise. This, in further consequence, will lead to 
larger teams and also demand management skills in addition to 
technical knowledge. However, from our experience, it is very 
challenging to build a smart and robust high-quality vehicle 
within only one year.

Therefore, based on two primary objectives, the idea of  
Miniaturized ADAS is to develop an affordable and highly 
configurable platform together with students for students. 
First, this platform is used to automate different kinds of model 
vehicles providing in-depth guidance to a small group of stu-
dents. This is typically done in the course of internships and is 
often combined with appropriate examination projects or the-
ses. Second, we used the developed demonstrators to prepare 
workshops for colleges and practical courses or lectures for 
universities. Furthermore, interested students attending these 
courses get the opportunity to become a part of Miniaturized 
ADAS and contribute to improving our platform and educa-
tional applications. To this end, we collaborate with various 
types of educational institutions.

The entry point into Miniaturized ADAS is represented 
by engineering-focused secondary schools. These five-year 
courses start with grade nine and are typically denoted as a 
higher technical school, or Höhere Technische Lehranstalt-
en (HTLs), in Austria [10]. The assignments for these HTL  
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workshops, presented in [11], are matched to the educational 
level of the students and aim to motivate them for science, 
technology, engineering, and mathematics studies. To fur-
ther use our platform for teaching at the university level and 
reach exactly these fields of study, Miniaturized ADAS can be 
adapted in multiple ways. 

First, to scale the demands regarding the complexity of the 
implemented solutions, we integrated our platform into dif-
ferent vehicles like cars and trains, each presenting individ-
ual requirements. This is driven by the fact that, for example, 
the automation of a train does not require any steering effort, 
whereas keeping a car in a certain lane is far more difficult. 
In the “Existing Hardware Platforms” section, we present a 
selection of the automated vehicles that are intended to be used 
for teaching and provide some background information about 
their development and related collaborations. 

Second, to provide a wide range of university courses with 
a scalable level of difficulty, we prepared a catalog containing 
a variety of different assignments. This enables interested lec-
turers to arbitrarily assemble their courses and put the focus on 
specific topics of their choice. An excerpt of a potential assign-
ment catalog for practical university courses on radar signal 
processing and radar-based ADAS is explained in the “Course 
Assignments and Learning Objectives” section. Obviously, the 
presented catalog can easily be extended for every available 
sensor of the platform. Considering how many available sen-
sors there are as well as the issues that have to be solved to 
fully automate a vehicle, the number of potential courses and 
lectures is huge. Furthermore, by adjusting or replacing single 
assignments, the courses can be adapted from year to year.

In this article, we chose to present an exemplary catalog 
based around radar because, to the best of our knowledge, 
there is no platform available that offers the possibility to eas-
ily include radar sensors. Typically, most miniaturized vehicles 
for autonomous driving base their decisions solely on camera 
data [12]–[14]. More advanced vehicles like the already men-
tioned Audi Q2 further provide ultrasound sensors or even lidar 
to sense the environment [8], [15], [16]. In our opinion, radar 
is one of the most essential sensors, especially for education-
al purposes since a lot of state-of-the-art ADASs, like ACC, 
blind spot assistant (BSA), or autonomous emergency braking 
(AEB), are based on radar data. In addition, ultrasound sensors 
will probably be replaced by radar sensors in the future, while 
lidar is currently hardly ever used for ADASs in modern cars.

Available sensors and actuators
The main processing unit of Miniaturized ADAS is a Raspber-
ry Pi minicomputer. Although there are more powerful com-
puters with a similar form factor available, the Raspberry Pi is 
supported by a huge community. This lowers the entry barrier, 
reduces the supervision expenditures, and enables students to 
share their knowledge and problems with a high number of en-
gineers and so-called makers via the Internet.

Our platform further provides a variety of sensors that can 
be used to sense the environment of an automated vehicle. 
According to [17], the most important sensors to enable autono-

mous driving are cameras, radar sensors, lidar, and ultrasound 
sensors. In addition, our platform supports a current sensor, a 
reed relay, a gyroscope/accelerometer, and a number of differ-
ent actuators that can be used for various applications. Table 1  
provides a list of all of the sensors and actuators supported by 
the software framework of Miniaturized ADAS. (For a detailed 
introduction on the software framework of Miniaturized ADAS, 
see [11].) 

 However, in the following, we specifically focus on cam-
eras, radar, lidar, and ultrasound sensors. In the course of this 
overview, we provide a more detailed description of the sen-
sor capabilities as well as their advantages and disadvantages. 
This, in further consequence, will exemplify the wide range of 
signal processing areas covered by this project. Furthermore, 
it will point out the necessity of advanced sensor fusion strate-
gies for future ADASs and autonomous driving.

Cameras
Among the aforementioned sensors, camera systems are prob-
ably the most versatile systems for ADASs and autonomous 
driving. From an image signal processing point of view, appli-
cations range from basic lane detection algorithms up to highly 
sophisticated machine learning approaches for object detection 
and classification. The former is often done with standard sig-
nal processing techniques, like edge detectors in combination 
with a Hough transform. Beyond that, Kalman filters can be 
used to predict the further course of the road [18]. The result-
ing information about the roadway is typically passed on to an 
ADAS, like a lane departure warning system or the LKA.

However, to reliably detect and classify objects, convolu-
tional neural network (CNN)-based single-shot detectors like 
You Only Look Once (YOLO) and Single-Shot Detector (SSD) 

Table 1. An overview of the available sensors and actuators as well as 
their intended use and costs.

Sensor/Actuator Use Case Costs
Radar 77 GHz Range, velocity, and angle estimation €250 
Radar 60 GHz Range and velocity estimation €150 
Rotating scanning lidar Range and angle estimation, path  

finding 
€100 

Time of flight 3D camera Range and angle estimation, path  
finding 

€300 

Raspberry Pi camera Lane/object detection €25 
Wide-angle camera Lane/object detection €30 
Ultrasound sensor Range estimation for short-range  

applications
€2 

Accelerometer/gyroscope Self-positioning €8 
Reed relay Reference positioning €0.5 
Current/voltage sensor Battery management €14 
H-bridge Motor control €3 
Servo motor Vehicle drive €15 
Intel compute stick Machine learning tasks €100 
OLED display Output information €5 
Fog machine Simulate poor visibility €60
Buzzer Attract attention €1 
Touchscreen Control vehicles, visualize sensor data €70

OLED: organic LED.
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are typically used. These networks are able to automatically 
extract features to accurately recognize and locate relevant 
objects [19]. The detected objects can further be used for tasks 
like traffic sign recognition or even camera-based AEB and 
ACC. The drawback of camera systems is their strong depen-
dency on environmental conditions like weather and lighting.

To offer work packages dealing with these challenges and 
enabling the powerful opportunities provided by cameras, the 
Miniaturized ADAS project supports two different camera 
modules. Furthermore, we integrated the lightweight CNNs 
PeleeNet-SSD, YOLOv3-Tiny, and MobileNetv2-SSDLite into 
our software framework, which allows it to perform object 
detection and classification on the Raspberry Pi [20]. In Fig-
ure 1, PeleeNet was used to detect and localize the two model 
cars as well as a doll.

Radar
For automotive applications, typically, FMCW radar systems 
are used. These sensors transmit a linear frequency ramp to es-
timate the round-trip delay time of received object reflections to 

finally calculate the corresponding distances [21]. By further 
transmitting several consecutive ramps and utilizing a multi-
ple-input, multiple-output antenna array, the relative velocity 
as well as the actual position of detected objects can be es-
timated. This is most commonly done by fast Fourier trans-
form (FFT)-based evaluation techniques in combination with 
constant false alarm rate (CFAR) algorithms used for object 
detection [3], [22], [23].

Due to the fact that automotive radar sensors operate in fre-
quency ranges from 76 to 81 GHz, they offer the unique advan-
tage of showing good performance even in adverse lighting and 
bad weather conditions [24]. Therefore, radar is the preferred 
sensor for assistant systems like ACC, AEB, or the BSA. Auto-
motive radar sensors are able to reach distances of up to 250 m 
[25]. However, due to the inherent crosstalk between the transmit 
(Tx) and receive (Rx) channels in the radar monolithic micro-
wave integrated circuit (MMIC), the minimum distance of an 
automotive radar sensor is typically limited to about 20 cm [26]. 

To achieve even shorter ranges, our platform supports not 
only an automotive radar but also a 60-GHz radar sensor that 

was initially developed to perform ges-
ture recognition for smart devices. The 
MMIC we used is a development ver-
sion of the radar chip utilized for gesture 
recognition in the Google Pixel 4 [27]. 
This sensor is able to detect objects in the 
range of 1–10 m, which makes it perfectly 
suitable for a miniaturized environment.

Figure 2 illustrates the same scenario 
as that depicted in Figure 1, recorded by 
an automotive radar sensor. Although all 
of the relevant object positions as well as 
their velocities are visible, it can be seen 
that the amount of information contained 
in this image is limited. Furthermore, it 
should be noted that the used objects 
provide very small radar cross sections 
and were therefore equipped with mate-
rials with good reflection properties.

Lidar
In contrast to radar, a lidar system il-
luminates a scenery using its own light 
source, typically operating with wave-
lengths of 905–1,550 nm, to precisely 
analyze the reflected light and detect 
the angle as well as the distance of sur-
rounding objects. In general, lidars can 
be divided into the categories of flash 
and scanning systems. A flash lidar  
illuminates the whole field of view si-
multaneously, which limits the illumi-
nation power that can be used to scan a 
particular spot in the environment. Scan-
ning lidar systems, on the other hand, 
overcome this problem by utilizing a 

FIGURE 1. A scenario depicting two model cars as well as a doll. The objects are successfully detected 
by the implemented lightweight CNN executed on the Raspberry Pi. 
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rotating or vibrating mirror to steer a 
focused laser beam in a specific direc-
tion. The most important advantage of 
both lidar systems is clearly the very 
high resolution in the angular domain. 
Therefore, lidar sensors are most com-
monly used for pathfinding in autopilot 
functions but could potentially also be 
used for systems like AEB and ACC. 
The drawbacks of lidar scanners are a se-
vere degradation in performance in poor 
weather conditions and the limited long-
term durability of the vibrating mirrors 
used in scanning lidar systems [28].

Miniaturized ADAS offers both of 
the aforementioned sensor types. The 
flash lidar system is represented by a 
so-called time-of-flight (ToF) camera 
[29]. These cameras are most commonly used for facial rec-
ognition in high-end smartphones like the Samsung Galaxy 
S10 5G or the Huawei P30 Pro. The ToF camera integrated 
into our platform is the CamBoard pico flex, which provides a 
measurement range from 0.1 to 4 m with an angular resolution 
of 0.27° at 45 frames/s, which is able to depict a 3D image of 
a scene. Beyond that, we also integrated a rotating lidar from 
Shenzhen EAI Technology Co. With its rotating sensor head, 
this lidar surveys the horizontal level in its surrounding up to a 
distance of 10 m. The sensor head rotates up to 12 times/s and 
offers measurements with an angular resolution of around 0.5°.

Figure 3 depicts the same scenario as detailed in the previ-
ous sections, recorded by the rotating lidar scanning sensor. 
To put the focus of the lidar scan on the described scene, the 
back of the lidar scanner was covered by a plate. It can be seen 
that all of the relevant object positions are visible with high 
accuracy of the angle and distance. However, the lidar sensor 
does not allow for the estimation of the relative velocity of the 
detected objects as provided by the radar sensor.

Ultrasound
Equally to the sensors presented in the previous two sections, the 
principle of an ultrasound sensor is based on radiating a signal 
and evaluating its echoes. Therefore, an ultrasound sensor trans-
mits an ultrasonic wave, which is reflected by the surrounding 
objects and received by an ultrasound microphone. The time 
difference between transmitting and receiving the signal is used 
to measure the distance of the object that caused the reflection. 
In automotive applications, ultrasound sensors are often em-
ployed to sense the local area of the vehicle. Hence, their main 
application is range estimation for parking assistance systems. 

In addition to the range information, 3D ultrasound sensors 
also offer the possibility of estimating the angle of objects. This 
is achieved by employing a microphone array, which measures 
the reflected ultrasound signal at different positions simulta-
neously. To adjust the angular resolution of such a sensor, the 
number of microphones and the geometry of the microphone 
array can be adapted. The big advantage of ultrasound sensors 

is their low price, while the main disadvantage is the highly 
limited maximum range. In Figure 4, a potential scan of the 
nearby surroundings in a parking maneuver recorded by mul-
tiple ultrasound sensors distributed all over the car is shown.

Existing hardware platforms
As already mentioned, the Miniaturized ADAS platform 
has been integrated into multiple vehicles, each implying its 
own challenges and capabilities. Compiling courses based 
on a train allows us to limit the complexity of the individual 
tasks. Choosing a high-end model car, on the other hand, 
will enable contributing students to develop a self-driving 
car for a miniaturized environment. In general, all of the 
features of the hardware platforms that will be described 
in the following are fully implemented. Depending on the 
learning objectives of the practical course, specific soft-
ware modules are removed and need to be implemented by 
the students themselves. To provide a better impression on 
how such a practical course could potentially be realized, 
we will present chosen hardware platforms as well as ex-
amples of their intended functionality.

FIGURE 4. A visualized ultrasound measurement during a parking maneu-
ver performed by the Audi Q2 model car.

FIGURE 3. A lidar image of two model cars and one doll located in front of the lidar sensor.
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LEGO radar train
The LEGO radar train represents a point of access into Miniatur-
ized ADAS. The reason why we chose a LEGO train for our fun-
damental application is that trains are bound to rails. This means 
that there is no necessity to worry about steering, which automati-
cally reduces the problem definition of automated driving by one 
dimension. Furthermore, LEGO is widely used, perfectly suited 
for building self-designed model vehicles, and, therefore, also en-
courages creativity. The first version of the train was developed in 
cooperation with two high school students from HTL Wels in the 
course of their final examination project in 2018. Their enthusi-
asm led to a workshop on radar-based ADASs for HTL students, 
which, since then, has been held twice at HTL Leonding, with 
more than 60 participating students each [11]. Furthermore, the 
same hardware platform in combination with different work pack-
ages will be used for an introductory course for the bachelor’s de-
gree program in electronics and information technology at JKU.

Meanwhile, the first demonstrator was further evolved, and the 
latest version offers several features like wireless charging and the 
associated automatic exchange of two trains on the track. As a high-
light, this advanced version is using its integrated 60-GHz radar 
sensor to perform an emergency brake in a foggy environment, 
which is illustrated in Figure 5. This scenario clearly highlights the 
benefits of radar sensors over other sensors like cameras or lidar.

Radar model car
The next expansion stage of Miniaturized ADAS is a 1:10 
model car, initially developed with the University of Applied 
Sciences Upper Austria Campus Hagenberg in the course of 
a student project. This practical course is an obligatory part 
of the curriculum and is often supervised by external lectur-
ers from industry. Within this course, a group of six students 
attending the bachelor’s degree program Hardware–Software–
Design automated a commercially available RC model car un-
der the supervision of an Infineon employee. The model car, 
depicted in Figure 6, also utilizes the described hardware plat-
form based on a Raspberry Pi. 

In contrast to the LEGO radar train, the radar model car uses 
a 77-GHz automotive radar sensor in combination with a wide-
angle camera. Basically, it is possible to control the car via a 
touch screen, which also enables the user to activate and deacti-
vate its assistance systems, such as AEB and ACC. Ultimately, 
by performing sensor fusion of radar and camera data, the car 
is able to follow another car at a certain distance. Currently, the 
steering in this mode is based on the tracking of a predefined 
symbol utilizing conventional image processing methods. 

Beyond that, we supervised a master’s thesis on camera-
based object detection using CNNs on the Raspberry Pi in 
combination with an Intel Neural Compute Stick 2 [20]. Due 
to the promising results, we plan to integrate the investigated 
machine learning algorithms into the decision logic of the car 
in one of the next steps.

Currently, we are under discussions with institutes of mul-
tiple universities to offer guided practical university courses 
with a focus on radar signal processing, radar-based ADASs, 
and sensor fusion strategies. These practical courses will be 
based on the assignment catalog, which is detailed in the 
“Course Assignments and Learning Objectives” section.

Audi Q2 model car
Due to the fact that the Raspberry Pi provides only limited pro-
cessing power, we decided to also include the previously men-
tioned Audi Q2 into the project. Surely, due to its high price,  
it naturally conflicts with our presented low-cost platform. 

FIGURE 5. The LEGO radar train platform enabling multiple trains on the track, wireless charging, and emergency braking in a foggy environment. 

FIGURE 6. The radar model car following another car at a certain distance 
utilizing a 77-GHz automotive radar sensor and a wide-angle camera.  
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Nevertheless, this model car represents a high-end model car 
that is well-suited for autonomous driving in a miniaturized 
environment. The significant computational power available in 
the Q2 as well as the attached sensors allow for the implemen-
tation of highly sophisticated signal processing algorithms. 

In addition, the car enables the use of more powerful 
neural networks for object detection and tracking compared 
to the radar model car. To push the limits even further, we 
enhanced the Audi Q2 with a 77-GHz automotive radar sen-
sor in the course of a master’s thesis in cooperation with 
the University of Applied Sciences Upper Austria Campus 
Hagenberg (see Figure 7).  

Course assignments and learning objectives
Based on the three demonstrators, we offer an assignment 
catalog reaching from imparting the fundamental basics of 
the individual sensors all the way to the development of high-
ly sophisticated techniques on the system level. Depending 
on the degree of education and the learning objectives of the 
course, lecturers are able to arbitrarily choose and modify 
the desired assignments. Due to the fact that the underlying 
demonstrators are fully operational, it is possible to provide 
individual features that are required for specific tasks on 
higher levels as black-box objects. This enables the students 
to focus on the given tasks while simultaneously experienc-
ing a comparatively easy and fast sense of achievement. In 
addition, we encourage the course instructors to use our pro-
vided sample solutions as a basis for a detailed discussion at 
the end of each assignment.

In the following, we describe selected modules from our 
assignment catalog that are intended to be used for practical 
university courses on radar-based ADASs. While the first four 
modules are described in a certain degree of detail, we have 
decided to give only a brief outline on the remaining modules 
as detailed explanations would otherwise go beyond the scope 
of this article. Furthermore, for courses 
with a higher focus on the system level, 
this catalog may be extended by mod-
ules covering the implementation of an 
ACC or the investigation of sensor fusion 
strategies by implementing a radar- and 
camera-based follow-me scenario.

Module 0: An introduction to the 
Miniaturized ADAS software 
framework
The objective of this introductory mod-
ule is to show students how to remotely 
control the Raspberry Pi and program 
the used hardware platform. To in-
troduce the students to the software 
framework and familiarize them with 
the provided high-level functions, the 
main part of this assignment is to exe-
cute short test programs and experience 
their behavior directly on the vehicle.

Module 1: Radar basics
This task starts with a short introduction to FMCW radar sys-
tems, explaining the basic functionality and the principles of 
estimating the range, relative velocity, and angle of surround-
ing objects. Therefore, the Tx signal is modulated as linear 
chirp, which can be described by

 ( ) ,coss t A f t kt2·Tx Tx 0
2r r= +^ h  (1)

for [ , ]t T0 CH! , where TCH  represents the time duration of one 
chirp period. Furthermore, ATx  represents the amplitude, f0  
the starting frequency of the Tx signal, and /k B TCH=  is the 
frequency slope of the chirp, whose frequency sweep is de-
noted as B .

The Tx signal is emitted by a Tx antenna and reflected by 
the objects in the channel. The superposition of all of these 
object reflections is sensed by the Rx antennas and further 
multiplied with the instantaneous Tx signal in a mixer. This 
finally leads to the intermediate frequency (IF) signal, which 
contains the required information. To slowly introduce the 
students to the topic and allow them to investigate the impact 
of the individual ramp parameters, we provide a small demo 
program. This program demonstrates how the processed data 
can be visualized to manually extract the required information 
from the plots.

Module 2: Range estimation
In this module, the students should estimate the distance of an 
object that is placed in front of the sensor. Therefore, the basics 
of spectral estimation techniques, especially the FFT as well 
as some basic peak finding algorithms, are explained. These 
methods need to be applied to the IF signal, which, for a single 
object, can ideally be written as

 ( ) ,coss t A f t2·IF IF Br U= +^ h  (2)

FIGURE 7. An Audi Q2 model car executing a lane detection algorithm.
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where AIF  and U  are the amplitude and a constant phase term, 
respectively. In addition, fB  represents the beat frequency, 
which is directly proportional to the (one-way) distance d  be-
tween the sensor and the object according to

 · ,f k
c
d2

B
0

=  (3)

with c0  denoting the speed of light.

Module 3: Range Doppler processing
This assignment deals with moving objects and teaches stu-
dents how the resulting Doppler frequency can be determined 
by transmitting multiple consecutive ramps. For a dynamic 
scenario, the IF signal for a single ramp is given by

 ( ) · ,coss t A f f t2IF IF B Dr U= + +^ ^ h h  (4)

containing the Doppler frequency,

 ,f f
c
v2

D 0
0

=  (5)

with v  describing the relative velocity of the moving object. The 
2D data set resulting from transmitting several ramps needs to 
be processed via a 2D FFT to obtain a range-Doppler map.

Module 4: Object detection
Due to the fact that a constant threshold to separate actual 
objects from noise is not sufficient in a constantly changing 
environment, the main part of this assignment is represented 
by CFAR algorithms. After an introduction of the concept, the 
students should implement an ordered statistic CFAR algo-
rithm and test if the vehicle is able to automatically detect the 
object and estimate its distance and velocity.

Module 5: Angle estimation
After an object is detected in the range-Doppler map, the 2D FFT 
needs to be applied to the data of all of the remaining Rx chan-
nels. By performing another FFT across the third dimension of 
this 3D matrix, at the peaks detected by the CFAR algorithm, the 
angle of incidence of the reflected waves can be estimated.

Module 6: Clustering algorithms
Due to the fact that complex-shaped objects typically produce 
several reflections, it is essential to figure out which detections 

belong to the same object. In this module, the students learn 
about density-based spatial clustering of applications with noise 
to group all of the detections into potential clusters and generate 
an object list. Finally, the actual positions of the objects can be 
visualized, as illustrated in Figure 2.

Module 7: Tracking algorithms
As the final assignment on sensor level, the goal of this mod-
ule is to implement a Kalman filter, which is used to increase 
the confidence in a potential detection. This filter is used to 
eliminate false detections that solely accrue in a single mea-
surement frame.

Module 8: Radar-based emergency braking
In this system-level assignment, the students need to use the 
postprocessed radar data to appropriately control the motor 
of the vehicle. In the first step, the vehicle should perform an 
emergency brake if an object is detected at a certain distance. 
In the second step, the emergency braking should be triggered 
only if the obstacle is directly in front of the sensor and avoid 
unjustified braking if the obstacle is located on a different lane 
or railroad track.

Achievements, feedback, and lessons learned
Utilizing the LEGO radar train, we established a workshop 
on radar-based ADASs for HTL students, which, since then, 
has been held twice, with more than 60 participating students 
each [11]. In Figure 8, we give insight into one of these work-
shops to convey the atmosphere. However, throughout the first 
workshop, we identified a few weaknesses in our platform that 
could successfully be eliminated, resulting in a further im-
provement of Miniaturized ADAS. In the following, we briefly 
share our experience.

To keep the individual groups as small as possible, we pro-
vided 10 workshop kits based on the Raspberry Pi 3, which 
is solely able to wirelessly communicate via a 2.4-GHz Wi-Fi 
connection. Accordingly, we faced the issue that this frequen-
cy band was partially overloaded, and thus, communication 
problems occurred. To overcome this problem, we upgraded 
our workshop kits to the Raspberry Pi 3B+, which also sup-
ports the 5-GHz frequency band, for the second workshop. 

In addition, we also experienced that the students had 
problems in efficiently utilizing the four cores of the ARM 

processor available on the Raspberry 
Pi. This is required to enable real-time 
capability and process the data of mul-
tiple sensors simultaneously. Therefore, 
we developed a co-routine-based soft-
ware framework in combination with 
message passing systems [11]. This im -
plementation allows for the design of 
concurrent systems, avoiding the chal-
lenges usually associated with tradition-
al multithreading or multiprocessing 
techniques, and consequently offers an 
easy-to-use experience.FIGURE 8. The 2019 workshop at HTL Leonding had more than 60 participating students. (Source: [11].) 
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Despite the described problems that occurred during the 
first workshop, we received consistently positive feedback 
from the contributing students. They especially liked the fact 
that they were able to directly test their implemented solutions 
on the provided hardware. Furthermore, most of the contrib-
uting students were familiar with the ADAS in modern cars 
and were really excited to reproduce such systems in a min-
iaturized version. However, in our opinion, the best feedback 
was the ambition, commitment, and creativity with which the 
students solved the given tasks.

The opportunity to exhibit and present their implemented 
sample solutions as demonstrators at various trade shows in 
Austria and Germany was another reward that was highly 
appreciated by our students who contributed to the develop-
ment of Miniaturized ADAS platform.  

Outlook and future work
Currently, we are supervising a bachelor’s thesis in cooperation 
with the University of Applied Sciences Upper Austria Campus 
Hagenberg with the objective of open sourcing the LEGO radar 
train workshop on GitHub [30]. This will include the part lists, 
building instructions, schematics, printed circuit board designs, 
corresponding exercises, and a reference implementation.

In addition, we revised the workshop to be held as an intro-
ductory course for the bachelor’s degree program in electronics 
and information technology at JKU, which will be held for the 
first time during the winter semester of 2021/2022.

As a further step, our objective is to prepare guided practical 
university courses based on the assignment catalog presented 
in the “Course Assignments and Learning Objectives” section, 
with a particular focus on radar signal processing, radar-based 
ADASs, and sensor fusion strategies, which will be realized 
on the radar model car. Once this practical university course is 
successfully introduced at JKU, it shall also be open sourced 
on GitHub [30].

Unfortunately, due to the COVID-19 pandemic, we were 
not able to hold the workshop in 2020. Therefore, we adapted 
the workshop such that the students are able to remotely pro-
gram the train from home and observe their progress on the 
actual hardware via a camera stream. This setup has already 
successfully been tested at a virtual event called “Industry 
Meets Makers,” and we plan to use it for the upcoming HTL 
workshops in 2021.

Conclusions
In this article, we presented an innovative educational platform 
for ADASs and autonomous driving for a miniaturized en-
vironment with the aim of inspiring other academic institu-
tions around the world to either collaborate on our platform 
or develop their own to adequately support students in their 
education. We further provided an overview of the most 
promising sensors currently used to automate a vehicle and 
thereby demonstrated the potential fields of applications for 
signal processing and machine learning in this area. To give 
an impression on how Miniaturized ADAS can be used for 
teaching, we finally presented an exemplary assignment 

catalog for radar-based ADASs as well as the provided hard-
ware platforms.

Acknowledgments
We would like to thank Infineon Technologies for supporting 
this work and allowing for its publication. We also express our 
sincere thanks to Alexander Reisenzahn, Stefan Matzinger, 
Gerhard Riess, and Manfred Ruhmer, who have always ac-
tively supported the Miniaturized ADAS project. Finally, we 
would like to thank all of the contributing students for being 
part of this project.

Authors
Michael Gerstmair (michael.gerstmair@infineon.com) 
received his Dipl.-Ing. in information electronics from 
Johannes Kepler University (JKU) Linz, Austria, in 2016. 
Currently, he works as a radar system engineer at Infineon 
Technologies Linz, 4040, Austria. From 2016 to 2020, he was 
a Ph.D. student at Infineon Technologies Linz in cooperation 
with the Institute of Signal Processing at JKU, Austria. His 
research focuses on radio-frequency impairments in highly 
integrated radar front ends as well as radar signal processing 
for automotive applications. He has supervised various bache-
lor’s and master’s theses related to radar- and camera-based 
advanced driver assistance systems and worked as a part-time 
lecturer at the University of Applied Sciences in Hagenberg, 
in 2018. He is a Student Member of IEEE.

Martin Gschwandtner (martin.gschwandtner@infineon 
.com) received his master’s degree in hardware/software sys-
tems engineering in 2004 and in information engineering and 
management in 2009, both from the University of Applied 
Sciences in Hagenberg, Austria. Since 2004, he has been with 
Infineon Technologies Linz, 4040, Austria. From 2017 to 
2019, he was the head of automotive radar software develop-
ment. He is currently responsible for R&D funding and inno-
vation activities. He has been involved in student activities for 
more than 10 years and has mentored in cooperation with 
technical colleges and universities more than 20 thesis and 
student projects in his career.

Rainer Findenig (rainer.findenig@infineon.com) received 
his Ph.D. degree from Johannes Kepler University Linz, 
Austria, in 2016 with Austria’s highest possible honor in edu-
cation, the Promotio sub auspiciis Praesidentis rei publicae. 
Currently, he is with Infineon Technologies Linz, 4040, 
Austria, where he is driving the next-generation automotive 
radar sensors’ control architecture. Additionally, he has more 
than a decade of experience in teaching system modeling and 
software and hardware development at the Upper Austrian 
University of Applied Sciences, initially in a full-time research 
and teaching position and now as an external lecturer. He has 
supervised more than a dozen bachelor’s and master’s theses 
and several student projects.

Oliver Lang (oliver.lang@jku.at) received his Ph.D. 
degree from Johannes Kepler University (JKU) Linz, Austria, 
in 2018. He received his bachelor’s degree in electrical engi-
neering and information technology and his master’s degree in 



114 IEEE SIGNAL PROCESSING MAGAZINE   |   May 2021   |

microelectronics from the Vienna University of Technology, 
Austria, in 2011 and 2014, respectively. Since 2019, he has 
been a university assistant at the Institute of Signal Processing 
at JKU, Linz, 4040, Austria, where he holds courses in the 
field of digital and statistical signal processing. He is the 
main inventor of several patents and patent applications 
in the field of automotive radar systems. He is a Member 
of IEEE. 

Alexander Melzer (alexander.melzer@infineon.com) 
received his Dipl.-Ing. degree from the Graz University of 
Technology in 2012. From 2013 to 2014, he was with 
Maxim Integrated Austria. From 2014 to 2017, he worked 
on his Ph.D. thesis in the field of radar signal processing at 
Johannes Kepler University Linz in cooperation with 
Infineon Technologies. During his Ph.D. thesis, he published 
several conference and journal papers and holds various pat-
ents in the area of phase noise estimation and leakage can-
celation in radar transceivers. Among various awards, he 
received the German Society of Information Technology 
Award in 2016. Since 2017, he has been a product architect 
for future automotive radar transceiver monolithic micro-
wave integrated circuits at Infineon Technologies Linz, 
4040, Austria.

Mario Huemer (mario.huemer@jku.at) received his Dipl.-
Ing. degree in mechatronics and his  Dr.techn. degree from  
Johannes Kepler University (JKU) Linz, Austria, in 1996 
and 1999, respectively. After holding positions in industry 
and academia, he became an associate professor at the 
University of Erlangen-Nuremberg, Germany, from 2004 to 
2007, and a full professor at Klagenfurt University, Austria, 
from 2007 to 2013. Since September 2013, he has been a full 
professor and head of the Institute of Signal Processing at 
JKU Linz, 4040, Austria. His research interests include sta-
tistical and adaptive signal processing with applications in 
information and communications engineering, in particular 
radio-frequency transceivers for communications and radar, 
sensor, and biomedical signal processing. He is a Senior 
Member of IEEE.

References
[1] W. J. Gordon, Our Home Railways, How They Began and How They Are Worked, 
vol. 1, London and New York: Fredrick Warne, 1910.

[2] T. Swan. “Ford’s assembly line turns 100: How it really put the world on 
wheels.” Apr. 2013. Car and driver. https://www.caranddriver.com/features/
a15115930/fords-assembly-line-turns-100-how-it-really-put-the-world-on-wheels 
-feature/ (accessed Jan. 17, 2020).

[3] M. Gerstmair, A. Melzer, A. Onic, and M. Huemer, “On the safe road toward 
autonomous driving: Phase noise monitoring in radar sensors for functional safety 
compliance,” IEEE Signal Process. Mag., vol. 36, no. 5, pp. 60–70, Sept. 2019. doi: 
10.1109/MSP.2019.2902914.

[4] “2018 road safety statistics: What is behind the figures?” Apr. 2019. European 
Commission. https://ec.europa.eu/commission/presscorner/detail/en/MEMO_19 
_1990 (accessed Jan. 17, 2020).

[5] D. Kolb, Experiential Learning: Experience as the source of Learning and 
Development, 2nd ed., New York: Pearson, Jan. 2015.

[6] M. Nolte, T. Form, S. Ernst, R. Graubohm, and M. Maurer, “The Carolo-Cup 
student competition: Involving students with automated driving,” in Proc. 2018 
12th Euro. Workshop Microelectron. Educ. (EWME), Sept. 2018, pp. 95–99. doi: 
10.1109/EWME.2018.8629462.

[7] The NXP-cup EMEA. NXP Community. https://community.nxp.com/groups/
tfc-emea (accessed Jan. 14, 2020).

[8] “Audi autonomous driving cup 2018.” 2018. Audi AG. https://www.audi-auton 
omous-driving-cup.com (accessed Jan. 14, 2020).

[9] “Carolo-Cup regulations 2019,” 2018. TU Braunschweig, https://www 
.tu-braunschweig.de/fileadmin/Redaktionsgruppen/Institute_Fakultaet_5/Carolo-
Cup/180710_Carolo-Cup_Regulations.pdf

[10] Wikipedia contributors. Höhere Technische Lehranstalt.” Wikipedia. [Online]. 
Available: https://en.wikipedia.org/wiki/Hoehere_Technische_Lehranstalt 
(accessed Jan. 17, 2020).

[11] M. Gerstmair, M. Gschwandtner, R. Findenig, A. Melzer, and M. Huemer, 
“LEGO radar train–An educational workshop on radar-based advanced driver 
assistance systems,” in Proc. 28th Euro. Signal Process. Conf. (EUSIPCO),  
pp. 1981–1985. doi: 10.23919/Eusipco47968.2020.9287353.

[12] A. K. Jain, “Working model of self-driving car using convolutional neural net-
work, raspberry Pi and Arduino,” in Proc. 2nd Int. Conf. Electron., Commun. 
Aerosp. Technol. (ICECA), Mar. 2018, pp. 1630–1635. doi: 10.1109/ICECA.2018. 
8474620.

[13] B. Blaga, M. Deac, R. W. Y. Al-doori, M. Negru, and R. Dǎnescu, “Miniature 
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I n June 2005, three State University of New York (SUNY) 
campuses, namely Stony Brook University, the University 
at Buffalo, and Binghamton University, joined forces to pro-

vide a completely online electrical engineering program that 
would lead to a bachelor of science in electrical engineering 
(BSEE) degree. The program was put together to serve a non-
traditional student body that is otherwise unable to achieve 
higher education in electrical engineering. The project was 
jump-started by an award from the Alfred P. Sloan Founda-
tion. This multi-institutional approach was an effective me-
dium for sharing the resources and revenue of the online of-
fering of courses. The Sloan Foundation grant initiated a big 
step toward the “Learning Anywhere, Anytime” vision for 
science, technology, engineering, and mathematics (STEM) 
education. It helped to set up the infrastructure of an ambi-
tious joint venture among the three SUNY campuses to col-
laborate on a jointly offered program.

In this article, we chronicle the journey of the program 
going through two Accreditation Board for Engineering and 
Technology (ABET) accreditation processes, describe the 
program’s nuances and its differences from massive online 
courses (MOOCs), explain how it promotes innovation, and 
provide some details of the offered signal processing courses. 
We also show how online learning can facilitate and strength-
en cross-disciplinary communities of research and education 
via online collaboration. Further, we argue that it enables the 
“learning to learn” paradigm, where the teacher also becomes 
the learner. 

In the article and based on our experience, we convey our 
belief that the online learning paradigm is conducive to 21st-
century education, where creativity, critical thinking, commu-
nication, and collaboration are encouraged. Our experience 
thus far has been very rewarding. Some of our colleagues 
with careers in engineering education of more than 20 years 
maintain that they have seen the best students in these online 
courses. Feedback from students has also been very positive, 
with most of them enjoying the vigor and flexibility of the 
schedule of our courses.
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While the white paper for this article was prepared, we 
were still living in pre-COVID-19 times. We had no idea that 
the academic world would quickly turn upside down as did 
more or less every aspect of our daily lives. As a result of 
the pandemic that followed, we have wit-
nessed forced changes in course delivery in 
academia across the world. On very short 
notice, instructors had to prepare lectures 
for online delivery, and, in courses that had 
laboratory components, they had to come 
up with creative solutions quickly. There is 
no doubt that many readers of this article 
who work in academia have already had 
the experience of teaching online courses and have drawn 
their own conclusions on the advantages and disadvantages 
of this mode of teaching.

A brief description of the program
The “Learning Anywhere, Anytime” vision of education has 
been widely supported and adopted [1]. This vision has been 
promoted by various institutions of the federal government 
of the United States [including the National Science Founda-
tion (NSF) and the U.S. Department of Education through 
the Fund for the Improvement of Postsecondary Education 
(FIPSE)], private foundations (such as the Alfred P. Sloan 
Foundation), and industry (such as the Microsoft Corporation) 
[2]–[4]. It is also gaining wide acceptance as the U.S. Depart-
ment of Education states that online learning is one of the 
fastest-growing trends in educational uses of technology. One 
of its reports from 2009 concluded that “students who took all 
or part of their class online performed better, on average, than 
those taking the same course through traditional, face-to-face 
instruction” [5].

Until recently, however, most fully online offerings of courses 
have not been in the STEM disciplines. But with the help from 
the FIPSE, NSF, and Sloan Foundation, this has changed. 
The growth of technologies for course management and vir-
tual laboratories as well as software for the remote access 
of laboratory equipment [6]–[11] has also contributed to the 
increased number of online offerings of courses in the STEM 
disciplines in recent years. Nevertheless, most online STEM 
courses have either been at the graduate level or are “blended” 
(combining online and face-to-face meetings). The rest of the 
world was also quickly getting traction in online courses, even 
in areas with technological barriers. 

Some of the driving forces for this trend have been popu-
lation growth and the exploding demand for education [12]. 
However, the realization of the vision of “Learning Any-
where, Anytime” for a complete bachelor’s degree online in 
STEM disciplines was still a work in progress until 2020. 
Then the pandemic came, and all of the disciplines, including 
STEM, had no choice but to deliver online courses. It remains 
to be seen how these forced changes will reverberate once aca-
demia returns to normal operations.

The project started first as an offering of courses for non-
matriculated students. In May 2011, it switched into an online 

program leading to a BSEE degree. At that time, Stony Brook 
University also received approval for the program from the 
New York State Education Department. A key feature of the 
upper-division program is that students can complete all of the 

electrical engineering coursework online 
without setting foot on campus. This is 
one of the first completely online electrical 
engineering degree programs at the bach-
elor’s level in the nation. The program is 
ABET accredited. 

All of the courses are delivered asyn-
chronously, including the electronic labo-
ratory courses. During the semester, the 

instructors and the teaching assistants are in close commu-
nication with the students in the class, often via scheduled 
video meetings. The students in the courses with laborato-
ries perform the same experiments as those in traditional 
offerings (more on this in the “Laboratory-Based Courses” 
section). This is made possible via the innovative use of tech-
nology. Finally, some of our online lectures developed in the 
program are also being used to supplement and enrich on-
campus offerings, hence creating a win–win setting. Students 
take the basic mathematics, science, and general education 
courses elsewhere (online or at local institutions). All of these 
courses are carefully assessed before they are approved for 
the BSEE degree.

The educational objectives of the program are:
 ■ PEO1: Our graduates should excel in engineering posi-

tions in industry and other organizations that emphasize 
the design and implementation of engineering systems 
and devices.

 ■ PEO2: Our graduates should excel in the best graduate 
schools, reaching advanced degrees in engineering and 
related disciplines.
The expected student learning outcomes are:

1) an ability to identify, formulate, and solve engineering 
problems by applying the principles of engineering, sci-
ence, and mathematics

2) an ability to apply engineering design to produce solu-
tions that meet specified needs with consideration of pub-
lic health, safety, and welfare as well as global, cultural, 
social, environmental, and economic factors

3) an ability to communicate effectively with a range of 
audiences

4) an ability to recognize ethical and professional respon-
sibilities in engineering situations and make informed 
judgments, which must consider the impact of engi-
neering solutions in global, economic, environmental, 
and societal contexts

5) an ability to function effectively on a team whose mem-
bers together provide leadership, create a collaborative 
and inclusive environment, establish goals, plan tasks, and 
meet objectives

6) an ability to develop and conduct appropriate experimen-
tation, analyze and interpret data, and use engineering 
judgment to draw a conclusion 

A key feature of the upper-
division program is that 
students can complete all 
of the electrical engineering 
coursework online without 
setting foot on campus.
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7) an ability to acquire and apply new knowledge as needed, 
using appropriate learning strategies.
In terms of course offering, the program curriculum con-

sists of 17 core courses and four technical electives from a 
list of eight technical electives. A more detailed description of 
the courses and their syllabi can be found 
on the curriculum page of the program’s 
website [13]. This list evolves with time to 
reflect the changes in the discipline, needs 
of industry, and interest of the students. 
Currently, the core courses in the program are as follows:

 ■ EEO 124: C or C++ Programming, 3 credits
 ■ EEO 218: Digital Logic Design, 3 credits
 ■ EEO 219: Digital Logic Design Lab, 1 credit
 ■ EEO 271: Electric Circuits Analysis, 3 credits
 ■ EEO 224: Object Oriented Programming for Electrical 

and Computer Engineers, 3 credits
 ■ EEO 300: Technical Communications for Electrical Engineers, 

3 credits
 ■ EEO 301: Signals and Systems, 3 credits
 ■ EEO 302: Engineering Ethics and Societal Impact, 3 

credits
 ■ EEO 306: Random Signals, 3 credits
 ■ EEO 311: Electronics II, 3 credits
 ■ EEO 315: Electronics I, 3 credits
 ■ EEO 323: Electromagnetics, 3 credits
 ■ EEO 331: Semiconductor Devices, 3 credits
 ■ EEO 352: Electronics Lab I, 3 credits
 ■ EEO 353: Electronics Lab II, 3 credits
 ■ EEO 440: Engineering Design I, 3 credits
 ■ EEO 441: Engineering Design II, 3 credits.

The technical electives (four courses are to be selected from 
the list below) are as follows:

 ■ EEO 304: Electronic Instrumentation and Operational 
Amplifiers, 3 credits

 ■ EEO 303: Digital Signal Processing, 3 credits
 ■ EEO 314: MOS Transistor Modeling, 3 credits
 ■ EEO 316: Integrated Electronic Devices and Circuits, 3 

credits
 ■ EEO 346: Computer Communications, 3 credits
 ■ EEO 366: Embedded Mixed-Signal Systems, 3 credits
 ■ EEO 388: Foundations of Machine Learning, 3 credits
 ■ EEO 414: Fundamentals of Low Noise Electronics for 

Sensors
 ■ EEO 425: Electric Machinery and Energy Conversion, 

3 credits
 ■ EEO 470: Renewable Distributed Generation and Storage, 

3 credits
 ■ EEO 482: Power Systems Engineering, 3 credits.

These courses are offered via the Blackboard Learn envi-
ronment. Some courses have PowerPoint slides with voice and 
annotations, some use Echo 360 software to capture on-cam-
pus lectures with PowerPoint slides, while others use different 
technologies [14]. 

Most of the students in the BSEE program are nontradi-
tional students. They are working professionals pursuing the 

degree part time for career advancement while supporting 
families. In the fall of 2020, we had 37 students, 32 of them 
part-time students and five of them full-time students. Of the 
32 part-time students, most were engineering technicians pur-
suing the degree to become engineers. We also had a couple of 

female students working toward the degree 
to return to the workforce after raising a 
family as well as one patent lawyer having 
as a goal the degree to expand his practice 
to include electrical engineering.

Our prospective students are primarily working profession-
als. However, in the fall of 2020, due to the pandemic, we also 
had a few traditional students who had completed an associate 
of science degree from a community college. In principle, the 
program accepts other students, too, as long as they satisfy our 
admission requirements.

ABET evaluations of the program
In May 2014, the program graduated its first cohort of three 
students, and a team of three ABET evaluators visited cam-
pus. This was ABET’s first accreditation of a completely 
online undergraduate program in electrical engineering. In 
addition to Stony Brook University faculty, faculty members 
from the University of Buffalo and Binghamton University 
were onsite to meet the accreditation team. In October 2017, 
the program went through its second ABET accreditation 
visit along with the onsite engineering programs of the uni-
versity. The program passed the accreditation visit with fly-
ing colors.

In our first ABET accreditation, while the evaluators 
were impressed with the strength of the program and the 
dedication of the faculty, there was a shortcoming in that 
students in the program did not have enough exposure 
to multidisciplinary team experience. We argued that 
most students in the program were working profession-
als who had ample team experience at their jobs. The 
ABET evaluators agreed that the team experience from 
work was appropriate but that the experience needed to 
be documented. Since then, the program has introduced 
an internship course (EEO 488: Internship) in which stu-
dents receive credits for work related to projects. Part of 
the requirements of the course is the documentation of 
team experience.

In our second ABET accreditation, when the program 
was evaluated with the onsite programs, we found that, by 
and large, the accreditation requirements were quite similar. 
However, in the BSEE program, there were no paper assign-
ments. All of the coursework was submitted electronically, 
which facilitated the assessment process. The evaluators 
found no shortcomings in the program.

MOOCs and BSEE online program comparisons
MOOCs are online courses free for anyone to enroll in and 
learn about topics of almost any type. Thus, MOOCs may ap-
pear to be in direct competition with programs like ours. We 
argue otherwise.

Most of the students in 
the BSEE program are 
nontraditional students.
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MOOCs as a distant education framework was intro-
duced in 2008 [15], and it gained popularity soon after. In 
2011, 450,000 students took three computer science courses 
offered by Stanford University [16], and in 2012, The New 
York Times declared 2012 the “Year of the MOOC” [17]. In 
the following years, the number of students and the number 
of offered courses continued to swell at a staggering pace. 
According to ClassCentral [18], in 2019, there were 110 mil-
lion students (excluding China) who took online courses from 
a list of about 13,500 courses. Further, in 2019, providers 
introduced more than 2,500 courses [18]. The courses are 
offered by many universities and are 
delivered via respectable platforms that 
provide the technology for distributing 
the video lectures with possible follow-
up tests. Some of the courses are interac-
tive, and some offer user forums and social 
media discussions. 

MOOCs have also introduced online 
master’s degrees that can be completed 
fully online [19] (in 2019, 11 new online 
degrees and 170 microcredentials were introduced [18]). 
There are now more than 50 programs, and they are put 
together in partnerships with universities. Further, these 
degrees are accredited and recognized, and their cost is lower 
than that of other online and on-campus degrees. Popular 
master of science degree programs are in computer science 
and engineering, business and management, data science and 
analytics, cybersecurity, IT management, and public health 
and health care.

Still, the excitement about MOOCs seems to have waned 
as can be attested by a slowdown in the increase of new users. 
On the other hand, MOOC platforms are experiencing a 
growth in paying customers, which perhaps indicates a shift 
in the focus of MOOCs.

Programs like ours are distinguished from those offered 
by MOOCs in that they are for undergraduate students and 
they have laboratory components in several courses. They 
are structured in a similar way to regular on-campus pro-
grams such that the difference between them is minimized. 
The assessment and evaluation in the BSEE program are 
similar to the onsite program. For the most part, evaluations 
in the courses are based on written answers for traditional 
engineering questions, including math derivations, circuit 
diagrams, and designs, as well as submitting written reports 
for laboratory courses and projects. Presentations in project-
oriented courses, such as the capstone design project, are an 
important component of assessment. All of the exams are 
timed and proctored.

The admission criteria for the BSEE program are much 
stricter than those for MOOCs. Although the MOOC plat-
forms have a large number of free electrical engineering 
undergraduate courses, grades in these courses are usually 
based on automatically graded assessments or peer-to-peer 
reviews. The exams in the BSEE program are proctored in 
a way that would maximize authenticity and are graded by 

professors or teaching assistants. The students receive feed-
back from their instructors on a regular basis and can speak 
to them directly during office hours or during individually 
arranged video meetings. An important course in the pro-
gram is the senior design project, which is a two-semester 
course where students work on teams to solve real-world 
engineering problems. This course in the BSEE program 
is designed in such a way that the activities are indeed the 
result of teamwork.

As already pointed out, the quality of the classes in the 
online program is similar to that of the on-campus classes, and, 

thus, the online students in the program 
have to invest significant time and effort to 
complete the courses. Further, students in 
the classes are encouraged to interact with 
their classmates to share experiences. This 
is a much more natural process when the 
number of students is small as opposed to 
the large groups of students in MOOCs. If 
we add to this the fact that the backgrounds 
of the students in the BSEE program are 

much more congruent than in any MOOCs in the context of 
meeting the goals of the program, this is very helpful. The 
students can get much more out of their classes when they 
are with peers that face similar challenges and have simi-
lar backgrounds.

Last but not least, the BSEE program undergoes periodic 
accreditations that are designed to provide assurance that the 
program meets the quality standards of the profession. This, 
in itself, offers the students more respected credentials for the 
completed degree.

Laboratory-based courses
The online delivery of laboratory-based courses is a chal-
lenge. However, in the electrical engineering discipline, 
laboratory courses often involve the building of low-power 
electronic circuitry that is powered by dc batteries, which 
removes safety concerns. Furthermore, technological ad-
vances have made USB oscilloscopes available for rea-
sonable costs. The pandemic of 2020 has created a strong 
demand for equipment that allows students to perform ex-
periments in their homes, and that has pushed many manu-
facturers to quickly step in and fill the existing void with 
novel products.

In the BSEE program, we have three required labora-
tory courses: EEO 219: Digital Electronics Lab, EEO 352: 
Electronics Lab I, and EEO 353: Electronics Lab II, all of 
which require students to purchase a commercial labora-
tory kit that costs about US$300. In these courses, they 
learn to use the instruments, implement designs, rectify 
problems, optimize circuits, debug, and perform charac-
terizations. They also learn how to analyze data, evalu-
ate the significance of their findings, and prepare reports 
and presentations. Since their inception, the goal of the 
electronics laboratories has been to provide students with 
hands-on experiences. 

Programs like ours are 
distinguished from those 
offered by MOOCs in that 
they are for undergraduate 
students and they have 
laboratory components in 
several courses.
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Students perform circuit design and simulations using 
software and then conduct experiments with the hardware. 
They use computer-based instruments locally most of the 
time. On rare occasions, e.g., when they perform device char-
acterizations requiring fine-time resolution or high frequen-
cies, they can access equipment online. This combination 
of experiments improves with every passing year. We build 
on past experience and constantly improving technology for 
delivering online education with the aim of providing our 
students with a rich set of opportunities to learn by doing. 
More details of our laboratory courses can 
be found in [14].

Senior design projects are another chal-
lenge. Due to the geographical separa-
tion, most students opt for an individual 
capstone design project. As pointed out, 
during our first ABET accreditation visit 
in 2014, the evaluators expressed concern 
about the lack of teamwork. We argued that our students 
in the BSEE program are working professionals who have 
already demonstrated teamwork experience in their profes-
sional careers. The concern was removed after we introduced 
an internship course in which students discuss their team-
work experience.

Based on our experience, we found that, in most cases, 
students do individual projects. However, due to the fact 
that most of these students are mature professionals, a large 
number of them proposed their own projects based on their 
personal and professional experiences. From the past, some 
interesting design projects included a tankless water heating 
system; a smart garden system that monitors soil conditions 
to optimize planting times, watering levels, fertilization 
schedules, and so on; an innovative digital electromechani-
cal timing device to control the motor runtime for pressur-
izing a plant; and a  programmable real-time audio processor 
using a commercial field-programmable gate array board. 
Each student in this course has one-on-one consultation with 
the project advisor, mostly on a weekly or biweekly basis. It 
is our impression that, for many of these projects, the design 
is more complex than that of the on-campus projects. We 
explain this by the more advanced professional experience 
of the BSEE students.

We have also explored the option of connecting the 
BSEE online students with a team from the traditional on-
campus program. In these cases, the BSEE online students 
were often responsible for the software component of the 
project. We observed interesting dynamics between the 
BSEE students, who are often much more senior than the 
traditional onsite students, and the on-campus students, 
who are typically in their early twenties. Often the BSEE 
students provide more well-rounded input drawn from their 
work experience, while the traditional students excel in 
mathematical and analytical skills. We also have had some 
teams of two or more BSEE students working together on 
their capstone projects. However, in this case, the results 
have been mixed. In general, it seems that the teams that 

had members who live within relatively close geographic 
proximity did well as they were able to arrange face-to-face 
meetings. The teams with members that have been geographi-
cally far away from each other have not fared as well.

Signal processing-related courses
The program has two required courses related to signal 
processing (EEO 301: Signals and Systems and EEO 306: 
Random Signals) and one elective course (EEO 303: Dig-
ital Signal Processing). We provide details of how these 

courses are offered and how we increase 
student engagement during the semester 
and make the engagement continuous.

The syllabus of the course on signals 
and systems includes all of the standard 
topics that one would expect in such a 
course, including an introduction to con-
tinuous-time and discrete-time signals 

and linear systems, differential and difference equations, 
convolution, Fourier series and transforms, transfer func-
tions, frequency responses, the Laplace and z transforms. 
In the course on random signals, the emphasis is on intro-
ducing the concepts of random experiments and events, 
random variables, probability distribution and density func-
tions, random processes, and the response of linear systems 
to random inputs. Some of the basics of statistics are also 
provided. The elective course on digital signal processing 
covers ordinary topics.

The courses are well structured, and the lectures are post-
ed once or twice a week (as if the students attend the lectures 
on campus). The lectures contain hands-on examples that 
follow the theory and are connected with real-world appli-
cations. They are accompanied by homework assignments 
that may include exercises that need to be carried out using 
MATLAB or other programming languages. The instructors 
hold office hours at times that are usually after hours so that 
students who have full-time jobs can have the opportunity 
to speak directly to them and ask questions. Instructors also 
often arrange for meetings that are outside of office hours. 
Such arrangements are possible because the number of stu-
dents in a class is not large. 

The exams are of the same form as the exams for on-
campus students; they are proctored and usually take place 
over the weekends. The exams are graded by the instructors 
in the usual way and returned to the students. The pace of the 
instruction is identical to that of on-campus students, and it 
occurs over a period of 14 weeks. The overall aim is to keep 
the level of education in the online classes at least as high as 
that in the onsite classes.

Challenges and triumphs
In our last 10 years of experience delivering online courses, 
we have encountered a number of challenges. They include 
authentication/verification, student engagement, and student/
faculty interactions. At the same time, we have also gained 
insights into some unexpected benefits of the online offerings.

The overall aim is to keep 
the level of education 
in the online classes at 
least as high as that in the 
onsite classes.
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The authentication and verification of student identity are 
vital to the integrity of any program. In the early stages of 
the program, we came across students who engaged in aca-
demic dishonesty when an unqualified person was adminis-
tering an exam. This was promptly changed to a proctoring 
policy where every exam, including midterms and tests, must 
be proctored by a competent delegate. The person must be 
the faculty/staff of another higher education institution or 
a full-time employee of a testing center, 
proctoring company, or public facility, 
such as a public library. All proctors must 
be approved by the faculty. This policy 
works well in minimizing academic dishon-
esty and safeguarding academic integrity. 
However, this is a time-intensive process 
because each student may have a different 
proctor who needs to be approved. 

Recently, however, there are commer-
cial proctoring services that have become 
available, and we have had success in having students proc-
tored by them. Some of the companies use human proctors, 
while others use artificial intelligent agents and computer 
vision. For example, if a camera identifies that an exam 
taker constantly has eye or gaze movements in a specific 
direction, a flag is raised, and a human proctor intervention 
is triggered. 

The scale of online offerings around the world, precipi-
tated by the pandemic, will continue to drive the develop-
ment of improved technology-assisted proctoring systems. 
The benefit of working with commercial proctoring ser-
vices is that they simplify the process while protecting aca-
demic integrity. Again, the pandemic has contributed to the 
mushrooming of products from companies that operate in 
this domain.

Student engagement and student/faculty interactions 
have always been perceived as challenging for online cours-
es. Fortunately, with the advances in video conferencing 
technology, this issue is much less of a concern now. There 
are many products on the market that allow for synchronous 
meetings and the conducting of office hours where instruc-
tors answer questions and demonstrate how to solve home-
work problems in real time and have sessions recorded for 
students who cannot attend. When the meetings with sev-
eral students are in real time, some of these products offer 
the use of break-out groups to allow for collective discus-
sion among students. Later, the students are brought back to 
the meeting for further discussion. These activities promote 
student engagement.

While the online offering of courses possesses challenges 
as outlined, there are some unexpected benefits and triumphs. 
By and large, the online offering mode provides students 
with a more studious experience in which they can have more 
opportunities to reflect on the lectures and conduct thoughtful 
engagement. For example, through the use of online discus-
sions and various communication tools, students have more 
time to have meaningful exchanges with peers, teaching assis-

tants, and instructors. For students who are more reserved, the 
online environment is more conducive to discussion as it gives 
them time to construct responses and questions. While student 
involvement in online courses is often considered challenging, 
we found that, if the right tools are used, the online platform 
can be quite effective for learning. 

At the same time, the online platform facilitates discus-
sions and collaboration among cross-disciplinary commu-

nities, free from the confinements of time 
and space. Some of our most successful 
senior design projects have been carried 
out by teams of traditional undergraduate 
students in the face-to-face program and 
nontraditional students in the BSEE pro-
gram. The youth and energy of the former 
and the maturity and experience of the 
latter have created dynamic bonds on the 
teams, which has led to very positive proj-
ect outcomes.

The online program has several advantages. Two of them 
are rather important. One is the reduced cost of obtaining a 
bachelor’s degree. Clearly, the costs of traveling and living on 
campus are eliminated as are various fees that onsite students 
have to pay. The other advantage is that the online delivery 
of the program allows for reaching out to a very large pool of 
prospective students around the world.

Our vision
Interestingly, the changes we experienced in academia in 
2020 due to the pandemic have helped our program and so-
lidified our intentions to strengthen it further. First, we find 
ourselves in a situation where we can also learn from many 
others who have been pushed to offer online courses, in par-
ticular courses with strong laboratory components. Second, 
the market is now much richer with products that allow for 
online education. This not only includes products used for 
conducting laboratory exercises but also products for video 
conferencing and proctoring. With these developments, we 
find ourselves in a position where we can further enrich our 
program with laboratory offerings and strengthen every single 
course by using better technology. 

We are mindful of the fact that on-campus classes offer 
students something that online students do not get, such as 
the social and cultural experiences of living with their peers. 
However, we keep in mind that our program is primarily for 
nontraditional students whose sets of challenges are different 
from those of the on-campus students, and the BSEE program 
is optimized for them. Thus, we continue pursuing our aspira-
tions of continued enhancement of the program. We combine 
these efforts with attempts to attract an increased number of 
students who will find our program an excellent opportunity 
for achieving their professional goals.

We envision that in 10 years, our program will become a 
model program for serving nontraditional students as well 
as special groups of students who are unable to attend on-
campus courses. Following the ABET spirit for continual 

By and large, the online 
offering mode provides 
students with a more 
studious experience in 
which they can have more 
opportunities to reflect on 
the lectures and conduct 
thoughtful engagement.
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improvements, the program will expand its technical offer-
ings to include more hands-on components and technical 
electives and will most likely offer specializations that are 
driven by the needs of industry, such as machine learning 
and data science. Further, our department is currently in the 
process of establishing an online master of science program 
in engineering artificial intelligence. Once approved by the 
New York State Education Department, we plan to create 
an accelerated program for our BSEE students, where, as 
the name suggests, all of the requirements for completing 
the degree could be fulfilled more quickly, e.g., by allowing 
some of the graduate courses in the master’s program to be 
used as technical electives of the BSEE program. We also 
envision that our program will inspire the creation of similar 
programs for serving those who are unable to attain a bach-
elor’s degree in the traditional way.

In summary, the journey of the BSEE program has been 
equally enriching for students and faculty. Motivated by the 
dedication and preservation of nontraditional students, the 
instructors have put genuine efforts into delivering online cours-
es of high value. In the process, they have also become learners 
in the journey of continuous improvement of the BSEE—thus 
enabling the “learning to learn” paradigm, where the teachers 
also become the learners.
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INNOVATION STARTS WITH EDUCATION

Modern signal processing (SP) classes should provide a bal-
ance between theory and application as well as use active 
learning exercises to engage students and facilitate learn-

ing. A new sensor processing course, Sensor Processing for 
Autonomous Vehicles (SPAV), was designed with two specific 
objectives: 1) to successfully engage students using active and 
collaborative learning and 2) integrate a state-of-the-art, physics-
based autonomy simulator into the class. 

The course was delivered to local and asynchronous dis-
tance students in spring 2020 at Mississippi State University 
(MSU). The MSU Autonomous Vehicle Simulator (MAVS) 
was used in the class. We also utilized three miniprojects to 
bring together theory and practice. We evaluated the course 
through student feedback. Results indicated that students 
viewed active exercises and the simulator as beneficial and 
useful, with multiple students describing those aspects as their 
favorite part of the course. Nearly all students (39 of 40) report-
ed that they were engaged in the course.

Background
“Signal processing” is defined by the IEEE Signal Process-
ing Society as “. . . the enabling technology for the generation, 
transformation, and interpretation of information” [1]. Herein, 
we also consider SP in a broad context, not just the traditional 
sampled discrete-time series data processing. For instance, 
deep learning (DL) image processing as well as radar and lidar 
object detection all come under the general SP umbrella.

Traditional digital SP (DSP) classes often are very math 
intensive and focus on “traditional” approaches, such as 
Fourier-based processing, filter structures and design, and so 
on. There is still a strong need to teach the fundamentals of 
DSP given its ubiquitous nature, yet there is also the need for 
classes to expose students to modern data-driven methods; 
current research trends; industry challenges; and opportuni-
ties in diverse spaces, such as image processing, time series 
processing, and lidar point cloud processing, among others. 
DSP classes can be  rigorous, yet they can also have applica-
tion- and system-level content.
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Studies show that, in general, students learn better when 
they actively participate in meaningful learning experi-
ences [2]. Instructors should ask many questions [2, pp. 31, 
85–86] to engage students and allow them to obtain a deep-
er understanding. Active learning has various forms that 
are useful for college classrooms, including, for example, 
informal group discussion, think–pair–share, and minute 
papers. An overview of active learning can be found in [3] 
and [4], with a catalog of techniques in [5] and a discussion 
of opportunities and challenges for active learning in com-
puting courses in [6]. 

Many research efforts have shown the effectiveness of active 
learning [3], [7], [8] and student-centric learning [9] in engi-
neering classes. In addition to encouraging active participation, 
instructors should focus on creating meaningful learning situa-
tions for students. One way to make learning meaningful is to 
include real-world applications in the classroom. Examples and 
activities based on real-world applications support learning by 
being memorable, sparking interest, helping students connect 
new information to their prior understanding, and correcting 
misconceptions [10].

Class development
In recent years, there has been significant research and devel-
opment into autonomous vehicles (AVs). The Center for Ad-
vanced Vehicular Systems (CAVS), a research center at MSU, 
performs AV research and development with cameras, radars, 
and lidars. Camera systems are ubiquitous in automotive au-
tonomy due to high-resolution imagery, high data rates, and 
low cost. However, they struggle in rain, fog, and low-light 
situations. Radar and lidar are active tech-
nologies and, thus, allow more robust opera-
tion in fog, rain, and snow compared to red, 
green, blue (RGB) cameras. 

Radar and lidar are fundamentally dif-
ferent in the data they capture and how 
they are processed. After working with 
many students over several years at CAVS 
in AV processing, it was apparent students 
had fundamental knowledge gaps in areas 
such as camera calibration and radar/lidar processing and 
that classes that addressed these gaps were needed. MSU 
offers multiple classes on machine learning (ML), neural 
networks, visualization, (traditional) DSP, image process-
ing, and radar. However, prior to the spring 2020 semester, 
there was not a comprehensive introductory class on AV 
sensor processing.

This article outlines a special-topics class, SPAV, that was 
developed and delivered to 37 on-campus and 11 distance stu-
dents at MSU during the spring 2020 semester. The SPAV class 
was designed as a 3-h, split-level (senior/master’s degree-level) 
course focusing on sensor processing methods for cameras, 
radars, and lidars. To facilitate asynchronous distance students, 
the class did not require any hardware or equipment other than 
a Windows laptop (already required for all students by the MSU 
College of Engineering). 

The class was listed as an electrical and computer engineer-
ing class, but students from any major could enroll. The prereq-
uisite for the class is passing a junior-level signals and systems 
class or instructor consent. The overarching course goal was 
to provide a highly interactive course with both a breadth and 
depth of coverage in automotive autonomy topics, including 
terminology, the current state of the industry, state-of-the-art 
processing methods, strengths and weaknesses of each sensor 
modality, general autonomy frameworks, and control strate-
gies and methods.

Class objectives

Objective 1: Successfully engage students  
using active and collaborative learning
In the course, students were given a high-level overview of how 
each sensor modality operates, participated in detailed discus-
sions of the strengths and weaknesses of each sensor modal-
ity, and discussed state-of-the-art methods for sensor perfor-
mance evaluation. Examples of course concepts discussed 
include the following:

 ■ A camera requires demosaicing to get color imagery, cali-
bration to correct for imperfections, and coregistration to 
align its images with other sensors. 

 ■ Radars operate in all-weather conditions and are good at 
ranging and velocity estimation, but current-generation 
radars do not provide high-resolution imagery. 

 ■ Lidars provide dense and rich 3D data and are good at 
object localization, but they are color-blind since they 
operate at one wavelength. 

To get students involved and enhance 
learning, both active and collaborative learn-
ing exercises were heavily utilized in the 
class. Each class session incorporated two 
or three active or collaborative exercises, 
although there was one session with a data 
collection exercise that lasted about 45 min. 
These exercises engaged students, illustrated 
class material, helped students learn funda-
mental concepts, and allowed the instructor 

and other students to monitor the observations and conclusions 
of each student or student group. Since the class also had asyn-
chronous distance students, discussion board questions were uti-
lized to facilitate student interactions among local and distance 
students as well as allow the distance students to participate in 
active learning exercises. 

Objective 2: Utilize a state-of-the-art, physics-based 
autonomy simulator in the class
It is widely known that complex systems like AVs require not 
only real-world driving tests but also simulations to provide 
effective testing and cover rare edge cases [11]. Baraniuk and 
Padgett state that using interactive simulations provides an en-
vironment where students can explore and learn [12]. Students 
often relate well to visual-based simulations, especially when 
they can change parameters and see how the results change.

The Spav class was 
designed as a 3-hour, 
split-level (senior/
master’s degree-level) 
course focusing on sensor 
processing methods for 
cameras, radars, and lidars.



124 IEEE SIGNAL PROCESSING MAGAZINE   |   May 2021   |

Initially, three potential simulators were examined for inclu-
sion in the SPAV class: MAVS, a noncommercial, open source 
software library for simulating autonomous ground vehicles; 
Autonomous Navigation Virtual Environment (ANVEL); and 
Car Learning to Act (CARLA), an open source simulator for 
urban autonomy research [13]. Quantum Signal, ANVEL’s 
developer, was purchased by Ford, and the simulator is now not 
available for general use. Both MAVS and CARLA provide a 
Python application programming interface (API) and control 
over weather, sensors, simulation parameters, agents (vehicles 
and pedestrians), and so on. However, CARLA requires Linux, 
and most students in the class do not have 
Linux machines. For these reasons, MAVS 
was chosen to be the AV simulator and is 
discussed in detail in the “MAVS” section.

Class organization and content
The class met twice a week for 75 min per 
meeting. The instructor advised the class to 
spend 1–2 h outside of class for every hour 
spent in the lecture. The class was organized into seven mod-
ules, each having a specific focus, and are summarized in 
Table 1. To assess students’ progress, the class had one home-
work assignment for each module, three miniprojects, two ex-
ams, and a final exam.

In module 1, the students were introduced to automotive 
autonomy, discussed the Society of Automotive Engineer-
ing autonomy levels [14], and examined several car models 
to assess their autonomy levels. Module 2 gave time for the 
students to install the required software tools: Anaconda, Ten-
sorflow CPU, numpy, and matplotlib for Python; MAVS; and 
You Only Look Once (YOLO) [15]. Several after-hours ses-
sions were also provided to help students install the required 
software tools.

The fundamentals of DL were covered in module 3, includ-
ing deep convolutional neural network (CNN) building blocks. 
This module also addressed estimating the number of param-
eters in each layer, which is important for embedded appli-
cations. Students also ran a CNN version of MNIST using 
Tensorflow and learned how to write Tensorflow code. 

Module 4 covered decision, planning, and control. In this 
module, a proportional-integral-derivative (PID) controller was 

introduced, and the students examined how changing the  PID 
controller parameters affected the response. MPC was dis-
cussed in the context of path planning. The students had an 
exercise where they used MPC to enable a vehicle to avoid 
obstacles and successfully reach the destination. Finally, rein-
forcement learning was introduced, and they played a simple 
game, stepping through the reinforcement learning system as 
it learned to play.

Module 5 focused on camera processing and started with 
a discussion of the human eye and how cameras operate in a 
similar manner to human rods and cones. This module then 

covered the basics of image demosaic-
ing, the Bayer filter, the pinhole camera, 
coordinate transformation, camera calibra-
tion, stereo processing, and structure from 
motion. Several state-of-the-art meth-
ods were examined. Thermal and infra-
red (IR) cameras and how they might be 
used in autonomy were explained. During 
this module, a FLIR Systems Automotive 

Development Kit (ADK) (https://www.flir.com/products/adk/) 
long-wave IR (LWIR) camera was demonstrated to the class. 
The final lecture in this module was devoted to thermal imag-
ing, and the class reviewed results from studies dealing with 
thermal cameras [16] to understand issues facing regular RGB 
cameras and how different types of thermal cameras can help 
in poor weather conditions. 

Module 6 focused on radar processing and included topics 
on radar terminology, waveforms, and the radar range equa-
tion. Next, frequency-modulated continuous-wave (FMCW) 
radar signaling and processing were covered, including range 
estimation, range resolution, and maximum range calculations. 
The class then discussed the specifications of several automo-
tive radars. Finally, Kalman filtering was covered and dis-
cussed in the context of adaptive cruise control. 

Module 7 covered lidar processing. As most students had 
no previous experience with lidars, lidar architectures were 
explained, as were lidar terminology and design param-
eters (the number of beams, frame rate, maximum object 
range, and so on). Laser emitters, laser beam divergence, 
and laser detectors were discussed. Time-of-flight calcula-
tions, the lidar range equation, and atmospheric effects on 

Table 1. A summary of the class modules and learning objectives. 

Modules Learning Objectives 
1: Autonomy Discuss and explain autonomy levels and basic autonomy modes
2: Tool Install Install MAVS, Anaconda, and Python tools and utilize them in class 
3: DL Utilize DL to run advanced driver assistance systems (ADAS) processing algorithms

Discuss and evaluate state-of-the-art processing methods for radar, lidar, and cameras
4: Control Utilize proportional-integral-derivative and model predictive control 
5–7: Camera, Lidar, and Radar Explain the capabilities and limitations of radar, lidar, and camera systems

Process and analyze results from real-world and simulated autonomy data sets
Discuss and evaluate state-of-the-art processing methods for radar, lidar, and cameras
Understand and implement basic processing steps for radar, lidar, and camera data 
Understand the strengths and weaknesses of radar, lidar, and camera ADAS processing

The primary intent of MAVS 
is to serve as a software 
library for simulating the 
terrain, environment, 
sensors, and vehicle in 
autonomous navigation.
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lidar were discussed. State-of-the-art methods in object detec-
tion, free-space mapping, and road detection were discussed. 
A Velodyne HDL-32 and VeloView (https://www.paraview 
.org/veloview/) were demonstrated to the class. Several scenes 
were captured using VeloView and, to illustrate that visualiz-
ing objects in lidar data is difficult, the students were asked to 
guess what objects they were seeing.

MAVS
MAVS is an interactive, real-time, physics-based simulator for 
autonomous ground vehicles [17]. MAVS uses physics-based 
ray tracing [18] to accurately simulate sensors like lidar and 
cameras in addition to realistic simulations 
of GPS sensors and microelectromechani-
cal sensors, such as inertial measurement 
units and gyroscopes. Vehicle dynamics 
are simulated in MAVS using ReactPhys-
ics3D [19]; MAVS can also be interfaced 
with other vehicle dynamics software, such 
as Chrono [20]. 

MAVS is free and open source for non-
commercial use. The core MAVS libraries are written in C++, 
and the code can be integrated via the C++ API or Python 
interface. MAVS is available on GitLab. (It can be downloaded 
from https://gitlab.com/cgoodin/msu-autonomous-vehicle 
-simulator.) Additionally, precompiled binaries for Windows 10 
and Ubuntu 16.04 (MAVS precompiled binaries can be down-
loaded at http://www.cavs.msstate.edu/capabilities/mavs.php) 
and extensive online documentation are also available. (MAVS 
documentation is available at https://mavs-documentation 
.readthedocs.io/en/latest/.) 

The primary intent of MAVS is to serve as a software library 
for simulating the terrain, environment, sensors, and vehicle in 
autonomous navigation. MAVS is structured to either be inte-
grated into other applications or have other software components 

run in a cosimulation approach. MAVS features four basic simu-
lation modules: vehicles, sensors, environments, and scenes. 

The vehicle module provides a simulation of the vehicle 
motion and dynamics. The scene module defines the geom-
etry, color, and texture of objects within the scene as well 
as methods for querying scene geometry using ray tracing. 
MAVS uses several tire and terrain interaction models to sim-
ulate driving on a variety of pavement and soil conditions and 
can simulate a variety of weather and environmental effects 
and their influences on sensor performance. The impact of 
rain on lidar in MAVS has been shown to match real measure-
ments [21]. Lighting conditions based on time of day (includ-

ing night) and atmospheric haziness can 
also be simulated with MAVS.

MAVS is being used by students, fac-
ulty, and staff at MSU to perform research 
in many areas of off-road autonomous 
operation including navigation in rough ter-
rain, vegetation and terrain classification, 
negative obstacle detection, and stop sign 
detection. The class provided valuable dis-

tribution experience and feedback to the MAVS development 
team in preparation for the public release of the code (https://
www.cavs.msstate.edu/capabilities/mavs.php).

For students and researchers studying ML, MAVS can 
automatically generate semantically labeled data for training 
and testing ML algorithms. The automated labeling process 
has been used for testing neural network-based ML algo-
rithms for both camera [22] and lidar [23] data. Some labeled 
camera outputs are shown in Figure 1.

In addition to using MAVS data, students were also given 
databases of road scenery collected locally by the instructor 
and a student containing dirt and paved roads, various signage, 
and so on. These scenes covered highway, more country-like 
settings, and some urban (downtown) areas. 

(a) (b)

FIGURE 1. An example of MAVS automatic semantic labeling: the (a) raw and (b) labeled image. The white label is for buildings, purple indicates  
vehicles, blue represents sky, yellow shows road, and orange is for ground. A yield sign can be seen labeled in light green near the truck. In particular,  
the extension to noisy microwave networks is discussed in detail with respect to the interface with optimization algorithms, a topic that should attract  
a wide readership. 

For students and 
researchers studying ML, 
MAVS can automatically 
generate semantically 
labeled data for training 
and testing ML algorithms.
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Active and collaborative learning exercises
A total of 71 active and collaborative learning exercises were 
used in the class. Exercises included brainstorming activities, 
where the goal was to think of as many responses as possible; 
think–pair–share activities, where each student thought about 
a problem or question, discussed with the other students in the 
group, and finally came to a consensus; and various types of 
group exercises. Exercise lengths ranged from several minutes up 
to about 50 min. (The class runs for 75 min.) 
Most of the exercises were shorter and de-
signed to reinforce concepts. 

An example of a shorter exercise was 
listing challenges to implementing level 5 
autonomy. Example student responses are 
edge cases, price, ethics, handling construc-
tion, working with drivers in level 0 vehicles, 
malfunctions, handling aggressive drivers, and so on. This exercise 
took about 10 min. 

There were also more in-depth exercises in the class. Some 
examples include the following:

 ■ having student groups take processing steps, e.g., mapping, 
localization, traffic prediction, and so on; explain where 
these tasks fit into the Eliot artificial intelligence (AI) auto-
motive framework (a block diagram for an autonomous 
system); and give their rationale [24] (20 min)

 ■ a detailed analysis of a radar Blake sheet for an FMCW 
radar: an Excel spreadsheet was handed out, and students 
investigated how certain parameters affected the radar per-
formance) (20 min)

 ■ a Kalman tracker simulation, where the students examined 
the effects of changing two parameters in the Kalman filter 
in a filter simulation (25 min). 

In all of these cases, team results were posted to discussion 
boards.

Inevitably, there are gaps between theory and practice, and 
many algorithms or methods work well with small or limited 
data but might have issues in the real world. Several exercises 
were geared toward exploring these areas. A discussion board 
exercise asked students to review a paper and discuss potential 
difficulties encountered with using a lidar in the rain and, in a 
second exercise, with pedestrian detection in fog (with various 
types of thermal, IR, and color cameras). A different assign-
ment asked groups of students what difficulties there could 
be with road detection algorithms, especially considering the 
many dirt and gravel roads in rural Mississippi, snow-covered 
scenes in northern states, and flooded areas, to name a few. 
Another task asked students to consider what happens in the 
case of a free-space mapper and path planner where there is 
no free space in front of the vehicle (e.g., following someone or 
parked in a parking lot). 

There were a variety of collaborative exercises involving 
examining and running DL or sensor processing code. These 
involved groups of students and were performed in class for 
the local students. To facilitate asynchronous distance student 
involvement, the collaborative exercises culminated with the 
groups posting to discussion boards, where the distance stu-

dents would also review and post comments in the following 
few days. 

For example, in module 2, students examined code for a 
CNN to classify the MNIST digit data set. They trained the 
CNN and ran inference on the testing images. This exercise 
introduced them to DL and allowed the instructor to explain 
the basic MNIST CNN. A later miniproject allowed students 
to investigate using YOLO 9000 [15] for sign detection in sim-

ulated and real imagery.
In another instance, student groups ran 

two Python QT5 GUIs that demonstrated 
radar SP. The first GUI let them discover 
that, in FMCW processing, the distance 
of a reflecting object (we used a point tar-
get) after FMCW demodulation results 
in an intermediate frequency (IF) that is 

proportional to the object’s distance. Instead of first giving 
them the equation that relates the IF to the object distance, 
the students ran simulations and hypothesized that, as the 
distance increases, the IF increases also. They had a visual 
understanding, and then we confirmed that their hypothesis 
is correct and that there is a linear relationship between the 
IF and object distance. 

The second GUI gave insight into FMCW radar processing, 
and it allowed students to visualize automotive radar object 
detection. They could change the radar’s FMCW parameters 
as well as the object’s radar cross section, range, and velocity. 
This GUI is shown in Figure 2. The top plot on the right shows 
the range fast Fourier transform (FFT) results, and the bottom 
right plot shows the range–velocity results after velocity FFT 
processing. The class discussed the relationship of the IF to the 
object distance from the radar.

Other collaborative exercises focused on system-level infor-
mation. For example, in the radar module, students used a 
spreadsheet and modified radar parameters for a short-range 
radar. When specifications were met, cells turned from red to 
green. Also in the radar module, students ran a Kalman fil-
ter simulation and tuned the filter parameters to see how they 
affected the results. In the lidar module, students examined 
a lidar design that calculated the maximum lidar frame rate 
given the field of view (FOV), number of pulses, pulse widths, 
and number of receivers. 

In the decision, planning, and control module, students list-
ed challenges to an autonomous system as a vehicle approach-
es an intersection; they also took a set of software modules 
defined in [25] and mapped them into the Eliot automotive 
framework [24]. Students were asked to explain their choices 
in this exercise.

Miniprojects
The classwork included three miniprojects assigned by the in-
structor. In each of these, local and distance students worked 
in teams of up to four undergraduates or four graduates (with 
no mixed teams). Each miniproject required the software-
based assignment to be conducted. Each team submitted a re-
port with an introduction, methodology, results, conclusions, 

There were a variety of 
collaborative exercises 
involving examining and 
running DL or sensor 
processing code.
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references, and code listings. The miniprojects were designed 
to teach how to perform and write a small research project. 
Grading was based on following directions, technical content, 
proper IEEE citations, grammar, profession writing style, and 
code comment clarity. Each miniproject was worth 10% of the 
final grade. The timeframes were five, five, and four weeks for 
miniprojects 1–3, respectively. 

The first miniproject allowed students to run MAVS for the 
first time and utilize a pretrained YOLO 9000 [15] to allow 
them to see how well a state-of-the-art detector would work 
to detect stop and yield signs in high-fidelity simulated driv-
ing imagery. Students performed experiments and wrote their 
results in a final report for each miniproject. Figure 3 shows 
example MAVS imagery.

The second miniproject was given after students had dis-
cussed camera operation and learned about camera calibration 
as well as camera model intrinsic and extrinsic matrices. Stu-
dents collected data in class, and student groups performed an 
offline camera calibration procedure with the full data set and 
a partial data set. They then examined the calibration results 
and wrote a report on their findings. They discovered that you 
need a variety of poses and you must have samples all around 
the camera FOV to obtain a good calibration. 

Figure 4 shows three students collecting camera calibra-
tion data in class. Distance students participated in all exer-
cises. In the camera calibration exercise, they were not able to 

collect data; however, they posted their observations of how 
well the in-class students performed the calibration data col-
lection, e.g., whether they got images covering a variety of the 
image space, different orientations of the calibration board, 
and so on. 

Perhaps the most engaging for students was the third mini-
project. Most students in the class had no experience with 
lidar and lidar processing. After learning about laser emitters, 
laser detectors, scanning lidars, and so on, they used MAVS to 
simulate a lidar detecting a brick on the road. The simulations 
examined the following lidars: Velodyne VLP-16, HDL-32E 
and HDL-64E; Ouster OS1 and OS2; and a Quanergy M8. The 
simulation estimated the number of lidar points reflected from 
a brick at given distances from the vehicle. The students stud-
ied how the different lidars would behave.

Class assessment: Challenges faced
There were many challenges in preparing and administering 
the class. Most instructors who have had to prepare a class 
for the first time will agree that this is a daunting task by 
itself. The first challenge was the depth versus breadth of 
the class. We wanted it to not only contain sufficient depth 
but also breadth as well as to focus a majority of the class on 
sensor processing methods for the lidar, camera, and radar 
sensors. To prepare students for state-of-the-art discussions, 
which mostly involved DL methods, an early module on DL 

FIGURE 2. The radar FMCW processing GUI. FFT: fast Fourier transform; Max: maximum. RCS: radar cross section; IF: intermediate frequency; FFT: fast 
Fourier transform.
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was created. Though a single class cannot cover all topics, the 
idea was to briefly explain major topics, such as camera intrin-
sic and extrinsic matrices, and expose the class to image pro-
cessing topics, such as camera calibration, stereo processing, 
and structure from motion.

The second challenge was that there was no single book 
that covered the material. For a traditional DSP class, there 
are myriad books available. Traditional DSP is a very mature 
field, while automotive autonomy is changing rapidly and 
still in a developmental phase. Three books were selected. 
The first was Creating Autonomous Vehicle Systems [25], 
which  covered autonomy in general; localization; percep-
tion; prediction and routing; decision, planning, and control; 
and reinforcement learning. To cover autonomy complexity, 
system framework, graceful degradation, ML, ethical issues, 
and so on, Eliot’s book Introduction to Driverless Self-Driv-
ing Cars: The Best of the AI Insider [24] was chosen. Com-
puter Vision in Vehicle Technology: Land, Sea, and Air was 

chosen to cover computer vision and vision-based autonomy 
systems [26]. 

These books did not provide adequate coverage of radar 
and lidar. The class materials and supplemental journal articles 
were used to cover these topics. We note that a very good book 
on autonomous radar, Radar Signal Processing for Autonomous 
Driving [27], was published too late for our course offering,  
but we will use the book in future classes as it is written by a 
nonradar expert aimed at other nonradar experts.

Covering state-of-the-art methods meant students had 
to read journal papers. Most graduate students are accus-
tomed to doing this, but undergraduates are not. Having 
all of the students select and critique papers in a one-page 
writing assignment as part of each module homework 
gave students experience with literature reviews, how to 
scan a paper to find the key concepts and contributions, 
and how to effectively write a critique of the paper’s pros 
and cons.

(a) (b)

FIGURE 3. The MAVS-generated urban scenes used for class miniproject 1: (a) a yield sign and (b) a four-way intersection. 

FIGURE 4. The miniproject 2 camera calibration in-class exercise. 
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A third challenge is the sheer amount of materials required 
for the class: lectures, papers for the students to read and cri-
tique, and Python codes for in-class demos. Both the DL and 
autonomy fields are changing rapidly, and, since there were 
about six class days devoted to state-of-the-art methods, these 
sections will need to be revised each semester as new tech-
niques overtake the older approaches or existing methods are 
updated and significantly improved. 

A fourth challenge was asynchronous distance teaching. 
Distance students often have a highly varied background, are 
usually working full time, and, often, have 
families and other duties. Most distance 
students work asynchronously, so they lag 
behind the local students since they usu-
ally watch videos at night or on weekends. 
Distance students also do not have the ben-
efit of working directly with other students, 
unless there are several distance students 
who work at the same company. Keeping distance students 
engaged and having them feel involved is very challenging. 
We believed that utilizing discussion boards and having mixed 
groups (distance and local students) on the miniprojects helped 
to keep them involved.

The final—and very much unexpected—challenge was 
the COVID-19 pandemic, which moved all MSU post-spring 
break classes from in person to online. Since the course  
materials were organized as PowerPoint presentations planned 
for both in-person and distance  offerings, the challenges with 
the transition to fully online classes were somewhat mitigat-
ed. The course instructor (the first author) had never taught 
an online class. The distance class was taught in a special 
classroom and recorded for distance students to participate 
asynchronously. After the COVID-19 transition, a majority of 
the local students participated synchronously, with the active 
learning exercises continuing. 

Several approaches changed as the class met online: 
1) Before spring break, the instructor would annotate materi-

als using the SMART board display in the distance learn-
ing classroom. For the online class, the instructor utilized 
a second camera and wrote on paper. Students could see 
the writing, and scanned versions were distributed after 
the class.

2) After spring break, the instructor started using WebEx 
Polls to poll students.

3) Most students do not prefer to interact remotely with videos 
on, so the instructor could not see most of the students. 
Before the online class, the instructor would walk around and 
talk to students about the exercises and provide feedback.

Student feedback
The course was designed with the two specific objectives: 1) 
to successfully engage students using active and collabora-
tive learning and 2) integrate a state-of-the-art, physics-based 
autonomy simulator into the class. We evaluated the course 
through student feedback, which provided their perceptions of 
the course. Students provided informal feedback during the en-

tire semester as a regular part of the active learning exercises. 
During the semester, there were three opportunities for stu-
dents to give formal feedback to the instructor: an anonymous 
survey, a bonus question on the final exam, and the standard 
university-administered course evaluation. In this section, we 
discuss results from the formal survey and final exam question.

Final exam bonus question feedback
The final exam for the course included an open-ended “bonus” 
question that prompted, “What did you like the most about this 

class?” All student feedback via the bonus 
question was favorable. With regard to ob-
jective 1, students appreciated the active 
learning exercises for forcing engagement 
with the course topics. As an example, one 
student commented,

What I liked most about this class 
was that you forced the class to be 

involved. It is easy just to sit and “attend” a lecture, but 
you made it fun and interactive. I also think that the class 
exercises were a huge help. I loved that we were able 
to solve the problems in class instead of only working 
problems at home and being lost.

Another student highlighted that the active exercises, which 
included both demonstrations and tinkering, helped solidify 
course concepts:

My favorite part of the class was the demonstration of 
the various sensors and seeing them work in real time. 
Specifically, the in-class taking of camera calibration 
images, live demo of the thermal camera, and live lidar 
mapping of your office. To be able to visualize the out-
put of the sensors is critical to an intuitive understanding 
of a sensor system. Second to that, I liked the projects 
that showed us the output of the camera calibration and 
radar display programs. Playing with parameters and 
seeing the effects is very satisfying.

During the lectures, students were responsive to the active 
learning exercises. At the conclusion of the course, numerous 
students described the active exercises as their favorite part of 
the class. 

With regard to objective 2, student responses reflective 
positive perceptions of integrating real-world applications into 
the course. As expected, students highlighted how real-world 
applications helped them translate the theoretical course con-
cepts to specific engineering contexts. For example, one stu-
dent said,

The combination of theory and application is what every 
engineering course should consist of. This class purely 
shows your expertise in the field, and you have the abil-
ity to hand down parts of that knowledge to us. . . . The 
books and articles were nice to be able to read and inter-
pret. Getting exposure to Python, Anaconda, and MAVS 
are all transferable skills to take us to the next level of 
expertise within the field.

Another student agreed that the real-world applications en-
hanced the course:

At the conclusion of 
the course, numerous 
students described the 
active exercises as their 
favorite part of the class.
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I enjoyed the projects a lot. I like being able to see what 
we learn in class and being able to apply it in the real 
world. I am a very applicable and applied person, so I 
enjoy the applying side of the class more. Like I said, the 
projects allowed me to see and use what we learned in 
class works. I also really enjoyed learn-
ing the different ML algorithms and the 
image processing to track objects—that 
was super cool. I love how we can run 
these algorithms, and a computer can be 
trained to look at live images and pick 
out specific things to track or tell us is 
there with very high precision. 

One student discussed that the real-world 
activities help them connect and understand 
fundamental SPAV course concepts with 
ideas learned in other undergraduate engineering courses: 

My favorite part about this class was learning how to ap-
ply everything I’ve learned in my four years of under-
graduate study. This class took everything from Python 
code, linear algebra, circuits, and signal processing put a 
major application on it, the vehicle self-driving vehicle. It 
has given me a lot of appreciation towards where the ve-
hicle self-driving vehicle industry is and where it will go. 
Additionally, multiple student responses specifically men-

tioned the benefits of using the state-of-the-art, physics-based 
autonomy simulator in class. They appreciated that the MAVS 
software was currently used to solve automotive autonomy 
problems—for example, 

What I liked most about the class were the simulations 
with MAVS, demos, the Python executable codes, and 
the grad project. For miniproject 1, it was neat knowing 
that real applicable simulations could be executed with 
MAVS and its data could be valid to further develop ap-
proaches in automotive autonomy. The demos, such as 
the camera calibration, lidar point cloud analysis, and the 
FLIR thermal camera showcase, were very interesting.

By recalling specific aspects of the MAVS projects, such as 
changes to stop signs, one student indicated that the projects 
were memorable and achieved the goal of creating meaningful 
active learning: 

My favorite part of the class was working on the mini-
projects, especially with MAVS. The simulation of the 
ground vehicle was very fascinating to me, and I had 
a lot of fun interacting with the different variables and 
changing the vehicle paths and the environment vari-
ables. It was very interesting to see how slight changes 
to variables could greatly affect the image quality of the 
stop signs.

Numerous students specifically mentioned MAVS when 
describing their favorite aspects of the course. Several stu-
dents noted that is was helpful to be able to have “hands-on” 
experience that applied the concepts they learned in class. 
It also seemed that the segmentation project using MAVS 
with YOLO was popular because of the visual nature of 
the algorithm.

Survey assessment
In addition to the exam question, an anonymous Qualtrics sur-
vey was administered. The questions are listed in Table 2. Of 
the 48 students enrolled, 40 responded to the survey, for a re-
sponse rate of 83%. Overall, student responses indicate that the 

coverage of state-of-the-art methods and 
DL was beneficial (question 1). With regard 
to objective 1, 39 of the 40 students who re-
sponded to question 4 agreed that they felt 
engaged, which was a major goal for both 
the synchronous distance and local stu-
dents. All responses indicated that students 
enjoyed hardware demos (question 2), and 
38 of 39 students reported that the hardware 
demos improved their understanding of the 
course concepts. 

Questions 6–8 in Table 2 focused on the usefulness of 
the active exercises (objective 1) and the simulator (objec-
tive 2) for creating a meaningful, engaged learning experi-
ence. Thirty-five of 39 students reported that the active and 
collaborative learning exercises were extremely or very use-
ful for learning. When specifically asked about the MAVS 
software, 30 of 40 students viewed the software as useful 
for illustrating concepts and performing experiments (ques-
tion 7), and 29 of 39 viewed MAVS as useful for learning 
in the general context. A few students indicated that MAVS 
was not useful.

In addition to the questions in Table 2, the survey includ-
ed an optional open-ended question: “Briefly provide any 
reasoning for your views of the usefulness of visitors, stu-
dent exercises, or the MAVS simulator for learning.” In 
response to that prompt, one student noted that the active 
exercises and MAVS were more beneficial once students 
were required to connect concepts and implement automo-
tive autonomy tasks:

The exercises and MAVS always seemed useful during 
the class, but became clear just how beneficial they are 
during the final project. 

Another student perceived MAVS as useful because it allowed 
for students to further explore topics beyond the provided 
course content:

The exercises using tools and simulations really help 
drive the points home and to allow for experimentation 
with learned principles outside of class. 

Students did not provide reasoning for their unfavorable rat-
ings, but we believe negative views could be related to the 
specific challenges some of them encountered when using 
the software. While some students in the class had experience 
with Python programming, others did not. Additionally, dur-
ing the course, a few students suggested software improve-
ments, such as increasing the size of the simulation screen and 
providing more built-in file-type exports. We note that chal-
lenges like these when learning new software are not unique 
to MAVS.

In the course, the instructor tried to strike a balance in the-
ory and applications. Moreover, the class was designed to fit a 

The ideas of using active 
and collaborative learning, 
incorporating simulations, 
discussing state-of-the-
art methods, and using 
miniprojects can be 
incorporated into many 
engineering classes.
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need for an introductory class that covered the three major auton-
omy sensors, their operating principles, and writing DL code to 
understand sensor operations and limitations. Table 2 shows that, 
overall, students felt that there was a relatively good balance of 
theory and applications. Of the 40 respondents 
to that question, 34 said the balance was about 
right, three opined that the class was a little 
too theory oriented, and three rated the class 
as too application oriented. 

When designing the course, we viewed 
theory as a required element because we 
anticipated the course material would be 
new to most of the students. Topics such as 
how cameras capture data and use Bayer filters to generate 
RGB imagery, how camera intrinsic and extrinsic param-
eters are defined and how to estimate them, and how lidars 
and radars operate were all discussed in the class. Our ini-
tial assessment of students’ prior knowledge was correct, as 
shown by the responses in Table 2, where 27 students indicat-
ed limited prior knowledge (a little or none). Seven students 
indicated they had a moderate amount of prior knowledge, 
with six indicating they had a lot or a great deal of prior 
knowledge. We believe most students’ prior knowledge came 
from work experience at CAVS or a course on radars.

Student perceptions of the course were positive and encour-
aging. Through their survey responses, students reported that 
they were engaged in learning, enjoyed the hardware demos, and 
viewed the course concepts as beneficial. Students also reported 

that the active exercises and incorporation of the MAVS simu-
lator in class were very or extremely useful (35 out of 39 and 
29 out of 39, respectively). Students’ behaviors, including class 
attendance, participation in activities, and posting regularly to 

the discussion boards, further indicated that 
they valued the active exercises. 

Conclusions
A 3-semester-h class, SPAV, offered at the 
senior/master’s degree level, was developed 
from scratch for MSU. The class focused on 
automotive autonomy, DL, and sensor pro-
cessing for lidar, camera, and radar sensors. 

The class was designed to expose students to the three primary 
sensor systems in AVs and give them hands-on experience in 
sensor processing and state-of-the-art methods. 

Since this class was offered as a special topics class, it will 
undergo another revision and offering and then be submitted to 
the MSU curriculum committee for adoption as a permanent 
class. It is the intent of the authors to strongly pursue cross-
disciplinary enrollment. Currently, any engineering major can 
take this course as an elective. Emails advertising the new 
class offering will be sent to all engineering departments and 
researchers at CAVS so that interested students can have the 
opportunity to take the class.

This class was challenging to develop, and the authors do 
not recommend that a pretenured assistant professor under-
take a new-start class that is so demanding. However, the ideas 

Table 2. A summary of the survey question responses.

Question n Strongly Agree 
Somewhat 
Agree 

Neither Agree or 
Disagree Somewhat Disagree Strongly Disagree 

1)  The coverage of DL/modern state-of-
the-art methods is very beneficial. 

39 29 10 — — —

2)  I enjoy the hardware demos. 40 37 3 — — —
3)  The hardware demos help me under-

stand the sensors. 
39 33 5 1 — —

4)  I feel engaged as part of this class. 40 33 6 1 — —
5)  I feel challenged due to new material 

that is part of this class. 
38 21 14 3 — —

 Extremely Useful Very Useful Moderately Useful Slightly Useful Not at all Useful 
6)  The student exercises are beneficial 

(useful) for learning in the class. 
39 23 12 3 1 —

7)  The MAVS simulator is beneficial 
(useful) for illustrating concepts and 
performing experiments. 

40 25 5 6 2 2 

8)  The MAVS simulator is beneficial 
(useful) for learning in the class. 

39 21 8 7 1 2 

Too Theory 
Oriented

A Little Too 
Theory Oriented About Right 

A Little Too Application 
Oriented

Too Application 
Oriented

9)  How well does the course balance 
theory and applications? 

40 — 3 34 1 2 

A Great Deal A Lot A Moderate Amount A Little None at All 
10)  How much of the material in this 

class did you know prior to taking 
the class? 

40 3 3 7 21 6 

The n in column two indicates the total number of respondents. The largest response categories are shown in bold font.

“My favorite part 
about this class was 
learning how to apply 
everything I’ve learned 
in my four years of 
undergraduate study.”
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of using active and collaborative learning, incorporating simu-
lations, discussing state-of-the-art methods, and using mini-
projects can be incorporated into many engineering classes.

Using MAVS in the class was not only beneficial to students 
but also valuable to the MAVS developers, as it provided a group 
of testers with a diverse range of experience and technical back-
grounds. Students provided excellent actionable feedback for 
improving MAVS, pointing out the need to make the installation 
process easier and provide more examples and training.

The feedback on the use of active exercises and incorpora-
tion of the MAVS simulator in the class was overwhelmingly 
positive. Students provided informal feedback throughout the 
course as part of the active exercises, which was used to hone 
the classroom experience in real time to strengthen the learn-
ing experience.

Students also provided more formal perceptions of the 
course through the use of a feedback prompt and a 10-question 
survey. Multiple students described the active exercises or the 
MAVS simulator as their favorite part of the course. Student 
perceptions of the usefulness of the exercises and MAVS were 
nearly all positive. The results demonstrate that the course 
achieved the objectives of successfully 1) engaging students 
using active and collaborative learning and 2) integrating a 
state-of-the-art, physics-based autonomy simulator to create 
meaningful active learning in the classroom.
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In this article, we describe and discuss the design-based ap-
proach for signal processing education at the undergraduate 
level at the University of New South Wales (UNSW) Sydney. 

The electrical engineering (EE) undergraduate curriculum 
at UNSW Sydney includes three dedicated signal processing 
courses as well as a design course that involves a major signal 
processing task. Design- and project-based teaching permeate 
the curriculum and form a primary method of content delivery 
to not only cement the understanding of theoretical concepts 
but also strengthen students’ ability to apply these concepts to 
practical problems. 

The incorporation of design-based teaching in the curriculum 
has been led by the signal processing group, with the pedagogi-
cal strategies evolving over nearly two decades of experience 
and innovation. The approach to project- and design-based 
teaching is based on the tenets of frequency, diversity, anchor-
age, significance, and autonomy. These tenets ensure that design 
projects are formulated in a way that conforms to Kolb’s theory 
of experiential learning while simultaneously encompassing 
Bloom’s taxonomy. Evidence is presented to demonstrate the 
effectiveness of the teaching strategy.

Introduction
In recent decades, digital signal processing (DSP) education 
has evolved into project- and problem-based learning, enabling 
students to engage with the theory in a hands-on format and 
develop the practical skills that lead to critical analysis and 
genuine comprehension of course content [1]–[4]. Although 
the benefits of design-based instruction are well established 
[5], [6], the actual formulation and construction, or “design,” 
of these projects should be carefully considered to realize the 
pedagogical aims of the course.

Two pedagogical theories are of interest to us: Bloom’s 
taxonomy of educational objectives [7] and Kolb’s theory of 
experiential learning [8]. Bloom’s taxonomy establishes a hier-
archy of the learning stages that students can achieve. In this 
hierarchy, “knowing” a concept is the lowest level, while being 
able to “create” new work is the highest level; indeed, this is 
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the ultimate goal of project-based learning. Kolb’s experiential 
learning theory, on the other hand, provides a cycle of learn-
ing that a student can go through to construct knowledge from 
real experiences [9]. The four stages of this cycle are concrete 
experience, reflective observation, abstract conceptualization, 
and active experimentation [10]. Kolb’s learning framework 
has been applied in engineering education for laboratory [11] 
and project [12] design.

Our approach to teaching at UNSW has evolved through 
nearly two decades of innovation in learning and teaching and 
is heavily based on the pedagogical theories mentioned. The 
frequency and diversity of the design tasks as well as their 
anchorage in DSP concepts ensure that students are given 
many opportunities, in a variety of contexts, to independently 
cement the theoretical knowledge they acquire in DSP cours-
es. Our approach relies on the effective “design” of the design 
projects themselves. The emphasis on the tenets of frequency, 
diversity, anchorage, significance, and autonomy are a distin-
guishing feature of our teaching philosophy.

Signal processing education at UNSW
Modern undergraduate EE programs aim to produce industry-
ready graduates [13] who possess strong theoretical knowledge 

as well as the necessary practical skills [4]. As such, graduates 
should have a deep understanding of the theoretical concepts 
and be capable of recruiting this understanding to analyze, 
create, and evaluate innovative solutions to real-world prob-
lems. A crucial aspect of the strategy to achieve this is to in-
corporate design and project-based learning into the engineer-
ing curricula.

A key element of the undergraduate signal processing edu-
cation at UNSW Sydney is that design- and project-based sub-
jects permeate the entire EE program [14]. Figure 1 depicts 
the signal processing stream and the complementary design 
stream within the EE program. Undergraduate EE students are 
introduced to design in their very first semester, with all stu-
dents also required to take major design courses in the second, 
third, and fourth years in addition to the major research thesis 
in the fourth year. “Design proficiency” (DP) is a core focus of 
all learning [15].

As shown in Figure 1, the signal processing stream (depict-
ed in blue) begins with a first-year subject on circuit theory, 
followed by a second-year circuits and systems subject that 
introduces continuous-time signal processing concepts. 
The delivery mode of this second-year course includes 
integrated tutorial–laboratory sessions, where students 
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work collaboratively on challenging problems that combine 
analytical, simulation, and practical work in a largely self-
directed manner. These two subjects lay the foundation for the 
compulsory third-year subject, which introduces fundamental 
concepts in DSP. Two fourth-year electives, Advanced DSP 
(ADSP) and Multimedia Signal Processing (MMSP), build 
on the third-year knowledge and cover more advanced topics, 
such as adaptive and multirate signal processing, (introducto-
ry) maximum likelihood detection and estimation, and image 
and video processing.

In parallel with the signal processing stream, the EE 
program also includes a design stream comprising a set of 
design subjects that are compulsory in each year of study 
(shown in green in Figure 1). In the first year, students are 
challenged to develop unique solutions to simple design 
problems in a fun, competitive, team-based environment 
(for example, building a “Dalek” that rotates and points to a 
sound emitter) in teams of 4–8 students. Thus, they “learn 
by doing” basic concepts, such as basic signal detection and 
lowpass filtering. 

The second-year embedded system design subject involves 
the use of modulation and demodulation, and so on, again in 
a problem-based learning mode. In the third year, pairs of 
students propose, design, and prototype electronic products 
they develop to solve practical problems. Often, this involves 
some DSP concepts they have learned in their third-year DSP 
course. An example project that was proposed by students is 
a vest equipped with ultrasonic emitters and microphones to 
detect obstacles to assist visually impaired people in navigat-
ing their surroundings.  The vest would vibrate on the side of 
the obstacle, indicating its direction.

In their final undergraduate year, all EE students are 
required to pass a core DP subject [15], which has evolved into 
a demanding, yet rewarding, rite of passage that has drawn 
commendations from Engineers Australia (which administers 
Accreditation Board for Engineering and Technology-style 
accreditation) and industry employers alike. The DP course 
uses standards-based assessment, requiring all students to 
demonstrate strong analytical and practical DP in three chal-
lenging real-world tasks (for instance, controlling a motor in 
response to audio commands). 

This unique DP subject also serves as an important qual-
ity assurance check on both the final-year graduating students 
themselves and on the courses that lead up to the final year. A 
third of the subject is focused on DSP design, and the learning 
expectations of this subject map to the very top of Bloom’s 
taxonomy, meaning that students must engage the highest 
order of learning skills to take a series of industry-style design 
briefs all the way to fully functioning and fully explained 
engineering solutions that are each constructed and assessed 
live in the laboratory.

Philosophy
The philosophy that underpins our approach to signal pro-
cessing education at UNSW is founded on project-based 
experiential learning. While traditional modes of teach-

ing, such as lecture, tutorial, and lab-based course deliv-
ery, can achieve the required knowledge transfer, they 
can inadvertently leave many students at lower levels of 
Bloom’s taxonomy, particularly in large classes with more 
than 100 students. 

To address this, design-based teaching strategies are exten-
sively employed to ensure that students have the opportunity 
to cement their knowledge in practical scenarios. Unlike tra-
ditional laboratory tasks, where each task is narrowly focused 
on a particular concept, design projects integrate many con-
cepts; have multiple solutions; and challenge students to ana-
lyze the problem, evaluate various approaches, and create a 
suitable solution that satisfies the given requirements. Using 
the design-based methodology allows students to prioritize 
their time on concepts that they need to work on (instead of 
the instructor having to determine a suitable compromise for 
the entire class) and master each principle with a depth of 
knowledge and practice. 

For nearly two decades, signal processing at UNSW 
Sydney has consistently been the discipline (within EE) that 
most strongly emphasizes experiential design. We employ 
design tasks with a mixture of individual and group-based 
learning so that every student develops a solid competency 
in DSP.

Bloom’s taxonomy [7], shown in Figure 1, provides a hier-
archical classification of the levels of learning that students can 
achieve. It comprises six levels, with the first three levels rep-
resenting basic learning and the higher three levels covering 
deeper learning:
1) Know: This is the most basic level that can be achieved. 

Students learn concepts and can recall them without 
necessarily understanding them. For example, students 
may recall aliasing without understanding it and can 
state that avoiding it requires sampling above the 
Nyquist rate. 

2) Understand: At this level, students can essentially 
restate concepts in their own words, which demands an 
understanding of the concept to be able to generate an 
equivalent definition. For example, students can 
explain aliasing in their own words rather than reciting 
the definition.

3) Apply: At this stage, students can apply the concepts they 
learned to problems they are given, like tutorial problems 
or basic laboratory tasks. For instance, given a signal and 
the sampling frequency, they can determine whether alias-
ing does or does not occur.

4) Analyze: This is effectively the first stage of deeper 
learning. At this stage, students master the concepts 
enough to be able to explain their parts or underlying 
mechanisms. For instance, at this stage, students can 
break down the phenomenon of aliasing to explain why 
it happens and which components of a signal would be 
affected by it.

5) Evaluate: This stage of Bloom’s taxonomy is demonstrated 
by students being able to recruit their knowledge and 
understanding to evaluate propositions or approaches. 
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Effectively, they are able to make an assessment of state-
ments or solutions. To this end, students need to be able to 
pick apart a concept to judge statements or solutions built 
upon it. In signal processing, this could be understood to 
mean that students are able to evaluate a solution against 
relevant or desirable criteria. Alternatively, when multiple 
solutions are available to them, they can evaluate and 
compare them. This is, in fact, a crucial ability that is 
required for the successful completion of open-ended 
design tasks.

6) Synthesize: This is the highest level of Bloom’s taxonomy. 
Students are able to leverage their deeper understanding of 
the parts or underlying mechanisms of the concepts or 
phenomena and employ their ability to evaluate approach-
es to deliver effective solutions to new problems. That is, 
when given a problem like down-conversion of a signal, 
they can arrive at a solution that exploits aliasing by 
recruiting their deeper understanding of this concept.
While Bloom’s taxonomy establishes the framework for 

students’ learning, Kolb’s system of experiential learning 
[8] provides a learning theory that can guide the delivery of 
knowledge to students. In DSP education, Kolb’s cycle has 
been used in [16] to introduce experiential learning in the 
form of audio signal processing exercises that involve con-
crete experiences and active experimentation. In [17], Kolb’s 
cycle was applied to the DSP stream of the curriculum to 
allow the program to instill skills, such as communications 
abilities and creative aptitudes, thereby increasing its appeal 
to students. 

Kolb’s cycle of experiential learning is an iterative pro-
cess comprising four stages that form the ends of two axes, as 
shown in Figure 2: the vertical axis describes the continuum 
of grasping a concept either through concrete experience or 

abstract conceptualization, whereas the horizontal axis depicts 
the transformation of knowledge into understanding through 
reflective observation or active experimentation. The four stag-
es in Kolb’s cycle are explained here:
1) Concrete experience: In this stage, students encounter a 

new experience or concept and extract knowledge from 
that experience. As an illustration, we reuse the aliasing 
concept. Students may encounter the concept of aliasing in 
a simple experiment where the signal frequency is 
increased while the sampling frequency is kept constant. 
They are supervised and guided by the instructor, who 
plays the role of teacher, ensuring students are able to 
complete their experiment.

2) Reflective observation: At this point, students reflect on 
the experience and knowledge they gained and assimilate 
that knowledge. These reflections are articulated in discus-
sions that are guided by the instructor, who focuses the 
session to consider the “why” and “how” underpinning 
their observations. For instance, reflecting on their obser-
vations of aliasing, students connect it to the Nyquist sam-
pling theory by thinking about which sine waves may be 
represented by the time samples obtained through the 
sampling process.

3) Abstract conceptualization: Following reflection on the 
experience and assimilation of knowledge, students 
employ this knowledge to step to new ideas or new con-
structs. The instructor presents a challenge and asks 
questions that steer the thought process of students 
toward the particular concept or construct. For instance, 
students can then exploit their understanding of aliasing 
to figure out that one frequency may be shifted to 
another frequency by appropriate choice of the sam-
pling frequency.

4)  Active experimentation: Students 
then conduct new experiments to 
implement and verify the ideas 
resulting from their conceptualiza-
tion of the knowledge gained. In 
the context of aliasing, students can 
then verify their proposed approach 
to frequency conversion. This experi-
ment is supervised by the instruc-
tor, who engages with students to 
discuss with them their working 
and observations.
Kolb’s experiential learning and 

Bloom’s taxonomy can be applied at 
various levels of the undergraduate 
program, ranging from the program 
level [18] to the subject [19] and indi-
vidual component levels [11]. At the 
subject level, lectures, laboratory 
tasks, tutorials, and consultation ses-
sions may be constructed to embody 
the experiential cycle, thus leading 
students through the four stages of the 
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cycle described previously. For instance, lectures and tutorials 
can be used to introduce the concepts and facilitate the reflec-
tive observation part, whereas laboratory and consultation 
sessions allow students to experiment and conceptualize their 
knowledge. At the component level, Kolb’s theory may be used 
as a framework for laboratory tasks or design projects such that 
activities that facilitate each of the four stages are incorporated 
into the task or project.

Bloom’s and Kolb’s systems of learning can be brought 
together into a coherent framework [12], [18], [20] to achieve 
effective and deep learning. As a flexible system for experien-
tial learning, Kolb’s theory can be used to develop a teaching 
strategy that would facilitate the movement of students up the 
levels of Bloom’s taxonomy. In this way, every time an instruc-
tor guides a student through the complete Kolb’s cycle, the 
student’s movement from active experimentation to abstract 
conceptualization aids in achieving a progressively deeper 
understanding of the concepts involved.  

Thus, we view each repetition of Kolb’s cycle as part of 
a spiral path, leading students up these levels (of Bloom’s 
taxonomy), and our approach to the delivery of signal pro-
cessing knowledge, which is described in detail in the next 
section, embodies this combined framework. To take full 
advantage of this pedagogical framework, our philosophy 
regarding experiential learning has evolved to employ the 
following tenets:
1) Frequency: To reinforce the knowledge gained and consol-

idate their practical skills, we continually and persistently 
expose students to experiential learning. As can be seen 
from Figure 1, the design tasks featuring signal processing 
that our students undertake are stacked over the degree 
with multiple projects in each year. The frequency of these 
opportunities ensures that students go through many itera-
tions of Kolb’s cycle.

2) Diversity: Students are diverse and so are their interests 
and learning styles. Catering to these different interests 
and styles allows us to better motivate and engage stu-
dents [4], [21]. Thus, the design tasks employ a variety of 
contexts and formulations across the signal processing 
and design streams illustrated in Figure 1. The wide 
range of design projects provides multiple perspectives 
on signal processing concepts, which increases the likeli-
hood of students grasping the concepts and deepening 
their understanding.

3) Anchorage: The design tasks are firmly anchored in real 
applications. They tap into practical or even familiar 
contexts, such estimating the signal parameters in a 
power system. Also, they often take advantage of the 
research labs, like the speech, multimedia, and radar 
signal processing labs. This provides for an improved 
concrete experience and helps students see the relevance 
of the concepts they are learning. Thus, the familiarity 
of the context or application enhances their motivation 
to engage in the learning process and improves students’ 
understanding of these concepts. Examples of this are 
the cochlear signal processing and gravity measurement 

projects that are described in the “Example Design 
Projects” section. 

4) Significance: This quality concerns the depth and diffi-
culty of the design tasks. Specifically, the objectives of 
the tasks are formulated to be significant and challenging, 
with a variety of possible solutions. Thus, students are 
required to exercise their analytical and decision-making 
skills to devise a suitable solution. In the cochlear signal 
processing project described in the “Example Design 
Projects”, students are required to bring together many of 
the concepts they learned to complete the project. In the 
gravity measurement exercise, students are expected to 
model the system, that is, to relate the observed frequency 
to gravity through the equations of motion and the 
Doppler shift. After the modeling, they proceed to employ 
advanced signal processing concepts to develop a solu-
tion. Significance goes hand in hand with the final tenet 
of autonomy.

5) Autonomy: Students are given significant autonomy in fac-
ing design challenges. Although support is provided, 
answers are not given. The instructors play the role of 
mentors, challenging and guiding students to think 
critically to arrive at the answers themselves. They are 
required to analyze the problem statement, derive the 
requirements, evaluate solutions, and exercise their judg-
ment. Autonomy has been found to enhance motivation, 
improve engagement, and increase comprehension [22]. 
It also helps students develop their ability to work inde-
pendently, which is a necessary quality in the profes-
sional environment.

Approach
The DSP stream currently comprises three DSP subjects and 
two lower-level supporting subjects in year one and year two. 
The design pillar, on the other hand, is a progression of one 
design subject per year, culminating in the DP subject and 
the final-year thesis. All of the DSP subjects involve substan-
tial design tasks/projects, and all of the design subjects, and 
in particular DP, include significant DSP components. Con-
sequently, there is a diverse range of DSP design tasks that 
permeate the entire program and are frequently encountered 
by students. 

Although the subjects and design projects are underpinned 
by the experiential learning pedagogical philosophy, their 
exact formulation varies among subjects to account for the 
increasing depth of understanding that evolves along the engi-
neering degree. In this section, we describe the structure of 
these subjects and highlight their relationships to the underly-
ing philosophy.

In the first two years, students learn basic circuit theory 
(year one) and linear systems theory (year two). The third-year 
foundational subject on DSP is a core subject that is taken by 
all undergraduate students in the program and introduces them 
to the fundamentals of DSP. The topics covered include sam-
pling and aliasing, discrete versions of Fourier analyses, lin-
ear discrete-time system theory, z transforms, finite-impulse 
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response and infinite impulse response filter designs, and intro-
ductory multirate processing. 

This DSP subject incorporates a number of “learning 
and teaching” elements designed in accordance with Kolb’s 
framework to take students up the levels of Bloom’s taxonomy. 
The lectures explain new ideas to students and take them up 
the first two levels of Bloom’s taxonomy. These are then sup-
ported by two components that implement the experiential 
learning cycle:

 ■ Tutorials and laboratories are integrated in a single tutori-
al–lab unit and involve problems that are designed such 
that the analytical solutions can be implemented as pro-
grams in a numerical computing environment such as 
MATLAB. This approach fits quite well with Kolb’s 
cycle, as illustrated in Figure 3. Students first apply their 
understanding of the new ideas they encountered in the 
lectures to solve the tutorial problems and implement 
them in the laboratory (the third step on Bloom’s taxono-
my). This affords students the opportunity to visualize 
and understand the nuances of their analytical work (the 
fourth step on Bloom’s taxonomy) and to validate it (the 
fifth step). Students are allowed to complete these tutori-
al–lab problems at more or less their own pace with week-
ly tutor support time-tabled as part of the course. As an 
example, a tutorial–lab problem might require students to 
design a filter via pole-zero placement, derive the transfer 
function, sketch the magnitude response, and then imple-
ment the filter in MATLAB and validate its properties. 
The tight feedback loop involving validation via 
MATLAB simulations and the opportunity to redo the 
problems allow students to iterate through Kolb’s frame-
work multiple times, if necessary, to progress up the 

fourth and fifth and, to a lesser extent, the sixth steps of 
Bloom’s taxonomy.

 ■ Students are also assigned to work on a term-long project 
that is more open ended and requires them to undertake a 
specific task but with the freedom to choose from among 
various paths to reach their goal. This lets students evalu-
ate multiple options; compare among them; and, finally, 
synthesize a significant, coherent body of work applying 
most of the concepts introduced in this subject. The proj-
ect enables students to experiment, analyze, evaluate, and 
consult with the tutors and course lecturers to finally 
arrive at their solution. This process iterates through 
Kolb’s framework, allowing students to reach the top of 
Bloom’s taxonomy. The project is anchored in real-world 
applications, such as cochlear signal processing, to give 
students a feel for DSP concepts that might be used in a 
real-world or complex system. The cochlear signal pro-
cessing design project used in 2018 and 2019 is described 
in the “Example Design Projects” section.
The fourth-year elective ADSP subject builds on the mate-

rial learned in the third-year course. In addition to introducing 
mathematical rigor that underpins the basic concepts of DSP, 
this subject advances students’ knowledge, exposing them to 
statistical signal processing, detection and estimation theory, 
adaptive filters, and time-frequency representations. In addi-
tion to the lectures, the subject makes use of carefully designed 
tutorial questions and challenge problems and includes a labo-
ratory program that comprises small laboratory tasks leading 
to a significant design project.  

As this is an advanced subject, the lectures, tutorials, and labs 
are designed to achieve the highest level of Bloom’s taxonomy. 
The course design reflects this, placing strong emphasis on 

anchorage, significance, and  autonomy 
(particularly for the final project). Group 
work and collaboration are strongly 
encouraged in most aspects of the course,  
and the laboratory program requires 
students to regularly demonstrate their 
competency at the “evaluate” and “cre-
ate” levels of Bloom’s taxonomy.

Small design tasks allow students 
to evolve the knowledge they gained 
in lectures by deepening and expand-
ing their understanding and advanc-
ing some new concepts not covered in 
lectures. For example, while lectures 
on adaptive filtering cover the Wiener 
filter, the associated lab task goes fur-
ther, explaining the minimum variance 
distortionless response filter. These 
small tasks then lead to a major design 
project in the second half of term, and 
students are required to submit a report 
at its conclusion.  

The entire laboratory program pro-
vides breadth of coverage and diversity 
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as well as depth and significance, and the project, in particular, 
embodies multiple iterations of Kolb’s cycle. Projects are often 
anchored in the research area of the course lecturer, with exam-
ple projects that have been used including the analysis of bat 
echolocation calls, measurement of power system parameters, 
and gravity measurement project (described in the “Example 
Design Projects” section).

The elective MMSP subject focuses on the extension and 
application of signal processing concepts into two and three 
dimensions (images and video), with an emphasis on under-
standing concepts specific to multimedia signals, e.g., shape, 
orientation, color, motion, formats, and representation schemes. 
The subject places strong emphasis on the practical implemen-
tation of the associated algorithms in real programming envi-
ronments (C/C++). This is a deliberate choice, made to give 
students confidence in the programming environments they 
will employ after they graduate. 

While the subject includes significant fundamental mate-
rial of a theoretical nature, it also incorporates a substantial 
laboratory program to provide students with a balanced and 
efficient path up Bloom’s taxonomy. The practical component 
includes projects where students write code in C/C++, start-
ing only from the theory. In this manner, they acquire coding, 
debugging, and memory management skills as well as achiev-
ing deeper understanding while experiencing the design per-
spective (no single correct solution). Example projects are

 ■ image up-sampling and down-sampling using disciplined 
interpolation kernels to avoid aliasing

 ■ image skewing and rotation with asymptotically reversible 
filters

 ■ practical bilevel and gray-scale morphology
 ■ global motion estimation based on robust keypoint 

 detection
 ■ generation of texture maps through robust local power 

spectrum analysis.
Finally, Electrical DP is a final-year core subject that is 

taken by all EE students at UNSW [15]. It is a somewhat unique 
course, with the primary aim to test students’ proficiency at EE 
design over a set of three challenges. In contrast to the final-
year thesis, which spans the entire final year, DP tasks must be 
undertaken and assessed within 4-h laboratory slots, subject to 
constraints on the choice of components and tools. 

One of the three design tasks, which covers three labora-
tory slots, is focused on DSP and involves a design challenge 
where students have to develop a solution to meet a given set 
of requirements, prototype it, validate the design, and demon-
strate that it works. Students operate with a very high level of 
autonomy in completing the tasks and, to do well in the course, 
they must demonstrate the ability to operate at the highest level 
of Bloom’s taxonomy. 

The DP subject is entirely practice based and, therefore, 
most completely encompasses a comprehensive pedagogical 
framework, integrating Bloom’s taxonomy with Kolb’s expe-
riential theory. Each task constitutes a significant challenge, 
requiring students to iterate through the experiential learning 
cycle to arrive at a solution they can demonstrate. Thus, anal-

ysis, evaluation, and experimentation as well as research are 
essential activities. An example project is to design and imple-
ment a system that allows a light bulb to be reliably turned 
on and off by clapping. As it challenges students to apply and 
expand their knowledge, this course also serves as validation 
that previous courses in DSP in the program have been effec-
tive at bringing them to this level.

Having outlined our design-based approach, it is important 
to add a remark on the workload involved. It is well known 
that benefits of design and project-based learning come at an 
added cost in terms of resources and staff workload. Although 
the details of the workload and resources requirements vary 
among subjects, they are nonetheless manageable, as evi-
denced by our successful implementations for cohorts ranging 
from around 60 students in ADSP and MMSP to 150 students 
in DP and more than 200 students in the third-year DSP sub-
ject. Our experience shows that, in addition to access to high-
quality laboratory and hardware facilities, successful delivery 
of our philosophy requires the provision of adequate support 
in terms of consultation periods, which is effectively handled 
through a modest increase in staff commitment.

Example design projects
Recruiting current technologies and applications into the 
teaching strategy provides a fresh perspective on “old” signal 
processing concepts [23]. Thus, design tasks are anchored in 
practical applications, such as speech, image and video, bio-
medical, power systems, radar, and array sensors. In this sec-
tion, we briefly describe and discuss two example projects.

Cochlear signal processing
This project is motivated by the observation that the first DSP 
course tends to be a significant jump in abstraction for most 
students, which is a consequence of them being introduced to a 
large number of mathematical concepts with insufficient time 
to consolidate the ideas with practical examples. This design 
project is crafted as a platform that brings together almost all 
of the fundamental DSP concepts taught in an introductory 
course and lends itself as a suitable candidate for project-based 
learning [24].

The goal of the cochlear signal processing project was two-
fold: 1) to involve students in a single project that can rein-
force most of the theoretical concepts introduced in the course 
and 2) to provide them with a real-world example that engages 
their interest and gives them signal processing ideas they can 
continue to think about beyond the course. In an introductory 
lecture, we provide students with basic information on the 
physiology of hearing: 

 ■ introduction to the human auditory system
 ■ operation of the outer ear and middle ear as a combined 

bandpass filter
 ■ operation of the inner ear as a cascade of filters that per-

form spectral analysis
 ■ operation of the inner hair cells in signal encoding at a 

reduced sampling rate. 
Then, the entire project involves implementing 



140 IEEE SIGNAL PROCESSING MAGAZINE   |   May 2021   |

 ■ a combined digital filter model of the outer and middle ear
 ■ a cascaded filter (transmission line) model of the basilar 

membrane, acting as a spectrum analyzer
 ■ a nonlinear model of the inner hair cells. 

These three aspects cover almost all of the DSP concepts 
taught in the course, as outlined in Table 1.

Gravity measurement project
In this project, students record a falling siren and employ sig-
nal processing techniques to obtain a measurement of the ac-
celeration due to gravity [25]. The project uses the principle of 
“unfamiliar concepts in familiar contexts” to cast the measure-
ment of gravity, which is familiar even to high school phys-
ics students, into a signal processing challenge that builds 
on the concepts of filtering, time-frequency analysis, detec-
tion, and estimation.

The project starts with an experimental stage to collect 
data by dropping a monotone siren from a stationary position 
at some height, h, directly above a microphone and recording 
its sound before and during the fall. Multiple recordings are 
obtained under various conditions, including against a quiet 
background and in noisy settings. Students are then required 
to develop a solution to process the recorded files to filter out 
background noise, estimate the siren frequency at rest and 
during the fall, and then fit a line to the changing frequency 
to finally calculate the acceleration due to gravity from the 
observed Doppler shift. A list of the signal processing concepts 
that are covered by this project is given in Table 2.

Evidence
The design-based experiential learning approach over the en-
tire EE degree, and especially within signal processing, has pro-
duced cohorts of students who have a greater depth of knowl-
edge and applied skills that are pertinent for their careers in 
industry. This teaching philosophy has evolved through many 
years of continual evaluation and improvement of the curricu-
lum in general and the DSP stream in particular. 

Evidence for the effectiveness of our experiential approach 
to learning and teaching signal processing includes indicators 
that are both qualitative and quantitative. Indicators of a quan-
titative nature include survey results from the DSP and ADSP 
subjects that ran the two projects described in the previous sec-
tion, student performance in the DP subject, and student reten-
tion rate in the advanced signal processing courses.

Students who undertook the cochlear signal processing 
project in the third-year introductory DSP course in 2018 
were surveyed at the end of the term (prior to their final exam) 
about their learning experience in the project. A number of 
questions, covering both the perceived quality and effec-
tiveness of the project, were asked, and almost 90% of the 
enrolled students responded to the survey (179 out of 205). 
The response to each question could be one of five options: 
strongly disagree, disagree, neither agree nor disagree, agree, 
and strongly agree. 

A summary of the results giving the percentage of agree 
and strongly agree responses is provided in Table 3. We see 
that more than three quarters of students reported that their 
understanding of DSP had improved (Q1), whereas 87% 
responded that the project gave them a better understanding 
of the digital modeling of analog systems, which is precisely 

Table 1. The DSP concepts that each part of the cochlear project will 
help consolidate.

Task DSP Concepts Covered 
Outer and middle ear model Pole-zero placement on the z-plane 

Transfer functions and z transform 
Magnitude response estimation
Filter structure 

Inner ear model Impulse response
Resonant filters and selectivity 
Impulse invariant and bilinear transforms
Digital filter design and implementation 
Discrete-time Fourier transforms 
Stability 
Characterization of magnitude response 
Spectral analyses 

Inner hair cell model Rectification and envelope estimation 
Down-sampling 

Table 2. The DSP concepts that each part of the gravity measurement 
project will help consolidate.

Task DSP Concepts Covered 
Signal modeling: model the 
sound of the siren and relate to 
acceleration due to gravity 

Signal representation 
Sampling 

Filtering: filter background noise 
to enhance the siren signal-to-
noise ratio 

Digital filter design 
Adaptive versus nonadaptive filters 
Digital filter implementation 
Discrete-time Fourier transforms 

Signal representation: transform 
the signal to the frequency or 
time-frequency domain 

Time-frequency representations 
The short-time Fourier transform
Real versus complex signals 
Spectral leakage 

Parameter estimation: estimate the 
siren frequency versus time and 
then obtain an estimate of the 
acceleration due to gravity

Maximum likelihood estimation 
Practical estimators 
Least squares estimation 

Table 3. A summary of the responses to feedback questions about the 
cochlear signal processing project.

Question 
Percentage (Agree + 
Strongly Agree)

1)  As a result of working on this project, my 
understanding of DSP concepts improved. 

76

2)  As a result of working on this project, I have 
a better understanding of how analog sys-
tems may be modeled digitally. 

87

3)  The project was challenging and encour-
aged me to learn. 

78

4)  This project provided me with an opportunity 
for group and collaborative learning. 

71

5)  As a result of working on this project, my profi-
ciency with MATLAB improved. 

85



141IEEE SIGNAL PROCESSING MAGAZINE   |   May 2021   |

due to the anchorage of the project in the practical application. 
Overall, it is observed that the students valued the experience 
and benefited from it. Similar feedback was also obtained in 
2019, when the project was run again but with the transmission 
line replaced by a parallel filter bank model.

A self-benchmarking test was given to ADSP students both 
at the start and end of the term. Students were asked at the start 
of term one, 2020, to rate their understanding of the fundamen-
tal topics listed in Table 4 on a scale of zero to 10, with zero 
indicating that they have not encountered the concept before 
and one to 10 (10 being the highest level) giving a rating of 
their understanding of the topic. The same self-benchmarking 
test was given to the cohort at the end of the term, and the 
responses were compared to ascertain the progression in stu-
dents’ self-assessed understanding. For the start-of-term test, 
we had responses from 33 students, whereas at the end of the 
term, 16 responded. Only the responses of students who took 
both tests were used in the analysis. The 
mean scores for each topic as well as 
the changes in mean ratings are plotted 
in Figure 4. It is clear that students felt 
that they benefited from their learning 
experience and had better command of 
all of the topics.

The cochlear survey and self-bench-
marking test are two measures that rely 
on students’ feedback. We now present 
two additional measures that are not 
based on students’ perceptions. These 
serve to benchmark the previous two 
indicators and to affirm our conclu-
sions regarding the effectiveness of the 
learning and teaching philosophy.

The first of these measures is based 
on student performance in the DP 
subject, which was described in the 
“Approach” section. The DP subject 
was developed and initially taught by 
the signal processing group. It tests 
students on their ability to apply their 

knowledge to develop and demonstrate solutions to challeng-
ing design tasks. In this way, it requires that students show a 
high level of command of the concepts they learned in the core 
subjects and the capacity to manipulate these concepts to com-
plete the tasks. 

As systems and control education at UNSW has employed 
a more traditional approach, the control design task provides 
a useful benchmark against which we may gauge the effec-
tiveness of our approach to students’ learning. A comparison 
of the marks achieved by students in the signal processing 
and control tasks is presented in Figure 5. The graph shows 
the 25th and 75th percentile bands for the marks achieved in 
the signal processing and control design tasks over the years 
2011 to 2018. The results show that students performed bet-
ter in the signal processing tasks over all of the years shown. 
Note that the yearly cohort sizes for DP tend to vary between 
120 and 180.

Table 4. The topics used in the self-benchmarking test in ADSP.

Topic 
Number Topic 

Topic  
Number Topic 

1 Sampling (definition and mathematical expressions) 11 Relationships among the z, Laplace, and Fourier representations 
2 Aliasing (frequency domain and time domain) 12 Filters (difference equation, transfer function, and frequency response)
3 Spectra (definition, meaning, and properties) 13 Filter structures (direct form and canonical form) 
4 Convolution (meaning, definition, and operations) 14 Filter properties (gain, phase, and group delay) 
5 Relationship between discrete and continuous domains 15 Filters types (linear/minimum/maximum phase and all pass) 
6 Linearity and time invariance (meaning, definition, and  

so on) 
16 Manipulating the transfer function (poles and zeros, factorization, 

partial fractions) 
7 Discrete-time (linear time-invariant) systems 17 Fourier transforms and series 
8 Stability (bounded-input, bounded-output, and others) 18 Relationships among signal representations
9 The frequency/impulse responses and their relationships 19 Filter design methods 
10 The z transform (need, meaning, properties, and operations) 20 Quantization and rounding effects 
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Another quantitative measure that points to the effective-
ness of our approach in engaging and motivating students is 
the retention rate from the core third-year DSP subject to the 
fourth-year elective ADSP and MMSP courses. The number 
of enrollments in each course for the years 2017 to 2019 as 
well as their fraction of the number of students in the DSP 
course in the previous year are shown in Figure 6. We see an 
increasing trend, with more than 30% of the cohort choos-
ing to take the fourth-year DSP courses. This is remarkable, 
given that more than 20 electives are on offer to fourth-year 
EE students.

A variety of qualitative evidence also supports the effec-
tiveness of our approach. This includes increased take-up of 
signal processing theses in the final year, growing interest in 
extracurricular projects (especially in the various signal pro-
cessing research labs in the school), and the number of students 
choosing to pursue a Ph.D. degree in signal processing both 
within and outside UNSW. However, perhaps one of the most 
pertinent pieces of evidence comes from the fact that our sig-
nal processing students have won major international competi-
tions. In fact, undergraduate teams have participated in five of 

the seven IEEE Signal Processing Cup international competi-
tions, consistently performing very well on the international 
stage, including winning first place in 2017 [26] and second 
place in 2019 [27].

Conclusions and future outlook
Signal processing education has been evolving to incorporate 
more design-based learning. At UNSW, our approach to DSP 
education encompasses both Bloom’s taxonomy and Kolb’s 
theory of experiential learning and exposes students to a con-
tinuous and varied stream of design projects. This approach 
is based on the five tenets of frequency, diversity, anchorage, 
significance, and autonomy. These tenets serve to ensure that 
students are challenged frequently and meaningfully to be able 
to iterate through Kolb’s cycle to efficiently climb to the top of 
Bloom’s taxonomy. 

As an evolving strategy, our approach is continually being 
improved in response to sharpened evaluation processes and 
student feedback. For instance, plans are already in place to 
employ the self-benchmarking test in the third-year DSP 
course to gauge the effectiveness of the subject in delivering 
the various concepts to students. The results can then be cor-
related with the survey results for the project in DSP as well as 
with the self-benchmarking test in ADSP.
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We describe an ecosystem for teaching data science (DS) to 
engineers that blends theory, methods, and applications, 
developed at the Faculty of Physical and Mathematical 

Sciences (FCFM is its Spanish acronym), Universidad de Chile, 
over the last three years. This initiative has been motivated by 
the increasing demand for DS qualifications both from academ-
ic and professional environments.  

The ecosystem is distributed in a collaborative fashion across 
three departments in FCFM and includes postgraduate pro-
grams, courses, professional diplomas, data repositories, laborato-
ries, trainee programs, and internships. By sharing our teaching 
principles and the innovative components of our approach to 
teaching DS, we hope our experience can be useful to those 
developing their own DS programs and ecosystems. The open 
challenges and future plans for our ecosystem are also discussed 
at the end of the article.

Introduction

Interdisciplinarity to embrace new challenges
The taxonomy of academic branches reflects the necessities 
of a society in space and time and is, therefore, subject to both 
gradual and sudden changes, just as the evolution of science 
[1]. Early universities dealt with subjects such as theology and 
natural philosophy; wars catalyzed the teaching of engineer-
ing (both civil and military), while schools in rural areas have 
grown to focus on agricultural studies, and business schools 
have arisen near financial districts. This suggests that the 
division we impose over different branches of knowledge 
and, in particular, of science is, to a large extent, purely in-
strumental: it obeys our own necessities and not an evident or 
natural segmentation [2]. 

As the necessities and interests of societies change over 
time, academic branches evolve both in depth and scope.  
This problem-driven reformulation promotes the creation of new 
relevant fields and academic branches. However, this does not 
always occur in a timely manner but is, instead, a lengthy pro-
cess whose timing often lags behind urgent societal demands.
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In response to increasing complex practical needs and soci-
etal demands, approaches that rely on the interaction of exist-
ing well-studied branches of knowledge have recently come 
into focus. This interaction between or among disciplines is 
what is referred to as interdisciplinarity/multidisciplinarity 
[3] and has become essential to address current challenges 
effectively. Multidisciplinary/interdisciplinary approaches are 
effective because the skills and abilities required to confront 
today’s challenges are segregated across different disciplines 
due to the outdated taxonomy of knowledge that was once 
imposed under different conditions.

The case of DS
A contemporary instance of this phenomenon is DS [4], [5].  
From the public sector, industry, and academia, a number of 
agents are demanding (and also offering) solutions that are 
labeled as DS or related terms, such as artificial intelligence 
(AI), machine learning (ML), data mining, and big data. 

Briefly put, a DS task is one that involves some of the fol-
lowing stages: acquisition, curation, transmission, processing, 
analysis, interpretation, and visualization of some form of 
information content. The skills needed to address current chal-
lenges in DS are mainly those found in machine learning [6], 
mathematics (optimization [7], probability and statistics [8]), 
computer science (data mining, semantic web, and database 
theory [9]), electrical engineering (signal processing [SP] [10], 
estimation and detection, information theory [11], and control 
theory [12]), operations research [13], and high-performance/
scientific computing [14], among others.

In addition to the numerous stages involved in DS, the 
boundaries between the stages are not clearly defined. The 
complexity of DS, therefore, calls for a holistic approach, where 
mathematics, computer science, and engineering, among other 
disciplines, collectively devise new strategies to address con-
temporary challenges. This rationale has been shown to be 
particularly effective when it comes to addressing open prob-
lems in DS research, and it therefore should be incorporated in 
the way DS is taught. 

Since the various disciplines that constitute DS research and 
practice are rarely found together, students, professionals, and 
even academics have struggled to cobble together pedagogi-
cal sources for DS training. As a consequence of this demand, 
we have more recently witnessed a proliferation of academic/
professional programs on DS offered by departments of engi-
neering, business, statistics, or computer science. The signifi-
cance of DS training and practice [15] has even been identified 
by policy makers as a key component of national strategies on 
AI in the United Kingdom, France, Canada, the United States, 
China, and India, to name a few.

“Data is the new oil”
In Chile, we believe that DS is instrumental to migrate from 
a natural-resource economy to a knowledge-based one. The 
Chilean economy, in particular, is largely based on the ex-
ploitation of natural resources, such as copper, agriculture, 
forestry, and fishing. In fact, companies in the mining and 

agriculture sectors employ a limited (or no) highly trained 
workforce [16]. Like other developing countries, Chile has 
been updating its strategy for sustaining productivity and di-
recting its economy toward knowledge-based growth [17]—a 
process in which data are undoubtedly the raw element [18]. 
Two popular quotes reflect well the role that DS plays in 
knowledge-based economies:

 ■ “Data is the new oil. Data is just like crude. It is valu-
able, but if unrefined, it cannot really be used”—Clive 
Humby [19].

 ■ “Data science is the sexiest job of the 21st century”—
Harvard Business Review [20].

These quotes suggest that DS is key for the future, and develop-
ing countries, such as Chile, where alternative paths to con-
solidate the economy are urgently needed, must recognize 
this opportunity.

The need for DS is, however, not exclusive to the economy 
but applies to the more general concept of societal develop-
ment reaching into every realm. The wide-ranging importance 
of DS has been identified by authorities in Chile, too, where a 
discussion toward a national strategy on AI is currently under-
way (see https://www.minciencia.gob.cl/politicaIA), as in many 
developed societies. However, once the ability to produce data 
is in place, the next step toward building a knowledge-based 
society is to equip citizens with tools to extract value from 
those data. Therefore, teaching DS should be a prime objective 
for societal development and, thus, a duty of academia.

Scope of the article
The scope of DS’s reach and the challenges it presents demand 
more than a program but, rather, an ecosystem to address its 
development within the university. This article presents a set of 
initiatives that encompass teaching DS to engineering students 
at undergraduate and graduate levels, research interns, proj-
ect engineers, and professionals. The DS ecosystem described 
in the following sections is not exclusive to any program or 
department in our engineering school but, rather, exists as a 
collection of campus-wide resources that can be extended as 
demand requires. Our description builds on the teaching and 
applied research experiences of the authors over the last three 
years, both independently and collaboratively, with emphasis 
on blending theory and practice as required in modern, real-
world DS challenges. 

Our perspective on teaching DS
Academic and professional programs in DS have flourished 
across the country. This is in line with the global trend, where 
the success of DS generates a demand for data scientists with 
educational institutions aiming to fulfill such demand. In a 
multidisciplinary fashion, available DS programs adopt dif-
ferent perspectives stemming from business, computing, and 
the natural or social sciences. In this competitive arena, DS 
programs must establish a clear and focused objective; ours, 
in particular, is engineering. 

We believe that research, teaching, and practice are heav-
ily intertwined in DS: those at the forefront of DS research 
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and practice are the best equipped to teach it. With this idea 
in mind, our approach adopts an engineering perspective, 
blending concepts from mathematics and the natural sciences, 
resources from computer science, and applications of general 
interest as in [21]. This perspective has been instrumental to 
equip students with the necessary scientific background while 
also exposing them to real-world engineering challenges that 
come from various sectors of human endeavors, including 
industry, science, and engineering.

Our engineering school in context
FCFM at Universidad de Chile was established in 1842 and 
(as of 2021) hosts 12 departments and 10 research centers. The 
civil engineering degree at FCFM, as in most universities in 
Chile, requires 11 or 12 terms (depending on each specific spe-
cialty) of full-time study spanning six years. After this period, 
our graduates receive both a bachelor of science in engineering 
(B.Sc.) degree completed after the fourth year and a profes-
sional engineer’s title (PET) oriented to practical engineering 
duties. The last credits of the degree focus on elective cours-
es, which can be industry or research oriented, and the the-
sis work. Critically, some students enroll in master of science 
(M.Sc.) degree programs in parallel with their last undergradu-
ate year. M.Sc. degree programs at FCFM are two years long, 
yet the joint B.Sc., PET, and M.Sc. degree can be completed in 
seven years due to overlapping requirements. In addition to the 
academic programs, FCFM also offers professional diplomas 
on different engineering-related topics.

Our DS curriculum builds on the following units at FCFM:
 ■ The Center for Mathematical Modeling (CMM): Areas 

include probability, optimization, statistical machine 
learning, machine learning for health care, and scientific 
computing. 

 ■ The Department of Computer Science (DCS): Areas 
include data mining, natural language processing (NLP), 
database theory, deep learning (DL), multimedia databases, 
information retrieval, semantic web, and data compression.

 ■ The Department of Electrical Engineering (DEE): Areas 
include SP, computational intelligence, robotics, informa-
tion theory, and control systems.

Learning objectives
We integrate the engineering perspective into teaching DS by 
pursuing four learning objectives. The first, rooted in theory, 
relates to understanding the data-generating systems to iden-
tify challenges and envision solutions at a conceptual level. 
This can be achieved from first principles or from a data-
driven, application-agnostic, machine learning perspective. 
The second objective relates to selecting the methods for the 
different stages of DS. This is fundamental for practitioners 
who should be able to discriminate which tools are appro-
priate for each task, both at the level of data handling and 
knowledge extraction. 

The third objective relates to applications, through which 
professionals deal with real-world DS challenges of differ-
ent natures by formulating the problem in a DS setting where 
attaining a solution is feasible. The final learning objective 
focuses on analysis, in which professionals are expected to 
interpret the results so as to 1) provide explanations, 2) iden-
tify possible shortcomings of the methods employed, and 
3) explore solutions for such shortcomings based on theory.

Our learning objectives are interconnected, and they sup-
port one another, as illustrated in the diagram in Figure 1. 
Finally, it is worth noting that our objectives are in line with 
other criteria for accreditation of engineering programs, such 
as those of the United Kingdom’s Accreditation of Higher 
Education Programs, set by the Engineering Council [22, 
p. 10] and also by the Institution of Engineering and Technol-
ogy [23, p. 8].

Components of the DS ecosystem

M.Sc. degree programs
The bases of our DS ecosystem are the M.Sc. programs 
at the units mentioned in the “Our Engineering School in 
Context” section: the M.Sc. degree in mathematical model-
ing, M.Sc. degree in computer science, and M.Sc. degree 
in electrical engineering, all of which feature a DS spe-
cialization and are accredited in the country by the cor-
responding institutions. Hosted at different departments, 
these programs offer  complementary views, where students 
are exposed to courses, students, and faculty of different 
departments. This collaborative environment allows our 
students to build their own DS profile by mixing resources 
from different perspectives.

Postgraduate courses
We describe DS-related courses using a two-level categoriza-
tion, where categories (content and focus) and subcategories 
are not necessarily mutually exclusive. The content category 
points to the elements that are taught in each course and fol-
lows from our first three learning objectives in the “Learning  
Objectives” section. The focus category relates to the DS stages 
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FIGURE 1. The learning objectives and their connections. Theory supports 
the development of methods and ways of generalizing them to different 
scenarios. At the same time, applications provide insight into the choice 
and enhancement of methods, while the results of applications allow for 
analysis, which validates or refutes the theory on which the other learning 
objectives are based. 
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toward which each course aims. The complete list of courses 
can be found in Table 1.

Content
Theory courses are oriented to the formulation and analysis 
of mathematical and computational models for data manage-
ment and data analysis. Theory-based courses enable stu-
dents to understand the limitations of off-the-shelf methods 
and question existing solutions. Topics for such courses in-
clude probability, statistics, stochastic processes, optimiza-
tion, algorithmic complexity, discrete mathematics, database 
theory, and dynamical systems.

Methods courses focus on addressing practical DS chal-
lenges in a problem-driven fashion. The core of DS methods 
includes NLP, DL, SP, nonparametric Bayesian inference, 
transform-based analysis, spectral analysis, Monte Carlo simu-
lation, and data visualization.

Finally, applications courses ensure that students are not 
only knowledgeable on theory and methods but can also imple-
ment them on arbitrary-domain challenges. This is particularly 
useful for graduates working in a DS-as-a-service environ-
ment, such as business analytics, health, climate, or astronomy. 
To meet the wide range of student interests and needs, we place 
particular attention on recreating realistic DS scenarios within 
our courses so that students face all stages of a real-world DS 
project, i.e., from data management (acquisition, curation, and 
processing) to data analytics (mining, inference, decision mak-
ing, and interpretation).

Focus
A course can focus on one or more of the following aspects:

 ■ Data management: topics of data handling, such as acqui-
sition, processing, governance, architecture, storage, secu-
rity, privacy, quality, and curation

 ■ Data analytics: knowledge extraction tools, such as 
machine learning, probability models, statistics, time 
series, and data mining

 ■ Application domains: areas that rely on DS resources, such 
as text processing, speech synthesis, computer vision, 
image processing, robotics, econometrics, astrostatistics, 
and bioinformatics, among others

 ■ Related fields: disciplines, not necessarily associated with 
DS, where knowledge extraction is also relevant (informa-
tion theory, stochastic simulation, ergodic theory and 
dynamical systems, and algorithms) or those that provide 
the skills necessary for data scientists (optimization, alge-
bra, algorithms, and stochastic processes). 
Though these courses are offered as a part of the afore-

mentioned M.Sc. degree programs, they are available for all 
of the students at FCFM, provided they meet course require-
ments. Additionally, as part of different programs, some 
course content may overlap (e.g., machine learning and com-
putational intelligence); however, despite this redundancy, 
the courses have gained considerable popularity of late. Fig-
ure 2 shows that the number of students has increased over 
the last three years for the flagship courses. It is worth men-

tioning that the contents of these courses have evolved and 
will continue to evolve over time based on feedback from 
students and the current state of the art in the field. For some 
of the courses, the content is publicly available, such as those 
in Table 2.

Internships
Our DS offerings include internships oriented to professional 
or research work. Those in professional internships, i.e., in-
terns working on our projects or those of our collaborators, can 
delve deeper into the practice of DS and, thus, make informed 
decisions when choosing a DS career.

Research internships provide a unique opportunity for 
students in the transition undergraduate, M.Sc. or Ph.D. 
degree programs; students interested in a temporary (usu-
ally summer) position; and even visiting students joining 
mainly from our partner institutions. Research internships 
provide students with firsthand experience in a DS research 
laboratory. Funding for research interns (both domestic and 
international) has been possible through faculty research 
funds, collaboration networks, and also internationaliza-
tion grants.

Innovative aspects of our approach
Though it is the practical advantages of DS that usually moti-
vate students to seek training in the field, a necessary step to 
become proficient in DS is to understand the required theory. 
As pointed out in [21, Sec. 2.5], however, theory cannot be de-
livered in a raw manner for DS students as in classical scien-
tific degrees, but, instead, it should be presented in a problem-
driven fashion. Additionally, even for those students who are 
familiar with the theory already, e.g., those holding a degree in 
mathematics, making the transition from theory to DS practice 
can be a challenge. Current information technologies, compu-
tational resources, and public data sets allow us to offer an ad 
hoc pedagogical presentation of the theory and its connection 
to DS practice.

These innovations are key in our ecosystem, just as they 
have been for teaching statistical SP [24] or AI [25]. We next 
describe the innovative features in our DS ecosystem (either 
exploratory or consolidated) and how they enrich the peda-
gogical process.

Online code repository
As a companion to some of our courses, we include the peda-
gogical material in a public repository. This allows students to 
have instant access to lecture notes, slides, assignments, dem-
onstrations, and, in some cases, video lectures. This way of 
distributing the material has proven advantageous for several 
reasons. First, both the lecturer and teaching assistants can 
simultaneously edit the material, minimizing the number of 
conflicts and maintaining a history of past versions. Second, 
should last-minute changes occur in the course materials, the 
up-to-date version is automatically available to the students. 
Third, the students can visualize the course contents online, 
which is of particular interest for Jupyter notebooks (JNs) 
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(see the next section) that require a specific interpreter in local 
machines. Fourth, all course materials can be made univer-
sally available to the general public beyond our institution. See 
Table 2 for an example of our courses GitHub repositories.

Interactive programming
Computer programming is best taught with a learning-by-
doing approach [26]. For DS in particular, the JN has revolu-
tionized the way we program [27], with a clear impact when 
teaching and prototyping: it is free, open source, interactive, 
intuitive, and supported by a strong online community. Our 
courses feature programming modules on Python (for a major-
ity of courses), R (statistics), MATLAB (electrical engineer-
ing), and C++ (scientific computing). Therefore, as JNs are 
compatible with all of these languages, they are used for in-
class demonstrations, in which the lecturer can produce and 
run examples on the fly. 

Additionally, these JNs are distributed to the students for 
personal study, allowing them to complete, modify, and run 
examples at their convenience while also exploring creative 
variants; this is especially required for assignments and proj-
ect-oriented activities within the courses. Beyond methods-
based courses, where the value of code demonstrations is 
clear, we have learned that JNs and similar software consti-
tute an excellent complement for theory-based courses, too. 
For example, illustrations of hypothesis testing in statistics 
and stochastic gradient descent in optimization greatly benefit 
from modifiable demonstrations when compared to old-school 
blackboard illustrations.

Evaluations promoting independence and creativity
To a large degree, course evaluations condition the design of 
the course and its success in transmitting knowledge. A suc-
cessful evaluation becomes particularly challenging in the 
context of our teaching objectives (outlined in the “Learning 
Objectives” section), which aim at having students equally 
comfortable with both theory and practice. As DS challenges 
require creative, out-of-the-box solutions, we strive to recreate 
these requirements in our evaluations. 

Whenever the topics allow it, in addition to the theoretical/
practical parts, our evaluations incorporate open-ended ques-
tions whose objective is to encourage students to build on the 
concepts learned in the lectures. In these instances, students 
are required to specify the question and solve it, derive alterna-
tive solutions to those problems examined in class, or review 
the literature for material that has been hinted at in class yet 
not thoroughly reviewed. In this way, we aim to ensure that 
students solve realistic problems rather than (just) implement-
ing an off-the-shelf method. This has proven to be particularly 
challenging for inexperienced students used to well-defined 
problems that often have a unique solution; these students 
require close supervision.

Project-oriented learning
In most of our courses, the final evaluation requires students 
to form groups (of 2–4 members) to complete a project, which 

can be of theoretical or applied content, or a combination of 
both. The execution of such a project is developed throughout 
the course, alongside lectures, where preliminary advances 
of the projects are monitored as partial course evaluations 
(tests and assignments). We usually provide students with a 
repository of project topics built from past courses, industrial 
projects, and the lecturers’ own research portfolio. However, 
students are also encouraged to propose project themes moti-
vated by their thesis work, entrepreneurial activities, or other 
topics of interest that can be addressed using DS. We have no-
ticed that it is precisely those projects brought by the students 
that turn out to be the most successful, most likely because 
there is a genuine motivation to work on these rather than on 
a generic assignment.

Communication skills
DS engineers work in interdisciplinary teams and must be able 
to communicate clearly. Our courses consider four practices 
aimed at developing these skills. First, the format for the sub-
missions (assignments and reports) is evaluated in terms of 
presentation, conciseness, clarity, and readability. What stu-
dents have found particularly challenging here is to constrain 
their description to a limited number of pages. Second, in sem-
inar-based courses, we use the flipped-classroom method [28], 
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FIGURE 2. The evolution of registered students in the most relevant DS 
courses over the last three years.

Table 2. The GitHub repositories of some of our courses containing 
lecture notes, slides, exercises, and demos.

Course GitHub Address 

Machine  
learning 

https://github.com/GAMES-UChile/Curso- 
Aprendizaje-de-Maquinas 

Statistics https://github.com/GAMES-UChile/Curso-Estadistica 

Deep Learning https://github.com/dccuchile/CC6204 

Natural  
Language  
Processing https://github.com/dccuchile/CC6205 
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where students teach their fellow classmates. Third, in project-
oriented courses, students work on a DS problem for which 
they must formulate and define the scope, select the methods 
and strategies to be used, and analyze the results. 

In all of these stages, the students work as a team: regu-
lar meetings and presentations are conducted to evaluate 
the ability of the students to communicate the project’s state 
to the rest of the class and the instructor. Fourth, for those 
courses featuring real-world projects from industry, students 
present their (finalized) DS projects in a 10-min pitch talk to 
the company that proposed the challenge, thus validating the 
communication abilities of the students with actual indus-
trial counterparts.

Early research training
The M.Sc. degree programs described in the “Master of Sci-
ence Degree Programs” section culminate with a two-semes-
ter research thesis that can be of either an applied or theoreti-
cal nature; for most students, this experience constitutes their 
first exposure to research. In their theses, students join other 
research students and one or more supervisors, sometimes 
in collaboration with partners from industry, the public sec-
tor, or other sciences. Exposing our students to research may 
also improve their employability: though the majority of our 
graduates join the industrial sector, their research experience 
makes them valuable assets in modern industry, which often 
values research.

Lastly, for those of our graduates who pursue an academic 
career, the M.Sc. thesis provides a fertile environment for 
theoretical research, where students join Ph.D. students and 
postdocs to work under the close supervision of their mentors 
and, in most cases, successfully publish their findings (see, 
e.g., [29]–[33]).

Professional and academic development
The public and private (also known as professional) sectors 
as well as academia have witnessed the practical advantages 
of DS and are eager to understand and incorporate such tech-
niques. We have addressed the demand of these sectors for DS 
training by transferring our experience from undergraduate 
and graduate programs at FCFM to the professional domain. 
We next describe the elements of our DS training focused on 
professionals.

Professional diplomas
Continuing education courses are the most popular desti-
nation for professionals seeking DS training. To stand out 
from the abundance of offerings from other institutions, 
the distinguishing feature of our professional diplomas 
follows from our learning objectives and master’s degree 
programs (see the “Learning Objectives” and “Master of 
Science Degree Programs” sections) to provide an alterna-
tive that blends theory and practice in a problem-oriented 
manner. In particular, we offer two diplomas relevant to 
DS through the DCS (see the “Our Engineering School in 
Context” section): the DS diploma and the more advanced 

AI diploma. Each of these diploma programs features three 
evening lectures per week, which are completed over a 
five-month period.

Both diplomas target professionals from the areas of engi-
neering and science, such as astronomers, geologists, biolo-
gists, and engineers, although sociologists and lawyers have 
also successfully completed the courses. On one hand, the DS 
diploma focuses on the analysis and handling of complex and 
massive data sets; the main topics are those related to the fun-
damentals of databases and data mining, basic statistical tools, 
big data, information retrieval, and visualization. 

The AI diploma, on the other hand, focuses on a more 
experienced audience (e.g., those graduated from the previous 
diploma) to train them to 1) lead projects that involve complex 
and heterogeneous data sources in various forms (e.g., text and 
images) and 2) effectively communicate and justify their find-
ings. Accordingly, this second diploma features more specific 
contents, such as DL, evolutionary algorithms, image process-
ing, NLP, and robotics. Finally, both diplomas feature a final 
project through which students tackle a challenge relevant to 
their own workplace under the supervision of an academic 
staff member.

On-demand courses
We have also developed tailored courses for those in the pro-
fessional sector who currently work in DS. These courses 
have been offered through CMM (see the “Our Engineering 
School in Context” section) to partners in banking, mining, 
and nongovernmental organizations (NGOs) that aim to ac-
quire specific and advanced DS skills. For these courses, the 
syllabus is jointly designed with the interested party with 
their particular needs and challenges in mind. The courses 
work as a blend between a diploma and scientific consultan-
cy, whereby the class demonstrations utilize data provided 
by the institution. In this way, students learn the impact and 
shortcomings of standard methods as well as the necessity 
for developing new tools in a familiar environment and with 
a clear (problem-driven) purpose.

As a consequence of the interdisciplinarity of DS teams 
in industry, a recurrent challenge in these on-demand courses 
comes from the heterogeneous levels of expertise in DS found 
among students in the same group. This justifies the develop-
ment of courses for small groups of students with purpose-
specific content. In fact, when done face to face, we have found 
that groups of approximately 15 students in weekly sessions of 
2–3 h (with a break) are an appropriate format. This allows us 
to assess the evolution of the students via discussions in class 
rather than relying on strict evaluations, which are usually 
incompatible with the availability of the students in these pro-
grams. Additionally, these courses employ most of the innova-
tions described in the “Innovative Aspects of Our Approach” 
section, especially those related to the demonstrations using 
JNs and GitHub repositories.

Due to the coronavirus outbreak and the sustained lock-
down measures during 2020, we offered our tailored 
courses in an online format. These have been particularly 
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useful for mining companies, where engineers both in San-
tiago and close to the extraction sites have taken part in the 
courses. When implemented remotely, we combined online 
classes and offline content capsules for students to manage 
at their convenience.

Training of data engineers
The training of DS engineers involves a wide range of course-
work, experiences, and exposure to different sectors and pro-
fessionals both within academia and industry. The data engi-
neers who go through our programs have the opportunity to 
work on our research projects alongside principal investiga-
tors, research assistants, postgraduate students, and interns; 
for technology transfer projects, the teams usually comprise 
engineers, (data) analysts, designers, and software developers. 
In our collaborative teams, project engineers are constantly ex-
posed to research practice and, depending on the nature of the 
project, they even participate in applied research publications 
(see, e.g., [34]–[36]). Furthermore, many of the engineers who 
take part in our programs will have the opportunity to teach 
and train others, which further enriches their own development 
and keeps them current on the latest trends and advances in 
the field.

Within our laboratories and centers, providing hands-
on training in which we tackle problems from different 
industries not only provides an invaluable DS experience 
for our project engineers, but it also reinforces our role as 
educators, bridging the gap between academia and the pro-
fessional sector. Additionally, when our former engineers 
move on to find jobs outside academia, our collaboration 
network is strengthened, and our new project pipeline is 
also often extended.

Indeed, the considerable demand for DS professionals 
makes the DS job market quite dynamic: project engineers 
move from academia to industry and also between companies 
perhaps more than in other disciplines. One reason for this 
is that DS projects are often completed on a contract basis in 
which engineers are hired for a specific time to solve a spe-
cific problem. This practice is supported by the perspective 
that sharing talent across different sectors and job mobility are 
regarded as positive for career development in the field of DS 
[15]. This job mobility further underscores the need for our 
programs to provide a wide exposure to the types of problems 
and experiences DS engineers are likely to encounter once they 
leave our centers.

Outreach
In addition to the formal treatment of DS in academia as well 
as the private and public sectors, we have worked toward mak-
ing DS advances available to the general public. We consider 
this to be part of the role of universities in the democratization 
of knowledge [37], which, in our case, relates to promoting lit-
eracy in DS. This can be achieved by scientific dissemination 
activities organized by the public sector or NGOs. In particu-
lar, owing to contemporary online teaching practices, outreach 
also needs to occur through (virtual) talks, discussion panels, 

and webinars, which can be backed up on a video (e.g., You-
Tube) repository site.

Furthermore, to raise awareness about the impact of DS on 
industry leaders and policy makers, we have held “Data Days,” 
a series of discussion panels organized since 2018 where 
participants discuss a particular DS topic with an influential 
invited expert. Topics considered so far have been clinical text 
mining, digitalization of education, climate change and bio-
diversity, social organization and representativeness, and the 
Internet of Things in health care. These panels are designed to 
encourage discussion between attendees and experts so as to 
identify opportunities and challenges related to the moderniza-
tion of the local economy via DS.

Another initiative for disseminating the advances and 
impact of DS is through seminars addressed to high school 
and university students. For secondary students in particu-
lar, we have seen that DS and AI are becoming popular. In 
this sense, the Explora outreach program (driven by Chile’s 
Ministry of Education; see https://www.explora.cl/) invites 
secondary school students to develop a project under the 
supervision of a DS expert. In fact, some high schools have 
instituted (Python) programming courses through which 
our researchers have carried vibrant interactions. Finally, it 
is relevant to mention that there are initiatives that aim to 
reduce the gender gap in science, technology, engineering, 
and mathematics disciplines, and many of these events have 
recruited DS experts to give open talks or serve as judges in 
DS competitions.

Open challenges
Teaching DS focuses on shaping highly skilled technical 
professionals to develop and implement methods to extract 
information from data in various domains. However, being 
in close connection to AI, the discipline of DS is also at risk 
of being automated itself. Therefore, the following question 
arises naturally: How should we cope with the replacement 
of data scientists by machines? It is known that Google, 
Amazon, and IBM provide cost-efficient, modular DS solu-
tions that are the choice of companies relying on DS as a 
service (DSAAS); it is critical that our graduates can deal 
with and adapt to the massification of DSAAS. To this end, 
our graduates should master the underlying theory of DS 
practices so that they truly are data scientists and not mere 
DS practitioners and can adapt to changing circumstances in 
their field of expertise. 

Another challenge to be faced by our graduates is that 
of the so-called social value of the data. Novel tools for 
data processing have allowed us to identify their value as a 
means to multiple ends, such as marketing, political cam-
paigns, public policies, and insurance. There are, of course, 
companies that support their activity purely on the value of 
data, such as Twitter and Facebook. With the sophistica-
tion of DS tools to extract information from data, we are 
facing an era where—to an extent—data can be considered 
a commodity; this scenario opens both negative and posi-
tive opportunities. 



152 IEEE SIGNAL PROCESSING MAGAZINE   |   May 2021   |

First, how can we guarantee that a small country such as Chile 
is able to protect its data, when large international conglomer-
ates are at play? For instance, Chile’s recently launched Data 
Observatory (https://www.dataobservatory.net/) will be hosted 
at Amazon Web Services, which has implications unknown to 
the public at the time of this writing. 

Second, are we able to take the leap forward into a 
modern technological society by both properly curating 
our data and developing tools to extract knowledge from 
them? There are case studies of which our students should 
be aware in this regard, such as that of Cambridge Analytica 
[38]. As a consequence, our DS curriculum should feature 
courses dedicated to the issue of data value and privacy 
so that our graduates, in addition to being experts on DL, 
scientific computing, and probabilistic modeling, are also 
knowledgeable of the value and impact conveyed by the DS 
tools they handle.

Summary
Developing the described teaching ecosystem has been an en-
riching experience both as researchers and educators. Through 
this article, we have highlighted the considerations and inno-
vative aspects we consider meaningful and essential in put-
ting together effective DS curricula for undergraduate and 
postgraduate students, professionals, and the general public. 
There is a common denominator in designing a DS ecosys-
tem: finding the appropriate balance among theory, meth-
ods, and applications. This interplay is essential to achieve 
an educational experience for students that is practical (an 
up-to-date presentation of techniques and solutions), mean-
ingful (covering the advantages and limitations of the strat-
egies and methods), and fundamental (promoting critical 
thinking and a level of abstraction that facilitate innovation 
and creativity in DS). 

Considering our approach to teaching DS as an ecosystem 
rather than as a single curriculum has allowed us to widen our 
scope and include not just courses but resources and outreach 
initiatives. We hope that the material presented here can help 
others in the process of developing their own DS programs 
and ecosystems.
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INNOVATION STARTS WITH EDUCATION

Aleš Procházka, Oldřich Vyšata, and Vladimír Mařík 

Rapid progress in the development of technological and com-
putational tools has motivated substantial changes in the edu-
cational approach to the different disciplines of signal, image, 

and video processing. Moreover, the parallel evolution of sensor 
systems, data acquisition methods, and computational intel-
ligence has emphasized the importance of signal processing and 
information engineering, particularly its role in integrating differ-
ent scientific disciplines through the use of a common set of tools 
and underlying mathematics. Modern educational courses follow 
these trends and generally combine the teaching of fundamental 
computational methods of signal and system modeling with ap-
plications to selected case studies. The unifying idea is to apply 
similar mathematical methods for data processing in completely 
diverse areas. Emerging methods used in education contribute to 
this progress, and they provide opportunities to bring together 
specialists from different disciplines. New technologies facilitate 
real or virtual activities through excursions to remote laboratories, 
allowing the demonstration of robotic and speech recognition sys-
tems, for example. Participation in seminars, videoconferences, 
and discussions during colloquia meetings, when included in 
educational courses, can form further progressive and attractive 
teaching methods for the rapidly developing interdisciplinary area 
of signal processing. 

Introduction
Digital signal processing (DSP) has developed into a general in-
terdisciplinary area with a wide range of applications related to 
the analysis of multichannel and multidimensional signals. These 
signals may represent any physical, engineering, biomedical, or 
acoustic variables [1], [2]. Even though applications may cover 
completely disparate areas, their mathematical backgrounds are 
generally very similar. In many cases, this allows the processing 
of vectors, matrices, and multidimensional arrays (representing 
discrete substitutes of observed signals) with the use of similar 
computational methods.

DSP methods form a unifying platform for many diverse branch-
es of research. The position of DSP has similarities to the obser-
vations made in historical discussions on the differentiation and 
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integration of sciences [3], which formed the idea that a too-narrow 
specialization of scientists makes it harder for them to under-
stand each other. This observation is still very relevant, and it 
seems that information engineering and signal processing can 
contribute to the integration of different multidisciplinary topics. 
In this context, a well-structured educational process has great 
potential to incorporate different scientific areas and to assist in 
their understanding.

Fundamental courses on signal processing incorporate sen-
sor systems and their physical principles, numerical analysis, 
and DSP and image processing methods. Associated tools are 
sometimes presented in their historical context, which is informa-
tive for both students and academics interested in DSP methods. 
This approach points to the fact that some theoretical inventions 
predated the development of modern computational systems by 
many centuries but also contributed to the separate evolution of 
some research areas, leading to differentiation into new branches 
of science.

DSP courses have evolved rapidly in parallel with the fast 
development in computer technologies for human–machine 
interaction, robotic systems, and assistive technologies, which 
use different biosensors, data fusion, and wireless communica-
tion systems. These developments have also contributed to new 
innovations in educational tools, which attempt to integrate the 
view of various signal processing algorithms [4], [5], methods 
of their presentation, and implementation. There exists a very 
close interaction between practical needs and theoretical tools, 
including methods of signal analysis [6], statistical signal pro-
cessing, digital filtering [7], machine learning, programming 
methods, and visualization technologies. 
This multidisciplinary interaction again 
points to the general issue of effective 
communication among scientists from 
different research areas.

To demonstrate the main applications 
of DSP studies and their evolving role in 
integrating multiple scientific disciplines, 
selected case projects with clearly speci-
fied applications are being introduced 
into the classical course concept. This 
idea is motivated by the very fast recent 
development of computer technologies 
and sensor systems [8], which has 
contributed to a rapid progress in data 
processing [9], [10].

Standard and online seminars for 
students from various universities with 
different backgrounds and interests in 
information engineering should there-
fore combine the theory and applica-
tions of DSP methods in selected areas. 
Figure 1 shows a graphical depiction of 
some courses presented at the University 
of Chemistry and Technology and the 
Czech Technical University in Prague, 
which are used on a website to promote 

the courses [11]. The appeal of this approach to students was 
verified at several summer schools and during virtual teaching 
through videoconferencing systems used for video colloquia. 
The success of this method is also evidenced in the response 
to online courses and virtual laboratories [12]–[15] through 
classroom activity detection monitored by different universi-
ties and discussed at virtual conferences. The evidence indi-
cates that this approach is highly appreciated by both students 
and academics.

The main objective of this article is to present key learning 
aims and recent experience in the delivery of online courses, 
computational methods, and their applications. In this context, 
our goal includes surveying selected case studies that illustrate 
the interdisciplinary role of signal processing with the use of simi-
lar methods in different applications. We also summarize some 
aspects of modern teaching methods used in signal processing.

Educational methodology
The study of DSP methods is founded on three main pillars: 1) 
educational tools with face-to-face or online courses, laboratories, 
and possibilities of data acquisition; 2) computational methods, 
programming, and visualization tools forming the theoretical 
background of signal analysis; and 3) applications.

Educational tools
Educational tools for studying signal processing include, at most 
universities, the use of MATLAB. This software package is used 
for programming, the use of numerical methods, and the statisti-
cal analysis of observed signals.

Digital Signal and Image Processing

Space/Time Domain Processing

Signal Prediction Biomedical Signal and
Image Analysis

Environmental
Engineering

Air Pollution Interpolation

Remote Data Processing
Satellite Image Analysis

Transform Domain Processing

Z-Transform DFT DWT

MR Volume Enhancement
and Segmentation

Energy Consumption
Modeling, Neural

Networks Use

FIGURE 1. The front webpage of a selected intensive DSP course [11] to attract the attention of 
students to mathematical DSP methods in the space/time and transform domains [based on the 
z transform, the discrete Fourier transform (DFT), and the discrete wavelet transform (DWT)] and 
chosen applications related to previous projects and dissertations of our students and devoted to 
signal prediction, denoising, biomedical signal analysis, and air pollution analysis using terrestrial and 
satellite measurements. 
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The direct acquisition of real data from different sensors and 
camera systems connected to a computer is essential for both 
students and academics. Processing their own data sets using, 
e.g., the sensors of their own smartphones increases the students’ 
responsibility and engagement with reliable data acquisition.

The classical format of lectures and video courses is now sup-
ported by self-study using ebooks [4], [12] and Internet sources. 
Completely new virtual tools introduced recently enable the 
use of videoconferencing methods (including Microsoft Teams, 
Zoom, Google Meet, Cisco Webex, and Jitsi Meet) that seem to 
be very convenient for both students and academics. The universi-
ty license of MATLAB enables students to use all of the toolboxes 
at home, and a virtual private network allows access to university 
sources. Students and academics can simultaneously share the 
same files, discuss proposed methods, and use a computer “white-
board” to write and draw remarks. Real-time communication can 
thus be very personal and useful.

These emerging videoeducational technologies can bring new 
possibilities to the whole educational process. It can be attractive 
to combine virtual lectures with virtual conferencing (proposed 
by IEEE for the future) and with video colloquia as well. This 
approach was introduced very successfully during the ICASSP 
2020 conference in Barcelona, and hybrid meetings are planned 
for the future.

There are several advantages to the use of videoconferencing 
during the educational process. They include online meetings 
with experienced lecturers from different countries, who share 
their presentations during live “webinars.” A very popular “night 
of science” organized online in many cities now enables students 
to visit real scientific laboratories and motivates their studies of 
theoretical topics related to different research areas, including 
signal processing. Moreover, online defenses of dissertations 
enable the easy participation of reviewers and committee mem-
bers from different institutes and the establishment of links for 
further collaboration. But a balance between online and face-to-
face education is necessary. There are still formal and legislative 
restrictions on these activities at some universities, and contact 
among humans cannot be replaced by robotic systems only.

Computational methods
The interconnection between mathematics and computational 
tools forms a very attractive background for students of signal 
processing. The original idea that many numerical objects are as-
sociated with multidimensional arrays [16] created an integration 
platform for MATLAB and other programming languages. Some 
alternatives now to MATLAB include Octave and Python.  

Information engineering and signal processing form a joint 
platform for several research areas that are making use of data 
processing techniques. The requirements of real multidimensional 
signal analysis problems in different applications have motivated 
profound studies of associated theoretical topics [17], [18]. Sys-
tem modeling and descriptions of signals and systems in the time-
frequency and time-scale domains, optimization, and machine 
learning have formed separate educational subjects. Mathemati-
cal topics include different numerical and statistical methods, the 
discrete Fourier transform (DFT) and discrete wavelet transform 

(DWT), and methods related to computational intelligence. Spe-
cial attention has been paid to machine learning methods, feature 
extraction tools, and different classification algorithms based 
upon neural networks and Bayesian methods.

Even though the applications differ, it is necessary to analyze 
vectors or matrices of the observed variables, to apply digital fil-
ters for the rejection of undesirable signal or image components, 
and to use methods for pattern recognition in many cases. Stu-
dents of signal processing should understand the unifying role 
of information engineering, which allows a better understanding 
of scientists in diverse areas of study using similar mathematical 
tools but different terminologies in some cases. The importance of 
these methods can also be illustrated during student excursions to 
different laboratories, including those of robotic and speech rec-
ognition systems, to see the purpose of their studies.

The combination of computational methods with visualiza-
tion tools, 3D modeling, and augmented reality associated with 
video presentations forms a new rapidly developing area. These 
applications are very pertinent for studies of specific mathemati-
cal methods.

Applications
Case studies have a very important role in studying DSP methods 
since they point to the integration of this interdisciplinary area based 
on the processing of data with different applications using similar 
mathematical tools for their analysis. The most important funda-
mental data processing methods are mentioned for each selected 
case study that follows. Case studies enrich DSP courses and pro-
vide motivation for learning about the associated theoretical areas.

The interconnection between the practical implementations of 
signal processing methods and different types of interdisciplin-
ary courses can contribute to very attractive educational activities. 
Real data and associated student projects support the active par-
ticipation of students, who can thus see the real implementation of 
different mathematical methods.

The following selection of projects supervised by authors 
includes those with different biomedical and neurological appli-
cations to motivate studying the associated general DSP methods.

The case studies
The selected case studies include processing of signals acquired by 
simple mobile sensors (accelerometers, gyrometers), camera sys-
tems (red-green-blue, thermal, and depth cameras), scanners, and 
professional systems [2] used for simple or complex data process-
ing. These studies are related in most cases to student projects and 
dissertations that were later published, to motivate students to apply 
their theoretical knowledge of DSP methods to their own research.

The unifying idea behind all case studies is that similar math-
ematical methods can be used in completely diverse areas. The 
process of digital filtering for signal or image denoising associ-
ated with spectral analysis forms a common basis for many appli-
cations. Feature extraction, recognition, and classification are 
included in many biomedical and engineering problems.

The following selection was used during current DSP courses 
and is related to biomedical signal processing, motion monitoring, 
and evaluation of sports activities. But the choice of applications 
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is still modified according to the study 
program, the results of the students’ proj-
ects, and the progress of sensor technol-
ogy each academic year.

Neuroscience and the analysis  
of brain activities
The analysis of multichannel electroen-
cephalogram (EEG) signals [Figure 2(a) 
and (b)] recorded by electrodes on the head 
surface forms the fundamental source of 
information about brain activities and their 
disorders. These signals are also used for 
age-related changes of brain actions [19], 
as presented in Figure 2(c).

Specific applications include analysis 
of cognitive functions and mental abilities 
[20] (see Figure 3), changes in intellectual 
performance, and human–machine inter-
action. These topics are closely related to 
robotic systems, assistive technologies, and 
computational intelligence.

The methodologies of EEG signal 
processing include data analysis by 
the DFT, signal denoising using finite-
impulse response filters in most cases, 
signal segmentation by selected statisti-
cal and change-point detection methods, 
feature detection, and classification.

Health science and motion monitoring
Motion analysis is an important topic in 
the monitoring of physical activities [21], 
rehabilitation, and recognition of neuro-
logical disorders. Current studies include 
motion assessment using accelerometers 
[22] inside mobile sensors located at 
selected body positions and the record-
ing of changes in the heart rate during 
cycling, under different body loads. Fig-
ure 4 presents selected results of cycling 
monitoring using an accelerometer lo-
cated at the spine.

The methodologies of motion analy-
sis span a very wide area: they cover 
the study of different sensors (acceler-
ometers, gyrometers), camera systems, 
positioning sensors (GPS), and sensors 
recording associated biomedical signals 
(such as the EEG and electrocardio-
gram). Multichannel signal processing 
then involves the time synchronization of 
the data sets, their digital filtering, resam-
pling, feature extraction in the transform 
domains (DFT, DWT), and classification 
of motion patterns.

A: Musician
B: Nonmusician

A: Musician
B: Nonmusician

0.3

0.2

0.1

0.04

0.02

Feature 2

Feature 1
0.1 0.12 0.14 0.16 0.18

P
ro

ba
bi

lit
y 

P
(x

c
k)

0.05

0.04

0.03

0.02

0.01
0.1 0.12 0.14 0.16 0.18

Feature 1
(b)

F
ea

tu
re

 2

Fp1 Fp2
F3 F4 F8

T4

T6P4
Pz

Cz

Fz
F7

T3 C3 C4

P3T5

O1 O2

88.2

(a) (c)

FIGURE 3. An analysis of EEG signals recorded with sampling frequency 200 Hz and its application 
in cognitive science, presenting (a) the distribution probabilities of foreign language perception for 
the set of individuals with and without a musical background for the selected electrode, (b) a neural 
network classification based on data recorded at the selected electrode and chosen signal features, and 
(c) the location of the most significant electrode with the highest classification accuracy and its value.

Time

Channel

Signal Spectrum
Filter FTF

0
0 10 20 30 40 50 60 20 30 40 50 60

0.5

1

Frequency (Hz)
(b) (c)

Age (Years)

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6

RC: –0.005 [1/Year]

(a)
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Machine–man interaction and gait analysis
The diagnosis of movement disorders, including the detection 
of gait features [23], [24], forms a very important neurological 
area closely related to machine–man interaction. It uses images 
and data from different biosensors, accelerometers, and camera 
systems. An example of the use of Microsoft Kinect (or a similar 
device) for the acquisition of gait features and skeletal model con-
struction is presented in Figure 5.

The image and depth sensors of this system enable one to 
obtain image frames with a given frame rate and detect joints 
in the 3D space. Inverse kinematics [25] and spatial modeling, 
employing video systems and the Microsoft Kinect device, can be 
used in neurology for diagnostic purposes related to the detection 
of motion disorders, including Parkinson’s disease, for rehabilita-
tion, and for studies of human–machine interaction and computa-
tional intelligence in engineering.

The methodologies related to DSP include the application 
of digital filtering, image segmentation and its component rec-
ognition, time synchronization of signals recorded by different 
sensors, feature extraction, and classification. The application of 
machine learning includes the study of optimization methods, 
neural networks, and deep learning methods as well.

Thermography and breathing analysis
Current studies include pattern recognition and the analysis of physi-
ological data acquired by thermal camera sensors during rehabilita-
tion. Information related to the distribution of thermal regions (Fig-
ure 6) and their evolution over time can then be correlated with the 
heart rate [26], [27] during different physical activities (on a home 
exercise bike) and compared with results from the depth cameras.

The methodology of infrared thermal mapping includes 
the application of image filtering methods, segmentation of 

image components, and estimation of the evolution over time 
of selected spectral components. These problems also motivate 
studies of adaptive methods for the detection of time-dependent 
regions of interest.

Augmented reality in stomatology
Intraoral scanning technology has brought a completely new ap-
proach to dental examinations [28], [29]. In comparison to tra-
ditional plaster casts, it allows a more precise digital analysis of 
dental arch components (see Figure 7) during the treatment of 
dental disorders. The data acquired can also be used for the cre-
ation of 3D models using 3D printers.

The application of signal processing methods in stomatology 
is very broad, covering the areas of image enhancement, digital 
filtering, detection of specific image regions, their registration 
(during the treatment), and methods of 3D modeling. Diffuse 
reflectance spectroscopy also requires the use of machine learn-
ing methods for the detection and classification of dental caries.

Polysomnography and the analysis of sleep disorders
The study of multichannel biomedical signals acquired in a sleep 
laboratory [30], [31] forms a very interesting research area. An 
example is presented in Figure 8. The data sets represent mostly 
polysomnographic overnight records of healthy individuals and 
individuals with sleep disorders, including sleep apnea and rest-
less legs syndrome. The number of waking and rapid eye move-
ment (REM) stages can be analyzed with respect to sleep disor-
ders and age.

The methodologies used in these data analyses include the 
application of methods for multichannel signal processing, digi-
tal filtering, segmentation, feature extraction, and classification. 
Classification methods include classical algorithms (decision 
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tree, nearest neighbor method, support vector machine, Bayesian 
methods) and adaptive methods (neural networks, deep learning).

Discussion
Educational courses devoted to computational intelligence com-
bined with specific case studies and physical or virtual excursions 
to robotic systems and speech recognition laboratories form an 
attractive way to study signal and image processing methods. 
Data sharing and their synchronization for analysis, either online 
or by mobile devices, form another appealing platform for study-
ing numerical methods, DSP, and machine learning [32]. Modern 
algorithmic tools, including live editors, and the practical imple-
mentation of selected methods motivate profound studies of the 
theoretical background of DSP methods as well.

The possibility of acquiring one’s own data sets using mod-
ern sensor systems forms another intriguing way to further study 
DSP. Experiments with physical signals recorded by smartphones 
motivate the self-study of associated sig-
nal analysis tools. This approach forms 
an alternative to processing profession-
ally recorded signals and images in engi-
neering laboratories, by satellite systems, 
or in a clinical environment.

The emerging teaching  technologies 
should incorporate the flexibility of 
DSP courses with the standard structure 
of their parts devoted to mathematical 
principles (including studies of signal 
and system modeling, the DFT, spectral 
analysis, digital filters, and optimization 
methods) and case studies that can be dif-
ferent each academic year. This approach, 
based upon data acquisition with various 
sensor systems, can have appeal for both 
academics and enthusiastic students. The 
rapid pace and variety of technological 
progress reduces the danger of any stag-
nation in the development of the content 
of these courses.

The proposed structure of the educa-
tional courses was verified by experience 
from many courses presented, over more 
than 30 years, to students with diverse 
backgrounds, including international stu-
dents from different countries. The num-
ber of students in each course (devoted to 
mathematical methods, DSP and image 
processing, and computational intelli-
gence) is usually limited to 20 for better 
personal contact.

Table 1 lists a few principal subjects 
presented over the last 30 years for under-
graduate and research students from the 
University of Chemistry and Technol-
ogy and the Czech Technical University 
in Prague. These courses included in the 

complete curricula [11] are devoted to MATLAB programming, 
numerical and symbolic methods, signal and image processing, opti-
mization, machine learning, and multimedia signal processing [33].

The explanation of selected methods presented during DSP 
courses [11] has been combined with specific research projects 
devoted to simulated and real signal processing. The formal struc-
ture of these courses is similar and includes

 ■ interactive lectures in computer laboratories in which the 
explanation of new topics is associated with verification of 
algorithms by students on their own computers

 ■ presentation of specific case studies introduced in some 
instances by research students to motivate undergraduate stu-
dents for their own future scientific research

 ■ computational laboratories with studies of specific methods 
and possibilities of students’ acquisition of their own data sets

 ■ development of several individual student projects each term, 
with their recommended structure close to that of scientific 
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papers and using professional tools (like MATLAB and 
LaTeX), to prepare students for their own later research and 
publication activities

 ■ final exams or a colloquium.
This structure was enabled by university licenses of the educa-

tional software, which allowed students to work at home. Docu-
ment sharing (using, for instance, the Overleaf system) forms 
another attractive educational tool. The structure of these courses 
is similar both for standard and video meetings in the selected vir-
tual environment. In all cases, a classical whiteboard or computer 
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Table 1. Selected subjects related to DSP with the number of  
teaching hours per week and students enrolled during academic  
years 2017–2020.

Subject Name 
Extent  
[h/Week]

Number of  
Students  
(2017–2020) 

Mathematical Methods in Engineering 4 88 
Digital Signal and Image Processing 9 117 
Computational Intelligence 4 35 
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touchscreen is mostly used for the live 
presentation, with a very limited amount 
of preprepared material.

Figure 9 presents the students’ evalua-
tion of DSP courses and a comparison of 
the level for standard face-to-face courses 
versus those presented through videocon-
ferencing systems in 2020. The results 
show that the quality of the distant educa-
tional process can be at a similar level to 
that of traditional courses.

In particular, there is a positive experi-
ence in the students’ final colloquia devoted 
to the discussion of selected mathemati-
cal topics or application of DSP methods. 
This forms another approach to share 
original ideas in an engaging way and to 
discuss the theory and implementation of 
modern signal processing tools, machine 
learning, and adaptive methods. DSP 
techniques are applied to data recorded by 
the students or obtained from specialized 
institutes. These discussions were initially 
organized in the classical face-to-face 
form for groups of fewer than 20 students. 
This model was changed recently to a vir-
tual form, and five such videoconferenc-
ing meetings [11] were organized during 
2020 with a similar number of participants 
during each colloquium. Students appreciated the possibility of 
the mutual discussion on the same level as during personal meet-
ings. Moreover, no traveling was necessary for students from for-
eign countries.

The experience with educational courses points to the need 
for the connection of specialists in different areas through a suite 
of coherent, real-world examples. DSP can follow this direction, 
and it can form a very efficient platform with newly emerging 
educational technologies.

Conclusions
The discipline of DSP has become increasingly important in re-
cent years across multiple fields of research, particularly for its 
unifying role in providing a common set of methodologies and 
tools with the same underlying mathematics. By applying this 
common approach to multiple branches of science, issues asso-
ciated with overspecialization within and differentiation among 
scientific disciplines can be more easily resolved. It also contrib-
utes to a closer integration among sciences, as the same specialist 
skills are deployed across the separate disciplines. Consequently, 
it can encourage a closer collaboration among specialists in mod-
ern data science, academics, and students.

Education in the discipline of DSP offers the opportunity 
to mix a knowledge of physics, mathematics, and other areas 
with practical implementations in real-life applications. Modern 
educational courses are based on the diversity of information 
and the rapidly growing developments of new technologies and 

computing power. The interconnection of general signal pro-
cessing methods and specific case studies motivates new educa-
tional technologies in studies of DSP methods. We believe in the 
expanding role of information engineering and signal processing 
as an integrating platform for different multidisciplinary topics 
that can reduce the problem of the “too-narrow specialization” of 
some scientific areas. These ideas of encouraging closer intercon-
nection among different branches of science are similar to those 
of “substantial unity” suggested by Leibniz [3] and other scien-
tists throughout history.

The current technological progress allows the introduction of 
new educational methods that are attractive to both students and 
academics. It seems that the vision of IEEE to organize future 
scientific conferences in both traditional and virtual ways will 
be very appealing to students. Moreover, virtual discussions and 
examinations can contribute to closer collaboration among dif-
ferent research groups and support the enhancement of students’ 
creativity as well.
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Modern engineering education is increasingly assuming an 
interdisciplinary character, where developments in one 
area almost invariably affect other areas. A prominent ex-

ample is that of signal processing, which has undergone signifi-
cant changes with the emergence of machine learning (ML) and 
deep learning (DL) in recent years. While the impact of ML/
DL is clearly visible from the viewpoint of research and devel-
opment as well as industrial applications, it is not immediately 
clear how signal processing education should evolve in terms of 
pedagogy and content. Hence, the main purpose of this article is 
to provide some insight into this aspect. In particular, we empha-
size that the introduction and popularity of ML/DL, especially 
at the level of teaching, has provided an opportunity to bring the 
focus back to some of the fundamental ideas rooted in signal 
processing and other related fields of study.

Background
Signal processing courses taught at both the undergraduate 
and postgraduate levels aim at developing an understanding 
of the physical world via explicit mathematical analysis. This 
includes both basic and advanced courses. All such courses 
share a common thread in that each deals with some aspect 
of physical signals and the underlying mathematical theory of 
developing analytical systems/models to process such signals. 
However, with the advent of ML as a major thrust area both in 
terms of teaching and research, certain challenges and oppor-
tunities have emerged. These range from the more simplistic 
application- and design-oriented challenges to the more fun-
damental questions related to the need for signal processing as 
an area of study.

As a discipline, ML has a rich history, as evidenced by many 
seminal theoretical ideas over the past decades, e.g., refer to the 
formative article by Turing [1], and several practical applica-
tions. Particularly from the viewpoint of academics, ML has 
always been one of the fundamental topics in mathematics, 
computer science, and electrical engineering, typically as an 
advanced level topic/area. However, the introduction of power-
ful computing resources, availability of data, and emergence of 
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DL architectures have, in some ways, completely changed the 
landscape in terms of how ML is viewed both by academia 
and industry [2]. DL, in particular, has gained popularity 
and is widely employed across several engineering and sci-
ence disciplines. 

Not surprisingly, several universities (and research cen-
ters) around the world have started emphasizing the need for 
ML/DL by modifying the curriculum (and overall research 
focus), explicitly or implicitly. This includes offering exclusive 
undergraduate and postgraduate degree 
programs in this area. For instance, the 
Indian Institutes of Technology at Jodh-
pur (i.e., the author’s institute) and Hyder-
abad have, at the time of writing, already 
started dedicated undergraduate programs 
and specializations in data science and 
artificial intelligence (AI), where ML/DL 
will be a key component. In addition, many 
universities globally have started to empha-
size courses on ML as early as the third 
semester of the undergraduate level, cutting 
across departments. To facilitate this, the 
prerequisites include basic programming 
skills and familiarity with calculus and probability theory, 
which are satisfied by most undergraduate students.

Many students have also quickly gained significant inter-
est in DL as they view it as a useful tool to solve industry-
oriented problems and for professional growth. This is true not 
just for electrical and computer engineering but increasingly 
so in varied domains, including chemical, infrastructure, bio-
engineering, and so on. All of this is, of course, desirable in 
a rapidly changing world. At a philosophical level, we view 
this as a transition from a white box to a black box to imply an 
emphasis on implicit modeling based on data. While, in itself, 
we do not view the said transition as being necessarily prob-
lematic, it has had a significant impact in terms of teaching and 
learning at some levels. Specifically, it does appear that DL, 
with its powerful modeling capabilities, has reduced the focus 
on certain fundamental and traditional areas of study. Similar 
views may also be found in the context of communications [3], 
multimedia processing [4], computer vision [5], and more. 

This naturally leads us to a few fundamental questions on 
how the teaching and learning of traditional signal process-
ing, ML, and related areas are likely to be impacted. We note 
that there has been a lack of systematic and explicit discus-
sion on this. Therefore, the main purpose of this article is to 
put forward a few hypotheses which, in our opinion, are rel-
evant to today’s educators and research practitioners in said 
domains. We also attempt to provide some evidence against 
the said hypotheses by drawing from research and teaching 
experience over the past few years in the broad areas of signal 
processing and ML.

The emergence of the black-box approach
The need for developing interpretable/explainable ML mod-
els is probably as old as the fields of AI and ML/DL [6]. 

However, many ML methods, including DL, can be treated 
as black boxes. Also note that strictly speaking, the terms ex-
plainability and interpretability are dis tinct. The former refers 
to the post hoc analysis of a black model. The latter aims to 
develop white-box-type models from the beginning itself. We, 
however, do away with such distinction and use both terms 
interchangeably. However, many ML methods, including DL, 
can be treated as black boxes. 

In simple terms, the black-box model is one where the 
trained weights may not have an explicit 
one-to-one mapping to the actual input. 
However, in the case of most ML methods 
other than DL, the said input is handcrafted 
(e.g., signal features are derived based on 
the domain and explicit techniques like 
transformations). Hence, in this case, at least 
the input to ML is not part of the said black 
box (i.e., there is explicit feature extraction). 
Consequently, input features are more ame-
nable to scrutiny. By contrast, DL uses the 
data/signal as input. This means that the 
task of feature extraction is delegated to 
DL (i.e., there is implicit feature extraction). 

As a result, analytic or empirical analysis of the resultant DL 
model tends to be more difficult in practice.

System-centric or DL approach: An instructor’s dilemma
Most courses in signal processing and other related areas fol-
low what we refer to as the system-centric approach. This in-
volves, in most cases, the analysis and development of mathe-
matically tractable and transparent systems to process signals/
data and examine the effects of external phenomena (e.g., the 
analysis of a noisy communication channel). In contrast, the 
DL approach emphasizes implicit modeling. For a convenient 
visual comparison, we show in Figure 1 the essential blocks of 
the two mentioned approaches: the traditional system-centric 
method, depicted in the flow diagram in Figure 1(a), and the 
DL-based method, shown in the flow diagram in Figure 1(b). 
We make a few important observations from this.

First, the traditional system-centric approach follows a 
bottom-up strategy. It seeks to build upon the knowledge that 
students gain from foundational and other program-specific 
core courses. These courses also typically emphasize a system-
based approach. It may also include case studies and applica-
tions where the students may learn how to apply the learned 
concepts to model and/or express domain (application-specif-
ic) knowledge. All of these are expected to make the students 
capable of dealing with real-world applications/problems. The 
use of double-sided arrows in the flow diagram is intentional 
and emphasizes the interdependence between applications 
and domain knowledge expressed via basic systems concepts 
(e.g., distributional assumptions or the use of linear models to 
approximate complex systems). 

In contrast, the DL-based approach depicted in the flow 
diagram in Figure 1(b) is relatively more top down because it 
is application driven. Hence, the applications primarily drive 
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what we refer to as implicit modeling and data structure discov-
ery. It will obviously be defined by the target of interest (e.g., 
supervised or unsupervised classification). From the viewpoint 
of implementation, a set of core activities (primarily consisting 
of data set creation/labeling, implementation of DL architec-
tures via programming, and subsequent model training) then 
need to be carried out. As highlighted, this will require the 
knowledge and application of concepts mainly in calculus, 
linear algebra, probability theory, and optimization. However, 
unlike the system-centric paradigm, there is more emphasis on 
data due to the implicit nature of modeling that is involved. 
In the process, system-based prior knowledge (which, in some 
sense, constitutes the core of the traditional system-centric 
paradigm) is exploited only in a limited fashion.

Thus, the rapid emergence of ML/DL has given rise to a 
more hands-on and data-centric approach to problem solv-
ing [as depicted in the flow diagram in Figure 1(b)]. In light 
of this, it is natural for the students to explicitly (or, in many 
cases, implicitly) question the utility of system-centric knowl-
edge when the relatively easier option of DL is available. This 
dilemma of possibly selecting one approach at the cost of the 
other in many ways defines a major 
challenge in modern signal processing 
education. It becomes even more prom-
inent in cases where a real-world prob-
lem can possibly be solved using both 
of the approaches. Thus, it is reasonable 
to conclude that explicitly addressing 
the said challenge will help in provid-
ing much-needed perspective and con-
text to the students.

Why the DL approach is  
becoming popular
The DL approach has achieved remark-
able performance improvements over 
state-of-the-art methods in certain ap-
plications. While the ambit is increas-
ing, the said applications still constitute 
a relatively small subset of possible 
application scenarios. Moreover, one 
needs to be careful in extrapolating and 
generalizing results from test data sets 
alone [7]. Still, the significant research 
and industry interests in DL are under-
standable. However, their popularity 
among a large section of students cut-
ting across departments/specializations 
is an interesting phenomenon. We list a 
few plausible reasons for this.
1) As the DL framework is general, it 

can, in principle, be applied to sev-
eral application areas for building 
predictive models. This requires the 
appropriate data (this is greatly 
eased due to the free availability of 

data sets from several application domains) and fine tuning 
of the DL architectures. In some ways, this allows students 
to at least attempt problems from domains for which they 
may not have any domain knowledge. In contrast, the tra-
ditional system-centric approach, which generally builds 
upon analytical tools, might appear to be more rigorous 
and limited in some sense.

2) DL has shown promise in many application areas—espe-
cially in visual signal analysis [8]. Moreover, the ML/DL 
community has been very active in engaging both aca-
demia and industry. (For instance, several competitions 
and challenges are held each year that witness high levels 
of participation.)

3) The extensive availability of software programs greatly 
facilitates students (from the beginner to advanced level) in 
applying DL. In fact, the convenience levels have almost 
reached levels that require as much as a “drag and drop” 
operation to build customized DL models.

4) As highlighted in Figure 1(b), the DL approach focuses more 
on data, implementation, and model fine-tuning. As a result, 
students who might not have sufficient knowledge or may 
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FIGURE 1. A comparison of (a) the traditional bottom-up system-centric approach and (b) the more 
recent top-down DL paradigm.
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not have even formally studied some of the required 
theoretical concepts (such as convolution, optimization, 
and so on) find it easy to build DL models. In fact, it 
might not be completely wrong that say that program-
ming skills tend to be taken as a substitute for basic 
concepts.

5) With the DL approach, one can visualize the data [9], pre-
processing, and training process through user-friendly and 
convenient graphical interfaces.

6) With its ever-increasing popularity and wide acceptance 
across the industry [2], ML/DL is perceived by many stu-
dents as a gateway to exciting career opportunities and pro-
fessional growth.

The hypotheses
While one may agree or disagree with some (or all) of the rea-
sons listed, there appears to be a consensus that the DL approach 
has indeed attracted tremendous interest not just from students 
but also from educators, researchers, and industry. It is, there-
fore, natural to wonder how signal processing education should 
evolve. To that end, we suggest the following hypotheses:

 ■ H1. Most signal processing courses tend to focus on 
explicit signals and systems analysis. But when sufficient 
training data is available to enable DL-based modeling, 
the traditional system-centric approach does not add 
much value.

 ■ H2. The traditional and DL-based paradigms are complete-
ly independent of each other, and selecting one over the 
other is essentially a zero-sum game.

 ■ H3. With DL, one simply needs an application-specific 
labeled data set to develop an appropriate DL architecture. 
In that case, domain knowledge/expertise expressed via 
explicit signals and systems is not needed. Instead, one can 
simply focus on more data, faster optimization, and more 
efficient implementations.
In the following sections, we provide a discussion in the 

context of the afore mentioned hypotheses.

Why signal processing concepts are necessary
Data acquisition (including labeling in the case of supervised 
learning) is an integral part of an ML/DL pipeline toward 
model development and validation. As it relies heavily on con-
cepts such as sampling, aliasing, quantization, clipping, device 
characterization, and related theoretical analysis, the impor-
tance of fundamental signal processing concepts is obvious. 
However, the system-centric approach (with a focus on signal 
processing) can also be of immense significance in provid-
ing useful technical insights into several real-world problems. 
These, in turn, can be exploited for developing a more explain-
able/interpretable ML/DL model.

Inference and prediction: An example
Most ML/DL models are developed for the task of predic-
tion, i.e., providing a label for an unseen (or future) data point. 
The aspect of inference (i.e., understanding the factors/causes 
and their contributions) is considered, albeit implicitly. This is 

where the system-centric approach is useful as it allows one 
to make useful inferences and, in turn, predictions. We note 
that the distinction between inference and prediction is subtle 
but extremely important to understand failure cases and their 
severity. In this context, we note that since DL emphasizes 
implicit modeling, it becomes challenging to understand why 
it failed to provide a correct prediction in a given test condi-
tion. On the other hand, a more transparent model based on a 
system-centric approach will be more amenable to the scrutiny 
of its weakness. We emphasize here that it is not just about 
an accurate (or inaccurate) prediction. Rather, it is also cru-
cial to get some solid technical insights into the strengths and 
weaknesses of a prediction model. This will eventually help in 
understanding and possibly avoiding an undesirable scenario 
where the trained model might learn/use counterintuitive or 
even unnecessary factors.

As an illustration, we consider the example in Figure 2(a) 
and (b), where two images are shown. These images were com-
pressed via the JPEG 2000 algorithm at the same compression 
factor. They were subjectively rated on a scale from 0 (worst 
quality) to 5 (best quality) for their visual quality by about 30 
human subjects, and the average score for each image is given 
below it. These images are taken from the publicly available 
Categorical Subjective Image Quality data set [10]. 

Suppose that our goal is to develop a computational model 
that can predict the quality of a given image. To that end, the 
DL approach will involve training a deep neural network 
architecture with the given data set, i.e., the input will be the 
color image, and the training target will be the average quality 
score. The trained model is then expected to predict the qual-
ity accurately for a given compressed test image. While this 
approach seems straightforward, there are two main issues. 
First, the trained DL model cannot explain why the image in 
Figure 2(a) was rated poor in comparison to the image in Fig-
ure 2(b), despite the fact that the same compression factor was 
used for both. Second, because it is not possible in practice to 
test the DL system on all of the possible test images, the gener-
alization of its performance is questionable (even if it were to 
perform very well on a limited set of test images).

Alternatively, we can apply the system-centric approach. 
In this particular example, this would mean analyzing pos-
sible factors that contribute to visual quality and quantifying 
them as accurately as possible (mainly via signal processing 
techniques). In turn, this requires some domain knowledge. A 
possible solution is to consider, say, four factors, namely con-
trast, color, naturalness, and sharpness, all of which are well-
known visual factors. These are shown below each image in 
Figure 2. One can observe that, for the image in Figure 2(b), 
all of the factors except naturalness are higher and therefore 
indicate a better quality for this image (which is, of course, 
validated from the given subjective quality scores). This also 
provides some insights into why human subjects rated the 
image in Figure 2(a) as poorer in comparison to the one in 
Figure 2(b). These four factors can further be combined into 
a single score by either using a predefined relationship or by 
learning it from the given data. 
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Note that, similar to the DL approach, it is again diffi-
cult to quantify the generalization ability in this case. How-
ever, at least the contributing factors employed are open to 
scrutiny both in terms of principle (i.e., whether a factor 
should be excluded or another one added) and their compu-
tation (as these are based on transparent signal processing 
techniques and approximate models of some aspects of the 
human visual system). Consequently, failure cases can be 
better analyzed. 

In essence, the system-centric approach allows a case-
by-case analysis if required and does not overemphasize the 
overall prediction accuracy alone (as is the case with the DL 
approach). Further, in this example, it is also possible to ana-
lyze the compression technique (in this case, JPEG 2000) for 
its deficiency (or advantages) vis-à-vis the considered factors. 
This leads to the possibility of generating new knowledge or 
augmenting the existing findings in the said domain. Indeed, 
it is not surprising that advances in several areas, including 
next-generation video technologies, have been enabled due to 
the fundamental principles and limits of human vision, which 
are invariably understood in terms of and quantified via sig-
nal processing techniques (e.g., contrast sensitivity function, 
masking effects, bandpass filtering, receptor cell response, and 
so on) [11]. The DL approach, on the 
other hand, does not provide any such 
insights on its own.

Toward explainable ML/DL
DL owes its success to implicit but pow-
erful modeling capabilities. However, 
the implicit nature of modeling can 
also become a drawback in many ap-
plications due to two reasons: 1) it is 
not straightforward to explain why a 
certain prediction (right or wrong) was 
made by the trained DL model, and 2) 
the robustness of DL to adversarial ex-
amples is questionable. As a result, the 
development of robust and explainable 
ML/DL is an active research area [12]. 
In this context, we note that the funda-
mental concepts and analytical tools 
rooted in signal processing and related 
areas can play an important role. For 
instance, the fundamental ideas of fre-
quency (e.g., Fourier transform) can be 
used to explain the generalization abil-
ity of convolutional neural networks 
(CNNs) [13]. 

Further, the authors in [14] exploit 
Fourier transform-based priors to 
improve the interpretability of DL for 
genomics (this involves penalizing the 
high-frequency components of the Fou-
rier spectrum of input-level attribution 
scores). The work in [15] utilizes the 

idea of Fourier feature mapping to overcome the weakness 
of standard multilayer perceptron in representing the high-
frequency content of natural images and scenes. Likewise, 
wavelets were exploited to develop an interpretable and 
frequency-aware DL model for time series analysis [16]. In 
a similar vein, the authors in [17] explore a wavelet-based 
deconvolution layer to develop a more interpretable CNN-
based model for time series classification. 

In terms of more recent ideas, we note that graph signal pro-
cessing has been used for developing new ML algorithms with 
a focus on model interpretablity/explainability [18], [19]. Other 
signal decomposition tools have also been employed toward 
explainable ML/DL. For instance, the approach described 
in [20] exploits the well-known principal component analysis 
for the analysis and visualization of the learning process in 
DL layers.

We also reiterate that the use of contrast, color, naturalness, 
and sharpness as features in the context of the problem stated 
in Figure 2 is also an example of developing an interpretable 
model. Thus, as briefly discussed, a sound knowledge of sig-
nal processing and allied areas will equip students and educa-
tors with powerful concepts that can enable them to design and 
implement more transparent ML/DL systems.

Subjective Quality Score: 2.45 Subjective Quality Score: 4.1

(a) (b)

0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2

Contrast Color Naturalness Sharpness

FIGURE 2. An example of image quality prediction and the importance of domain knowledge expressed 
via signal processing concepts. (a) A lower-quality image versus (b) a higher-quality image based on 
four visual factors. Several such convenient examples can be taken for the purpose, depending on the 
instructor interest and background of students. (Source: CSIQ dataset [10].)
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Exploring commonality in signal  
processing and ML
Many instructors and readers will agree that teaching a signal 
processing course has become increasingly challenging due 
to increased student diversity in terms of background and the 
large number of courses that students are typically enrolled 
in. Moreover, it is likely that students find a theoretical signal 
processing class less attractive than, say, a course on ML/DL, 
AI, or computer graphics. Naturally, educators in the past have 
explored ways to tackle this challenge. Some examples include 
bringing more hands-on experience inside a signal processing 
classroom by using wearable sensors [21], turning the class-
room into a virtual crime scene for image forensics [22], pro-
viding intuitive understanding and exploring the links between 
fundamental concepts [23], and so on. In this context, another 
complementary and reasonable strategy would be to explore 
common theoretical concepts and practical applications across 
courses. From that viewpoint, we are interested primarily in 
the domain of signal processing and ML/DL.

Connecting signal processing and  
ML through basis functions
The concept of basis functions is fundamental in signal pro-
cessing. For simplicity in notation, we consider a discrete 1D 
signal [ ], .x n n Z!  A useful and intuitive approach to analyze 

[ ]x n  is to decompose it in terms of basis functions. Mathemati-
cally, this is represented as

 [ ] [ ]x n b nk k
k

a=/ , (1)

where ka  is the coefficient of expansion and [ ]b nk  is the basis 
function. Different choices for the basis functions are possible, 
depending on the desired properties. We have [ ]b n e /

k
j k N2= r  

[in the case of an N-point discrete Fourier transform (DFT)]   
or [ ]b n ek

j n= ~  (with ~ being the discrete frequency of the 
discrete-time Fourier transform). 

In the case of wavelets, [ ]b nk  will be time limited. Thus, 
determining a suitable basis function is the key to analyzing 

[ ]x n . We note that this idea is also extended in ML for learn-
ing the decision function f(x). For instance, in kernel methods 
[24], we have

( ) ( ), ( ) ( ), ( ) ( ),f x s x s x xi
i

i i i
i

i
i

G H G Ha z z a z z b z= = =/ / /  
 (2)

where ib  is the appropriate weight/coefficient, and z denotes 
the mapping function (possibly nonlinear). We notice that (1) 
and (2) are similar in that both use a linear combination of 
basis functions. The corresponding basis functions [ ]b nk  and 

( )xz  are determined analytically (i.e., expressed mathemati-
cally). We note that [ ]b nk  is independent of the data [ ]x n  in 
the case of classical Fourier or wavelet transform. That is, these 
functions are defined a priori, convey clear physical meaning, 
and are defined analytically. 

In the case of graph Fourier transform, [ ]b nk , which rep-
resents the eigenvectors of the graph Laplacian, are derived 

from the data and have a Fourier-like interpretation. The basis 
function ( )xz , on the other hand, depends on the chosen ker-
nel (e.g., Gaussian, polynomial, and so on) but is still explic-
itly defined. The DL approach takes this idea one step further 
and aims to learn the basis functions entirely from the train-
ing data without any assumptions on the functional form. As a 
result, unlike (1) or (2), an explicit or analytical analysis of the 
basis functions is not possible. Instead, only certain qualita-
tive and data-specific arguments can be made. For example, 
in the case of CNNs, the learned feature maps (which may 
be loosely viewed as basis functions) may be visualized by 
approximating the reverse operations [9]. Even though the fea-
ture maps are not completely random, they are, by and large, 
difficult to analyze.

Thus, the definition and computation of basis functions (a 
concept thoroughly defined in linear algebra) provide a conve-
nient tool to link signal processing and ML/DL and should be 
exploited carefully in teaching such courses. In particular, a 
more thorough discussion of the motivation, formulation, and 
benefits of different basis functions (including the ones from 
DL) would be helpful to provide students a context. This may 
help them select the more appropriate analysis tool rather than 
blindly apply ML/DL. Simple computer simulations that help 
to visualize different basis functions will also make a signal 
processing class more interactive and interesting for the stu-
dents to grasp the central ideas.

Emphasizing signal processing concepts in ML/DL
Signal processing ideas and techniques also provide strong 
theoretical and practical support in terms of implementing 
and improving the DL framework. For example, CNNs rely 
on convolution, which is one of the central ideas in signal pro-
cessing. Further, the pooling operation in CNNs, which aims 
at a reduction in the number of parameters to be learned, can 
also be analyzed and compared in terms of filtering opera-
tion. An instance of this is provided in Figure 3 (question 1), 
which the author has used in a digital signal processing class 
and aims to compare the average and max pooling opera-
tions. By viewing these as filters, the students are asked to ex-
plicitly provide the corresponding filter coefficients instead 
of using the said operations blindly in a CNN implementa-
tion. In our opinion, such a discussion can help the students 
to think in terms of physical interpretation and enable them 
to innovate from the viewpoint of real algorithmic changes 
instead of focusing only on improving prediction accuracy. 

Moreover, recent attempts to extend DL to data defined 
on graphs rely on the theoretical concepts from graph signal 
processing, e.g., extending CNN components to graphs [25]. 
Another area where signal processing has historically matured 
and may potentially benefit ML/DL is that of online or incre-
mental learning. This may, for instance, exploit the well-known 
recursive least squares algorithm [26].

ML/DL is also widely explored in many signal processing 
applications, e.g., a variety of visual understanding tasks [8]. 
However, in many cases, students tend to reduce this to a data 
fitting exercise, i.e., the entire focus shifts to fine tuning the DL 



169IEEE SIGNAL PROCESSING MAGAZINE   |   May 2021   |

architecture in search of better prediction accuracy. A possible 
solution to this can be along similar lines as those exempli-
fied in the second question of Figure 3. In this example, the 
students have to make a choice between either DFT-based fil-
tering or the use of DL to remove noise components. Surpris-
ingly, a large percentage of students chose the DL approach 
despite the fact that a corresponding noise-free target signal 
may not even be available in this case (as a result, a supervised 
DL approach cannot be applied). 

Another convenient and interactive example can include 
test data that is, for instance, under sampled. Consequently, 
aliasing artifacts will significantly hinder the accuracy of 
an ML/DL system that was trained on well-sampled data. 
The keen reader will agree that such examples can enable 
the instructor to initiate a more focused discussion about 
the data, its deficiencies (if any), and possible ways for 
mitigation, at least from the viewpoint of signal process-
ing. As an added advantage, the analysis and performance 
of the trained ML/DL could possibly be improved. Thus, 
sound knowledge of the concepts in signal processing and 
related areas will enable the students to take a more holistic 
approach (both in terms of the data and model development) 
toward applying ML/DL. 

Of course, more realistic and possibly customized exam-
ples from applied signal processing and other domains [like 
robotics, the industrial Internet of Things (IoT), and so on] can 
be taken, depending on the instructor and focus of the course. 
Finally, it is also worth pointing out that the fundamental 
ideas from signal processing can help in the more efficient 
implementation of DL. An example is that of Fourier CNN 
[27], which exploits the fundamental convolution theorem and 
fast Fourier transform to provide improvements in terms of 
training speed. The aspects of faster and more efficient com-
puting are particularly important in the context of resource-

constrained AI, edge computing in the industrial IoT, and 
embedded ML/DL.

The case in favor of domain knowledge
As alluded to in H3, a consequence of DL-based modeling 
is the potential to make domain (or expert) knowledge ir-
relevant to a large extent. The genesis of this lies in the fact 
that DL aims to learn exclusively from the data. Thus, given 
enough data and computational resources, one should be 
able to possibly solve a large variety of problems without 
an explicit and detailed understanding of the underlying fac-
tors and their complex interactions. Fortunately (or unfortu-
nately), this is not quite true in several applications, ranging 
from health care to multimedia analytics and communica-
tion, where domain knowledge is essential. 

In light of this, it is natural to wonder why domain-agnostic 
modeling such as that enabled via DL appears particularly 
attractive to many students. We have already attempted to 
answer this in the “Why the DL Approach Is Becoming Popu-
lar” section. As discussed, the acquisition of domain knowl-
edge and appreciation of complex details in a sufficiently 
challenging application requires more effort than just a plug-
and-play approach. 

The emergence of domain-agnostic ML models obviously 
helps students simply sidestep domain knowledge yet still 
develop at least an initial model to solve the problem. As an 
undesired consequence, it is likely that students might feel 
that domain knowledge (expressed and analyzed in terms 
of signal processing) is less relevant and, hence, the overall 
learning process can be negatively affected. We, therefore, 
argue that it is crucial to anticipate such consequences and 
take proactive action. The simplest strategy is to discuss easy-
to-grasp examples, and there can be plenty in the realm of 
signal processing.

FIGURE 3. The sample questions used by the author to explicitly connect traditional topics in digital signal processing to ML/DL.
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An example of the effect of display
We consider a single frame F from a compressed video. As-
sume that F is rendered (displayed) on two different displays.  
The first one is a standard display (with peak luminance 

/ )cd m200 2 , while the second has a brighter display (with peak 
luminance 1,000 cd/m2), as  visualized in Figure 4. A question 
of practical interest is as follows: will the visibility of artifacts 
(due to compression) and hence the visual quality be different 
in the case of the two displays for an average human observer, 
and, if so, why? The question refers to the effect of the type of 
display used. The answer would help in several practical ways, 
like designing/improving video compression algorithms, dis-
play characterization, postprocessing, and so on. Thus, the 
goal is to predict the artifact visibility (or equivalent visual 
quality) for an arbitrary frame F.

To develop an ML/DL-based model for this purpose, we 
first need labeled data. In this example, this can be accom-
plished by displaying the same video frame F on the two dis-
plays one-by-one and instructing human observers to rate the 
quality of the rendered frame (on some scale). This needs to 
be repeated for a large number and variety of frames F. While 

it may appear that a DL model can now be developed using 
this labeled data set to predict the quality in a new test frame 
F, there is a problem due to the fact that two different types 
of displays were used. This implies that frame F is actually 
assigned two different subjective quality scores depending on 
the display device. 

In such a situation, one can now either train two separate 
DL models (one for each display device) or explicitly include 
the display type as an input to the DL. In either case, one needs 
to employ explicit modeling (mainly via signal processing 
techniques) to analyze how the input signal (frame F) is affect-
ed by the display characteristics (e.g., luminance clipping, 
color gamut mapping, and so on). Subsequently, we can con-
vert signal F into the corresponding rendered signals Fd and 
Fb, for darker and brighter displays, respectively. This example 
illustrates and reinforces the arguments made in the “Toward 
Explainable ML/DL” and “Emphasizing Signal Process-
ing Concepts in ML/DL” sections, namely that solid domain 
knowledge based on an understanding of the data and its tech-
nical characteristics is essential for the successful deployment 
of ML/DL.

The case of image denoising
The second example is that of image denoising. Once again, 
most readers will be familiar with the topic, where the goal 
is to reduce the noise in a given image signal. The problem 
has been well studied from the perspectives of signal pro-
cessing and DL. Denoising via the former requires explicit 
modeling and certain a priori assumptions. On the other 
hand, a supervised DL approach trains the network with a 
clean signal as the target and can use the idea of residual 
learning [29].

To that end, one aims to minimize a loss between the esti-
mated and target residual images. For assessing the prediction 
performance, measures like mean square error (MSE) or peak 
signal-to-noise ratio (PSNR) between the target and denoised 
image are widely employed. It is generally claimed that DL-
based denoising outperforms traditional methods with a 
lower MSE (or higher PSNR). In our opinion, such conclu-
sions tend to be simplistic in that they ignore the practical 
use-case scenario and instead focus only on MSE (or some 
similar measures). 

This is where domain knowledge can play a crucial role 
toward more grounded comparison and validation strategies. 
Specifically, the purpose of denoising should first be clearly 
defined. If the said purpose is to generate a denoised image 
that is as close as possible to the clean image at the pixel level, 
then the use of MSE would be logical. But in the case where 
the goal is to produce better visually denoised images (as is the 
case in several image denoising applications), then an MSE-
based criterion may not be suitable. In such cases, a perceptu-
ally relevant comparison will be more meaningful.

To explain this, we take the example in Figure 5(a) and (b), 
which illustrates an original and noisy image. In Figure 5(c) 
and (d), we can see that the denoised image from the CNN-
based method [29] has a higher PSNR as compared to the one 

(a)

(b)

FIGURE 4. The same video frame F rendered on (a) a standard display of 
200 cd/m2 and (b) a modern bright display of 1,000 cd/m2 will lead to dif-
ferent artifact visibility. Frame F is taken from a high dynamic range video 
data set [28]. The red square in (b) highlights an area where distortion 
visibility is higher.
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denoised by the well-known  block-matching and 3D filtering 
(BM3D) algorithm [30], which employs a block-matching and 
collaborative filtering process and does not employ ML/DL. 
However, a comparison of the perceptual error maps (PEMs) 
[shown in Figure 5(e) and (f)] reveals that both of the denoised 
images appear almost the same from the viewpoint of percep-
tual error visibility (i.e., both PEMs indicate nearly the same 
probability of error visibility across the denoised images in 
the two cases). 

Hence, one should conclude that BM3D- and CNN-based 
denoising methods lead to a similar performance from a 
perceptual viewpoint for the test image under consideration, 
despite the differences in PSNR values. We note that PEM, 
computed via the HDR-VDP-2 method [11], takes into account 
the viewing conditions and several aspects of the human visual 
system (which are expressed and analyzed in the frequency 
domain) and, hence, a more suitable criterion to visualize the 
perceptual impact of denoising.

(a) (b)

(c) (d)

(e) (f)

FIGURE 5. An image denoising example illustrating the importance of domain knowledge to students. (a) The original image, (b) a noisy image, (c) the de-
noised image using BM3D with a PSNR of 37.89 dB, (d) the denoised image using CNN with a PNSR of 38.15 dB, (e) the corresponding PEM for BM3D, 
and (f) the corresponding PEM for CNN. In (e) and (f), the white and black correspond to the highest and close-to-zero probability of error visibility for an 
average human observer.
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The role of domain knowledge in model  
development and validation
The preceding examples were meant to illustrate the impor-
tance of domain knowledge from different dimensions. The 
first example (Figure 2) pertains to the extraction of relevant 
features (i.e., contrast, color, naturalness, and sharpness) 
for characterizing visual quality. It follows that domain 
knowledge plays a key role in developing more transpar-
ent ML systems by allowing the specification of desired 
features. Moreover, as already emphasized in the article, 
the features can be computed based on mathematical tools 
(related to signal processing, probability and statistics, and 
so on). Consequently, they are amenable to scrutiny from 
the viewpoint of how they are computed and if they are 
relevant to the problem under study. Thus, subsequent im-
provements from both the qualitative and quantitative per-
spectives are possible. 

In contrast, the DL approach utilizes implicit data-
dependent features. Moreover, this usually comes at the 
cost of fine-tuning a large number of hyper parameters. 
Hence, any performance improvements might be a func-
tion of the availability of higher computing power and, 
in turn, better tuning rather than fundamental algorith-
mic changes.

The second example (Figure 4) pertains to data preprocess-
ing using knowledge of the display. The third example (Fig-
ure 5) illustrates the benefits of proper consideration of the 
use-case scenario (i.e., the purpose of denoising the images) 
and the subsequent use of perceptual measure to compare the 
denoising performance. As observed, this leads to different 
conclusions in comparison to using MSE. Other examples of 
exploiting domain knowledge can include the customization 
of the objective function (or pooling step) in ML/DL to bet-
ter reflect the requirements in an application. As emphasized, 
all of this is enabled only through proper modeling of the 
domain knowledge using signal processing and related sys-
tem-centric techniques.

Toward better signal processing education  
in the era of ML
The discussion and examples lead us to important recommen-
dations and conclusions from the perspective of signal process-
ing and ML education.

Recommendations
1) There is no doubt that the DL approach is generally more 

attractive and interesting for students. Taking inspiration 
from this, the pedagogical approach for signal process-
ing and related courses can benefit immensely by fol-
lowing a similarly interactive and hands-on approach. 
Therefore, the existence of two approaches [i.e., system-
centric and DL-based methods (Figure 1)] should not be 
viewed as a zero-sum game. Instead, explicit analysis 
afforded by the former should be emphasized so that stu-
dents can exploit it to improve several aspects of the lat-
ter (including accuracy, explainability, robustness, 

incorporation of domain knowledge, architectural imple-
mentation, and so on).

2) The disadvantage of the black-box nature of the DL 
approach is not merely restricted to not understanding how 
the predictions were arrived at. Perhaps the greater cause 
of concern is the lack of understanding of causality of a 
trained DL model. As emphasized, this is not just related to 
overall prediction accuracy but also the severity of failure 
cases, where the DL model may have learned/used wrong 
or counterintuitive or even unnecessary factors. While 
more transparent modeling enabled by signal processing 
and related domain knowledge may not completely solve 
the problem of causality, it can mitigate such pitfalls. 
Hence, signal processing and ML courses will benefit by 
taking a more holistic approach and exposing the students 
to specific pros and cons.

3) The DL approach owes its ever-growing popularity in part 
to the success it has had in competitions and challenges 
organized at international levels (for example, the 
ImagNet visual recognition challenge; see http://www 
.image-net.org/). While there is no denying that the DL 
approach has achieved lower error rates than competing 
methods on some difficult tasks (in computer vision, 
speech recognition, and so on), such a winner-takes-all 
approach may not always be optimal, especially from the 
viewpoint of student learning. Thus, instead of taking a 
top-down and accuracy-driven approach, it is crucial that 
students are exposed to the nuances and first principles 
(and their commonalities) of signal processing and ML. 
We also argue that ML/DL should be treated as another 
tool and not the only one. Indeed, the drawbacks of both 
the traditional system and DL-based modeling should be 
emphasized, preferably through practical examples in 
both signal processing and ML courses. Finally, the role 
of domain knowledge expressed through signal process-
ing cannot be emphasized enough. Indeed, several edu-
cators and researchers have cautioned against forgetting 
the basic principles of human vision, understanding of 
scene and image formation, causality, reasoning, and so 
on [4], [5].

4) Based on the discussion in this article, we argue that the 
importance of signal processing and related concepts is 
well beyond mere data acquisition. As discussed, funda-
mental concepts learned from the system-centric approach 
can help to improve ML/DL systems from the viewpoint of 
analysis, design, and validation. The discussion and exam-
ples thus provide evidence against hypotheses H1, H2, and 
H3 formulated in the section “The Hypotheses.”

Final remarks
A strong motivation for this article stems from the fact that 
students in today’s world tend to enroll in a large number of 
interdisciplinary courses, possibly across departments. Ac-
cordingly, the pedagogical changes (if needed) should be 
bottom up, i.e., connecting theoretical concepts and ideas 
across courses. In that context, signal processing and ML 
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courses lend themselves to this almost naturally, with some 
effort on the part of the instructor and students. To facilitate 
that, we suggested three hypotheses (H1, H2, and H3). We 
believe that evidence against (or in favor) these will pro-
vide a reasonable baseline to take the discussion forward 
on how signal processing education might evolve in an era 
of ML/DL. 

While the arguments laid out in this article provide some 
evidence against the mentioned hypotheses, we do not claim 
to have completely rejected them. Instead, the examples and 
discussion were primarily geared toward identifying certain 
pedagogical changes that might help both students and instruc-
tors, to provide a better context for signal processing education. 
While the examples drew heavily from the authors’ research 
interests and background, the focus was more on connecting 
the dots between signal processing and ML. Hence, as empha-
sized in the article, the examples and discussion could easily 
be tailored according to the instructor and student background. 
Despite the positioning of the article from a signal processing 
perspective, we strongly believe that the hypotheses, ideas, and 
discussion are equally applicable for teaching relevant courses 
in ML/DL.
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Rethinking Engineering Education
Policy, pedagogy, and assessment during crises

Crises, especially the recent COVID-19 pandemic, have signif-
icantly impacted traditional teaching pedagogy, which often 
relies on face-to-face interactions. It is crucial that various 

stakeholders in education, including administrators, staff mem-
bers, teachers, parents, learners, government officials, and so on, 
adapt to abrupt changes and disruptive transformations caused 
by emergency situations. In this article, we map out approaches 
to stakeholders that underpin teaching and learning effectiveness 
for engineering education (EE) in terms of policy, pedagogy, 
and assessment. The contributions of this article are threefold. 
First, we revisit a framework that enables administrators to de-
vise policies for a secure and safe learning environment. Second, 
we propose Crisis-Resilience Pedagogy (CRP), which highlights 
and integrates important attributes such as adaptability, creativ-
ity, connectivity, diversity, and endurance into pedagogical com-
ponents for effective teaching and learning. Third, we outline 
how to leverage education technology for outcomes assessment. 
To illustrate the challenges, solutions, and possibilities in this 
“new normal,” we utilize and reflect on the results of an obser-
vational study conducted during the pandemic. Our approaches 
can be easily extended to other academic disciplines in other 
institutions to strengthen the resilience of our education systems 
in times of crisis.

Introduction
We live in a natural world characterized by risk, catastro-
phe, and instability resulting from disasters and crises. These 
abrupt events, small or large in scale, natural or anthropogenic, 
have had a profound impact on individuals, organizations, 
communities, and states on a worldwide level. In recent years, 
we have observed a shift in the nature, causes, frequency, con-
sequences, and adversities associated with crises [1], which has 
led to new challenges and growing research interests to under-
stand and manage these events. In the past few decades, crises 
like natural disasters, armed conflicts, social movements, and 
pandemics have severely impacted education in different parts 
of the world, e.g., the 2010 floods in Pakistan, the 2013 Ebola 
outbreak across West Africa, the 2018 civil war in Syria, and 
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the Black Lives Matter movement in the United States [2], [3]. 
In 2020, the COVID-19 outbreak took center stage, forcing the 
world to face the suspension of normal academic activities, 
which has affected more than 1.6 billion learners in more than 
190 countries around the world by August of the same year [4]. 
We now have entered a “new normal,” where education may 
intertwine with sudden disruptions. It is our hope that this ar-
ticle provides some guidelines and reflections to assist various 
stakeholders in sustaining education during an unprecedented 
period and reaching long-term academic goals in future crises.

Without a loss of generality, we examine the key compo-
nents in EE at both the micro and macro levels (see Figure 1) 
to ensure effective teaching and learning during emergencies, 
with our findings applicable to a wide range of disciplines. At 
the micro level, we consider these three components: knowl-
edge (content), delivery (pedagogy), and assessment (outcome). 
At the macro level, we focus on policies that govern these three 
key factors in EE. In the “Crisis Management in EE” section, 
we present a crisis management framework (CMF) for edu-
cation, which is useful for institutions to develop policies to 
provide a safe, productive, and flexible online teaching and 
learning environment that achieves effective educational expe-
riences. In the “Crisis-Resilience Pedagogy” section, we share 
some key resilience attributes that can be incorporated into the 
pedagogy in the delivery of knowledge so that student learning 
remains uninterrupted during adversity. We describe outcomes 
assessment in the “Education Technology and Online Assess-
ment” section, where the area of focus is on how to evaluate 
students’ online learning outcomes fairly in difficult environ-
ments. The interactions among these three components under 
well-conceived policies facilitate effective teaching and learn-
ing during crises.

To support our findings and discussions, we use case 
examples and survey results of teaching and learning experi-
ences from the Chinese University of Hong Kong (CUHK), 
a comprehensive and diverse education institution with more 
than 20,000 students and an active international and exchange 
student body. The university has experienced major crises as a 
result of social movements as well as the COVID-19 pandem-
ic in recent years, which have led to prompt transformations 
of the process of teaching and learning. The outcomes of such 
actions were collected through course and teaching evaluation 
(CTE) surveys. Sharing our findings, along with the reflec-
tions of earlier-defined components with other stakeholders, 
provides insights that may benefit the overall planning and 
lead to a better education in times of crisis.

Crisis management in EE

CMF
As the year-round pandemic has created a severe disruption 
to global education systems, this section introduces a CMF to 
support teaching and learning in various academic disciplines, 
including EE.

A CMF is key to mitigating the traumatic effects of crises 
with timely action as a high percentage (65 out of 82) of crisis 

incidents result in positive outcomes due to crisis interventions 
[5]. Despite a plethora of CMFs, only a few of these are suit-
able for education. In [6], Smith outlines a three-stage frame-
work, which includes a crisis of management, operation of 
crisis, and crisis of legitimation for industries. In the nonprofit 
sector, Salter presented a prevention, preparedness, response, 
and recovery (PPRR) framework for preserving governmental 
operations [7]. Although the PPRR framework was first intro-
duced many years ago, it is still quite applicable in current-day 
crises. Nonetheless, we further contextualize how the use of 
technology and in-depth reflections can make the PPRR model 
more relevant, as shown in Figure 2.

Prevention
Prevention is an indication of any activity that administrators 
undertake to prepare for situations and considers impor-
tant factors in regard to feasibility, fairness, and flexibil-
ity (3Fs). Feasibility is a determination of whether policies 
can be implemented for school members with tangible re-
sources so as to convey teaching content and accomplish 
learning goals. Shifting classes to an online format, for 
example, may be a viable alternative to continuing educa-
tion at school, given adequate Internet resources. Fairness 
pertains to the balance of policies to different stakehold-
ers (e.g., the consistency of examination policies for local, 
international, and exchange students) to ensure educa-
tion quality. Flexibility refers to providing more choices 
to stakeholders during crises. For instance, schools can im-
plement more assessment and credit options, such as “Pass/
Fail,” “Credit/Noncredit,” and so forth to assist teachers 
and students during strenuous situations. By devising poli-
cies with the “3Fs,” administrators can prepare for unex-
pected predicaments. 
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Preparedness
Preparedness is a measurement of whether the stakeholders 
are ready to prevent additional losses, effectively through ex-
amining the scalability, rapidity, and intensity of the incident. 
The scalability of the event reveals the number of stakehold-
ers that are affected by crises. Policy makers can use it to 
allocate and equip resources for the shifted-education mode. 
In addition to scalability, administrators should investigate 
the rapidity of crises so that timely responses can be offered 
to counter further deterioration. For instance, during the 
quickly escalating COVID-19 pandemic, the Medical School 
of CUHK suspended normal learning and amended curri-
cula to address social-distancing measures by staggering 
lab sessions. Policy makers should also assess the intensity 
of crises to address the potential damage that a disruption 
may cause; they can use it to manage the duration of in-
terventions. Detecting the aforementioned measurements in 
the preparedness stage enables policy makers to counter a 
crisis effectively.

Response
In this stage, immediacy, mitigation, and maintenance are the 
major factors that administrators should consider. Immediacy 
refers to the timeliness of deploying the prepared actions. 
Soon after the spread of the COVID-19 pandemic, CUHK 
purchased and introduced new application tools within a 
week and announced the arrangement of online education for 
all school members through the prescribed official channels. 
In the meantime, mitigation is a tactic that is used to resolve 
problems so that school members can adapt the transforma-
tion in an agile manner. For instance, CUHK received positive 
feedback from school members who used its ticketing systems 

for prompt responses to policy, administrative, technical, and 
other inquiries. Maintenance means that administrators should 
ensure that all infrastructure resources are in a functional con-
dition to avoid additional disruptions. For instance, a timeline 
for regular resource checkups alongside updates, such as net-
work resources; disk storage; remote laboratory instruments; 
and so on, is constructive to maintain a smooth online educa-
tion. These three factors help administrators to prevent losses 
from predicaments.

Recovery
Although schools will resume normal operation following 
predicaments, it is crucial for educators to improve education 
through evaluation, refinement, and incorporation. Evalua-
tion tabulates the effectiveness of crisis management policies 
through teacher/student feedback. For instance, we collected 
and reviewed CTE feedback regarding crisis interventions for 
education quality assurance. Upon assessment, administrators 
can refine policies based on the evaluation result to prepare for 
future crises. The refinement process improves crisis-related 
policies using the lessons learned. Incorporation involves inte-
gration of crisis interventions with regular teaching to innovate 
education. One suggestion is that administrators may incorpo-
rate online lessons alongside face-to-face lessons to bolster 
teaching and learning effectiveness under the new normal. 
These three actions allow administrators to improve education 
quality and prepare for future crises.

Reflections on crisis interventions
In this section, we offer some insights about the effective-
ness of crisis intervention gained from our experiences during 
the pandemic.
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1) Additional work is evident for all stakeholders: It is evi-
dent that all stakeholders need more time for preparation, 
response, and reflection, but the online mode also provides 
some good tradeoffs for ensuring safety during the pan-
demic. In CTEs, students reported that they needed extra 
time for completing assignments to achieve remote learn-
ing outcomes. Disruptions in the original curricula have 
increased the workload for teachers, who must prepare 
additional materials for instruction. Educators at the uni-
versity level agree that the assignment and preparation 
workload for online lessons has increased. This has also 
affected technical teams, which must now provide support 
after hours. It is essential for administrators to not underes-
timate these extra workloads and allocate the appropriate 
resources (hardware, software, manpower, and so forth) to 
stakeholders for addressing teaching and learning stress 
and acculturating to the postcrisis norm.

2) A crisis management policy is paramount: Having a crisis 
management policy is invaluable; however, swift and 
appropriate action is helpful to alleviate impacts. Despite 
difficult situations, online education is effective for stu-
dents to demonstrate learning outcomes. Based on more 
than 900 open-ended feedback responses from engineering 
students, it was found that students could save time in traf-
fic and utilize the time to better prepare for courses. This 
also stipulates that a shift of education mode is safe at the 
risk of having face-to-face teaching and learning.
To address these concerns, an effective crisis management 

depends on preparation, the quality of the appropriate infra-
structure, and attainable manpower. A CMF that utilizes PPRR 
enables administrators to overcome chaotic circumstances. 

CRP
In this section, we first introduce the CRP framework, which 
can be adopted to assist teaching and learning during crises. 
This pedagogy is characterized by its resilience to unprec-
edented changes and its applicability to different academic 
disciplines, including engineering. Teachers can incorporate 
CRP into online learning to promote the effective delivery of 
content to students in times of emergency. In a later part of 
this section, we analyze learning outcomes from the successful 
implementations of various courses in terms of online lessons, 
labs, and capstone projects. We consider the online pedagogi-
cal experience and identify some pedagogical challenges. With 
the persistent pandemic situation, we further suggest solutions 
to address these issues.

CRP model
To prepare for unexpected situations, teachers need to incorpo-
rate resilience into pedagogy and devise teaching methods that 
are adaptable to changes quickly. Resilience refers to the abil-
ity to recover rapidly from adversity; it is a continuous process 
of maintaining sustainability in difficult times [8]. To sustain 
teaching and learning during adversity, our previous work [9] 
proposes a CRP model that incorporates resilience into educa-
tion with five attributes: 1) adaptability, 2) creativity, 3) con-

nectivity, 4) diversity, and 5) endurance (see Figure 3). In the 
following sections, we describe how each attribute can be used 
for teaching and learning during crises.

Adaptability
Teachers need to adapt to changes in crises quickly and ef-
fectively. Because traditional ways of teaching are unavailable, 
they should use a flexible pedagogy to continue their teach-
ing. Soon after the outbreak of COVID-19, teachers switched 
from traditional classrooms to online lessons with the use of 
video-conferencing tools such as Zoom and Microsoft Teams 
in response to campus closures. They adopted modified ma-
terials and assessment rubrics for online learning. Making 
adjustments and refinements to traditional pedagogy to suit 
the appropriateness of the situation can help students to sus-
tain learning.

Creativity
Designing creative pedagogy using different online education 
platforms and tools enables students to learn effectively during 
adversity. Teachers are able to design interactive learning ac-
tivities for students, allowing students to learn in an enjoyable 
way. One example of creative pedagogy is gamification, which 
involves the incorporation of game elements into education. 
Teachers can utilize online points, badges, and leaderboards to 
encourage competition among students, enhancing their learn-
ing motivation. Using creative elements in pedagogy can assist 
and promote student learning in times of emergency.

Connectivity
Teachers and students need to stay connected during crises. 
The connection among teachers and students should be mul-
tidirectional instead of unidirectional. Although teachers de-
liver teaching content to students, students should also be able 

CRP

Adaptability
Flexible

Pedagogy That
Adapts to 
Changes

Endurance
Determination to 
Continue Teaching

and Learning

Diversity
A Wide Variety

of Teaching
Methods

Connectivity
Connections

Among
Teachers and

Students

Creativity
Innovative

Pedagogy That
Copes With 

Changes

FIGURE 3. The key attributes in CRP.



178 IEEE SIGNAL PROCESSING MAGAZINE   |   May 2021   |

to provide feedback to teachers. With technological tools like 
BlueJeans and Zoho Meeting, teachers can receive instant re-
sponses from students. Connections among students are also 
important in peer learning. Students need to connect among 
themselves through online collaborative platforms such as 
Apple Classroom, ProofHub, and MindMeister during crises 
so that they are able to work with each other to complete as-
signments and projects.

Diversity
Teachers should deploy a wide variety of teaching approaches 
to cater to learner diversity. Without a physical presence, stu-
dents with special education needs may find 
it difficult to continue learning; therefore, it 
is crucial for teachers to devise a suitable 
pedagogy according to their needs. For in-
stance, it can be difficult for students with 
hearing impairments to understand verbal 
instructions during online lessons in the 
absence of lipreading and assistance from 
classmates. In such cases, teachers may 
create dialogues of video lessons with auto-
mated captioning tools like Communication 
Access Real-Time Translation (CART) and Kapwing. In addi-
tion to online lessons, teachers can prepare other materials, 
such as animations, to facilitate their learning. Leveraging a 
set of diversified learning tools can serve the different needs of 
individual students during times of adversity.

Endurance
To continue teaching and learning during adversity, teachers 
and students must possess endurance—the determination to 
reach goals. Students can develop this capability by setting 
specific and attainable learning goals, such as the number of 
online micromodules enrolled in per month. They can also uti-
lize different apps to stay focused and motivated when they 
learn. For instance, they can use Cold Turkey to block websites 
that are unrelated to study. Nurturing endurance spurs students 
to continue to learn.

Teachers can apply these key attributes in CRP to devise 
suitable pedagogy to promote learning. Online learning embodies 
these attributes well because it is adaptable and allows students 
to learn anywhere and at anytime. As a wide variety of online 
platforms and tools are currently available, creative teaching 
and learning approaches can be devised more easily. Online 
learning can break down the barrier of time and space, con-
necting teachers and students. The diversity of online learn-
ing tools and methods makes learning fun and engaging, thus 
encouraging students to overcome difficulties and keep learn-
ing. It is essential for teachers to consider how best to utilize 
different online learning approaches under the framework of 
CRP when faced with crises.

Applications of CRP in EE
In this section, we suggest how educators can apply CRP to 
EE in times of emergency by referencing some successful 

examples from during COVID-19. A typical engineering cur-
riculum consists of 1) lower-division courses, 2) laboratory 
courses, 3) project-based learning, and 4) upper-division and 
postgraduate-level courses. Students are introduced to rudi-
mentary knowledge and theories in lower-division courses. 
In laboratory courses, they learn practical skills and acquire 
hands-on experience. Through carrying out projects, students 
learn to cooperate with others and develop problem-solving 
skills. Upper-division and postgraduate-level courses encour-
age students to acquire specialized knowledge and skills that 
are useful in their future careers. All of these courses are es-
sential for nurturing students’ ability to integrate knowledge 

and hands-on skills to be successful engi-
neers. However, these courses are being af-
fected differently during crises.

During emergencies, the traditional 
ways of conducting theoretical courses and 
laboratory courses become infeasible due 
to campus closures. Carrying out projects 
is also difficult because students cannot 
easily meet with one another. In view of 
these challenges, teachers can use CRP 
to modify teaching approaches in these 

courses during adversity (see Figure 4).

Lower-division courses
With the adaptability attribute, teachers can encourage stu-
dents to adopt a personalized learning approach and take 
the initiative to learn even when face-to-face classrooms 
are unavailable. A personalized learning approach increas-
es students’ intrinsic motivation and autonomy in learning 
[10]. Students can make use of self-paced online courses 
such as massive open online courses (MOOCs) and small 
private online courses to gain relevant, basic knowledge in 
lower-division courses. These courses contain modulariz-
able content small enough to be absorbed in a short period 
of time that can be easily configured to adapt to differ-
ent situations and scenarios. Teachers can design micro-
modules for students so that they can take a personalized 
learning path by adjusting their pace of learning. For in-
stance, our engineering faculty has produced a series of 
micromodules for foundation courses: “Introduction to 
Engineering Design” and “Engineering Physics.” These 
micromodules have successfully encouraged personalized 
learning. As students spend more time at home in times 
of crisis, they can allocate their time to learn according to 
their preferences. 

Teachers can even integrate self-paced online courses 
with the flipped-classroom approach into their teaching. 
This blended learning model enables students to adapt to 
changes and continue their learning during crises. Teachers 
can apply the diversity attribute when designing content for 
these courses by making use different multimedia to help 
students understand concepts and theories better. Rakhashia 
et al. [11] share their experience of conducting a MOOC, 
which involves fundamental mathematical  knowledge and 
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the engineering concepts used in signal processing. To 
help students understand how signals are reconstructed 
using Fourier series components, they used programming 
software such as MATLAB and Python to create visuals 
and animations. Using multimedia in course design not 
only enables students to gain a better understanding of the 
course material but also makes learning more entertaining 
and engaging.

Laboratory courses
Using the creativity attribute in CRP, teachers and students 
can employ innovative approaches to continue laboratory 
courses during crises. Teachers can consider the use of 
extended reality (augmented/virtual/mixed/extended real-
ity) in constructing virtual and remote laboratories to teach 
practical skills. Virtual laboratories, including CircuitLab, 
LabVIEW, and Labwork, are simulators that allow students 
to carry out tests such as circuit and digital signal process-
ing experiments. Remote laboratories are tools that connect 
digital devices to real laboratories. Teachers and students 
can work together in remote laboratories even when they 
are physically apart. During the pandemic, instructors from 
CUHK creatively utilized an online robotic laboratory to 
teach the robotic course “Robots in Action,” as shown in 
Figure 5. Students used their own computers at home to 
control the robots in the laboratory remotely, successfully 
gaining hands-on skills from the robotic remote laboratory. 
Moreover, the rate of positive feedback on the laboratory 

learning experience during the course was 87.1% [12]. This 
example shows how the creative use of remote laboratories 
can provide fun and engaging learning experiences during 
times of adversity.

Project-based learning
With the connectivity attribute, teachers can encourage stu-
dents to participate in peer learning even though they are 
physically apart. Peer learning is an essential part of online 
learning as it promotes critical reflections through interac-
tions among learners [13]. This is particularly important in 
times of emergency when face-to-face communication is 
hindered. Students can use collaborative platforms, such as 
Google Classroom and Adobe Connect, to carry out group 
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projects. These platforms can eliminate the limitations of 
space and time, allowing students to discuss and share their 
computer screens, documents, and images with one another. 
They promote connectivity among students and help learning 
during crises.

Upper-division and postgraduate-level courses 
With the endurance attribute, teachers should encourage 
students to continue upper-division and postgraduate-level 
courses, although they are more difficult. They also need to 
nurture students’ interest and learning motivation through 
online courses, which are important for lifelong learning 
[14]. Students can take professional online courses, which 
are usually conducted by professors and industry experts, 
and contain up-to-date information. Although these courses 
often require fees and are designed for people working in 
different industries, they are also suitable for students who 
want to challenge themselves. These courses enable learn-
ers to gain a deep understanding of advanced subject knowl-
edge and apply it to solve real-world problems. With these 
courses, students can connect themselves to professionals 
and experts to continue to learn in these advanced courses, 
even when crises occur.

Online pedagogical experiences during  
the COVID-19 pandemic
To evaluate pedagogical experience and challenges for stu-
dents with crisis-supported online learning, we analyzed 
the results of qualitative scores of CTEs collected from 
more than 3,000 responses. In this online survey, the ob-
served scores were similar to the previous years’ in many 
ways; however, students reported some challenges, such as a 
lack of library resources, the unavailability of IT resources, 
and content difficulty due to social distancing. The major-
ity of the open-ended feedback reported online learning to 
be flexible, interactive, clear teaching, portable, time ef-
ficient, and convenient. A small number of users reported 
online learning as being hard to catch up with, baffling, and 
difficult to conduct hardware courses with.  It is suggested 
that stakeholders in EE can employ several intervention 
plans at different levels, which include 1) organizing train-
ing workshops for the teachers and students to familiarize 
themselves with online learning tools, 2) providing students 
with resources such as home lab kits for hardware labs, 3) 
designing flipped-online labs, and 4) leveraging learning 
management systems (LMSs) to plan and manage group 
discussions and online instructions.

Reflections on pedagogical experiences
The pedagogical experience of CUHK during the pandemic 
has reminded educators of several important issues concerning 
teaching and learning when facing adversity:

 ■ The tradeoffs among different learning modes: By and 
large, although the switch to online learning was abrupt, 
our findings show that the feedback about online learn-
ing is on par with face-to-face learning. The key lesson 

for educators is that even though crises may disrupt tra-
ditional teaching and learning activities, they also offer 
valuable opportunities to innovate current pedagogy. 
During the pandemic, we observed that scores of teach-
ers have successfully sustained education through the 
use of online teaching tools such as micromodule and 
online laboratories. In CTEs, many students actually 
found the new learning mode flexible, efficient, and 
more interactive than the traditional learning mode. This 
indicates how crises can pave the way for the implemen-
tation of online learning initiatives, which allows us to 
improve existing pedagogy and enhance teaching and 
learning effectiveness.

 ■ Flexible learning during the new normal: Teachers find 
online learning to be less difficult than previously thought 
due to the use of technology. Given the opportunities 
brought by crises, educators can continue to leverage 
micromodules to enhance flexibility in learning even 
when crises subside as the resources required, such as the 
Internet and editing software, are readily available. 
Because teachers and students are already familiar with 
micromodules, the faculty found that it was effective and 
quick to use micromodules for resilience pedagogy dur-
ing crises. The workload is also acceptable as most 
micromodules can be reused with only a few amendments 
once developed.

 ■ Experiential learning is difficult: Assessing design mod-
els for experiential learning such as hands-on laboratory 
work, practicums, field studies, internships, and so on is 
challenging but still attainable. The deployment of 
remotely accessible labs, recording of hands-on experi-
ments, and delivery of lab kits to the homes of students 
are some remedial solutions that can help to continue lab-
oratory courses during restricted times. According to the 
CTEs, one bottleneck that we encountered during the 
pandemic was the continuation of practical courses. 
Although some faculty members successfully continued 
laboratory courses with the use of additional hardware 
appliances, it should be noted that the hardware require-
ments for these courses are high; therefore, not all teach-
ers were willing to invest time and money in developing 
these online laboratories.
Overall, rather than present an overly optimistic view, 

we prefer to emphasize that the sustainability of the new 
pedagogy depends on a number of factors, including time 
and resources. During times of adversity, teachers can mod-
ify the traditional pedagogy with the attributes of CRP to 
enhance student learning so that students can excel in both 
theoretical and practical courses. Seizing the opportuni-
ties inherent in crises, teachers can motivate students to 
engage in personalized, peer, and experiential learning as 
well as develop students’ appreciation for lifelong learning. 
Nonetheless, as the mode of delivery has changed greatly, 
teachers need to assess student learning outcomes to further 
improve and refine their pedagogy, which we further discuss 
in the next section.



181IEEE SIGNAL PROCESSING MAGAZINE   |   May 2021   |

Education technology and online assessments
Assessments are important for providing accountability to the 
various stakeholders that learners have obtained the proposed 
knowledge and skills. We investigated the use of education 
technology for online assessment in times of crisis. Although 
supervised assessments are often considered more secure, fair, 
and effective, they are not an option when social distancing 
and facility closures are in effect. Given the current state of 
the pandemic, having a fair and objective online assessment is 
vital in measuring the effectiveness of teaching performance 
and learning outcomes. To tackle academic misconduct, on-
line proctoring systems are a key and integral component 
for the constructive evaluation of knowledge acquired by 
learners during crises. Based on the features and technology  
implemented, we compared 12 popular proctoring systems and 
summarized them for stakeholders selecting the most appro-
priate one for their situation.

Online assessments
Online assessments of remote learning are a novel experi-
ence and will require great effort and technology support 
to replace traditional methods. The key challenges include 
limited physical presence, changing the production and de-
livery of assessment materials from teachers, the authentica-
tion of test takers for the remote assessment, and so forth. 
Although there are various ways to conduct online assess-
ments, universities focus mainly on two primary methods: 
online formative and online summative assessments [15]. 
Both types of assessment can be integrated into most of the 
online proctoring systems to provide stakeholders the advan-
tages of safe and effective accessibility. In the following sec-
tions, we compare and summarize the most commonly used 
online proctoring systems

Online proctoring systems
Online proctoring systems based on characteristics such as 
target user, LMS integration, the equipment needed, and so on 
are reported in Table 1. These systems can be further classi-
fied into three main types: 1) automated proctoring solutions, 
which can authenticate test takers using combined technology 
during different stages (e.g., preassessment and ongoing as-
sessments and postassessment) of the online assessment [16]; 
2) browser lockdown systems, which prevent test takers from 
entering other web pages to access information during the ex-
amination; and 3) live proctoring solutions, which involve the 
intervention of a human proctor during the exam or postexam. 
The following sections provide an overview and evaluation of 
these systems.

Evaluation of online proctoring systems
We conducted a review of proctoring systems using a 
qualitative approach and collected data from the follow-
ing three sources: 1) typical proctoring system descriptions 
on the web, 2) published review articles and online review 
reports, and 3) an evaluation of some proctoring systems 
that CUHK has obtained for pilot testing. The cells with 

“N/A” indicate information that we were unable to obtain. 
Although we collected information on proctoring systems 
from these three sources, we also developed a basic evalua-
tion framework for educational institutions to vet the proc-
tor systems [17].

We used seven attributes, i.e., technology, cost, accuracy, 
error incidence, device required, ease of use, and social accept-
ability, in our basic evaluation framework to select proctoring 
systems (see Table 2). We combined these attributes and made 
every effort to standardize the evaluation. Due to limited time 
and manpower during the initial phase of the pandemic, we 
focused only on those systems we deemed most suitable and 
appropriate to our situation. Nonetheless, it is worth mention-
ing that we also actively engaged with our sister institutions 
through the community of practice-sharing events in learning 
more about these systems.

CUHK has developed an evaluation framework during the 
process of identifying and selecting the appropriate online 
assessment proctoring system during crises. The following are 
four basic functions, listed in order of priority, that we used as 
selection criteria:
1) Security: The protection of students’ records and privacy is 

the utmost priority during the vetting process of multiple 
proctoring systems. CUHK has a specific and rigorous data 
policy that emphasizes the importance of keeping students’ 
information private and secure. It also requires end-to-end 
security and that all data encrypted during the whole pro-
cess, which includes pre-assessment, ongoing assessment, 
and postassessment. 

2) Compatibility: The compatibility of the LMS, which needs 
to be consistent with universities’ systems, is vital during 
the vetting process among multiple proctoring systems. 
Although proctoring systems claim to be compatible with 
most LMSs, it is critical for universities to test the systems 
themselves using a gradual increase in capacity to ensure a 
smooth ramp up.

3) Ease of use: This factor assesses the ease of use for the 
various stakeholders, the minimum setup operation for 
online assessments, and the effort required for learners to 
attend remote exams. It contributes to setting up online 
assessments efficiently, especially for those with non-
technical skills. The selected 12 proctoring systems (see 
Table 2) are all manageable and effective for various stake-
holders to set up and join online assessments.

4) Robustness: This function appraises the system’s ability to 
cope with failures and breakdowns. It also assesses wheth-
er the systems could operate stably when accommodating 
a surging volume of test takers in a short period. To imple-
ment robust online assessment, CUHK uses Respondus 
Monitor to ensure sustained operation in peak time.

Reflections on online proctoring systems
The selection and use of online proctoring systems have raised 
many concerns:

 ■ Seamless integration is still elusive: Although most of the 
proctoring systems work independently, many still do not 
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integrate seamlessly with LMSs. Consequently, customiz-
able solutions with specialized integration had to be per-
formed, resulting in additional work for technical staff and 
teachers to ensure a smooth operation.

 ■ Robust data accessibility: Due to network connectivity, 
which varies in different parts of the world, some proctor-
ing systems may have erratic online availability due to a 
lack of data centers or cloud computing capabilities. To 
ensure data availability, it is recommended that universities 

prioritize proctoring systems that connect to a robust global 
ecosystem with a scalable infrastructure.

 ■ Identifying tailor-made options: A good combination of 
options can provide educational institutions with flexible, 
automated, and cost-effective proctoring solutions. 
Stakeholders can refer to the basic evaluation framework 
for assistance with selecting the appropriate proctoring sys-
tem based on their volume of online assessments, the bud-
get, and other requirements [17].

Table 1. The 12 online proctoring systems.

System URL Target User LMS Integration
Equipment 
Needed Feature Summary Types

ProctorU https://bit 
.ly/3eCB0df

Professional organizations 
and academic institutions, 
e.g., Cameron University

Blackboard, Canvas, 
Brightspace by D2L, 
and Moodle

Webcam Automatic proctoring ser-
vice provider and a live 
proctor

Automated and 
live proctoring 
solutions

Examity https://bit 
.ly/2VfbZxd

Companies and higher-edu-
cation institutions, e.g., Indi-
ana University

Blackboard, Canvas, 
D2L, Moodle, and 
Sakai

Webcam Artificial intelligence-(AI)-
powered and integrated 
proctoring solutions

Automated proc-
toring solutions

ExamSoft https://bit 
.ly/2AfeUP4

Corporate environments, gov-
ernments, and higher-educa-
tion institutions, e.g., the 
University of Rhode Island 
College of Pharmacy

Blackboard, Canvas, 
and integration with 
other LMSs

Webcam AI-powered and human-
reviewed proctoring solu-
tions

Automated and 
live proctoring 
solutions

ProctorFree https://bit 
.ly/2BCs0pY

Education institutions and cor-
porate environments, e.g., 
Gracor Languages Services

Blackboard, Canvas, 
Brightspace by D2L, 
and Moodle

Webcam Automatic proctoring ser-
vice provider

Automated proc-
toring solutions

Kryterion https://bit 
.ly/3dyDJmH

Education institutions and 
companies

Blackboard, Moodle, 
and integration with 
other LMSs

Webcam Global testing solutions 
and live proctors

Automated proc-
toring solutions, 
Browser lock-
down systems, 
and live proctor-
ing solutions

Proctorio https://bit 
.ly/3eByLqK

Corporate environments, gov-
ernments, and education insti-
tutions, e.g., the University of 
California, Berkeley

Blackboard, Canvas, 
Moodle, and Bright-
space by D2L

Webcam A comprehensive learn-
ing-integrity platform

Automated and 
live proctoring 
solutions

ProctorEdu https://bit 
.ly/3ezDzvZ

Corporate environments and 
education institutions, e.g., 
Financial University, Sber-
bank

YouTestMe, Moodle, 
MindScroll, and custom 
integration

Webcam AI-powered and human-
reviewed proctoring solu-
tions

Automated and 
live proctoring 
solutions

AI Proctor https://bit 
.ly/3ie1qo2

Education institutions Canvas, Moodle, and 
integration with other 
LMSs

Webcam with a 
minimum 640 × 
480 resolution

Technologically advanced 
online proctoring solution 
and live proctors

Automated and 
live proctoring 
solutions

Proctor-
track

https://bit 
.ly/2CJ6fFz

Education institutions, corpo-
rate certification, and human 
resources pre-employment, 
e.g., Blackboard, Sakai, and 
edX

Blackboard, integration 
with linear time-invari-
ant- and application 
programming interface-
based platforms, Moo-
dle, and integration 
with other LMSs

Webcam with 
minimum 800 × 
600 resolution

Live proctoring using AI Automated and 
live proctoring 
solutions

RecordTS https://bit 
.ly/31he0wv

Corporate environments and 
education institutions, , e.g., 
the Massachusetts Institute of 
Technology

N/A N/A A Windows remote desk-
top session recording soft-
ware that can monitor 
user-activity premises or 
in the cloud 

Browser lock-
down systems

Pearson 
VUE

https://bit 
.ly/2BI9Hj2

Test owners and test takers in 
all industries, e.g., academic 
and admissions and financial 
services

N/A Classroom, com-
puter lab, 
mobile testing, 
and public test 
center

Computer-based testing 
for programs

Browser lock-
down systems

Gradescope https://bit 
.ly/36v5iwG

Education institutions Blackboard, Canvas, 
Brightspace, Sakai, and 
Moodle

N/A AI-assisted grading, grade-
written exams, grade 
homework, and run code 
auto graders

Browser lockdown 
systems

N/A: not applicable.
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Conclusions
Crises in human history have come in different forms, lead-
ing to an accumulation of knowledge on crisis management in 
the form of handling and learning from these difficult events. 
Technological innovations, preparedness, and active response 
plans are important, albeit challenging, for organizations and 
stakeholders in times of crisis. During such events, the con-
tinuation of student education is the prime objective for all dis-
ciplines in the field of EE. 

We outlined the CMF in engineering curriculum, which 
can be utilized to craft and design a systematic plan that deter-
mines policies for the planning, delivery of content, and assessment 
of learning outcomes during crises. We propose a CRP, which 
incorporates resilience attributes to sustain teaching and learn-
ing in various courses. We further examine the role of educa-
tional technologies for fair and objective learning assessment 
using different online proctoring systems. To improve online 
engineering courses during the COVID-19 pandemic, we 

Table 2. A comparison of technologies in online proctoring systems.

Category Technology Cost Accuracy Error Incidence Device Required
Ease of 
Use

Social  
Acceptability Proctoring System

Biological 
biometrics

Face recognition Medium High Pose and lighting 
variations

Camera High Medium ProctorU, Examity, Exam-
Soft, ProctorFree, Kry-
terion, Proctorio, AI 
Proctor, and Proctortrack

Knuckle scan Low Medium Capacity of knuck-
le databases

Camera High High Proctortrack

Fingerprint  
recognition

Low High Scanner Fingerprint 
scanner

High High N/A

Iris scan High High Lighting Camera Medium Low N/A
Retina scan High High Diseases, e.g., cat-

aracts
Camera Low Low N/A

Behavioral 
biometrics

Keystroke  
analytics

Low Medium Typing speed Keyboard High High Examity and Kryterion

Voice recognition Low Medium Background noise Microphone 
and telephone

High Medium ProctorU, ExamSoft, Kry-
terion, Proctorio, AI Proc-
tor, and Proctortrack

Gesture Low Medium N/A Camera High High ProctorU and AI Proctor
Signature Low Medium Imitation Optic pen and 

touch panel
High High N/A

Technology-
enhanced 
approach

Lockdown  
browser

Low Low N/A Computer High High ProctorU, Examity, Exam-
Soft, Kryterion, Proctorio, 
AI Proctor, Proctortrack, 
RecordTS, and Pearson 
VUE

Exam analytics 
dashboard

Medium High N/A Computer High High ProctorU, ExamSoft, Proc-
torFree, Proctorio, Procto-
rEdu, and Proctortrack

Robust reporting Low High N/A Computer Medium High ProctorU, ExamSoft, Proc-
torFree, Kryterion, Procto-
rio, ProctorEdu, and 
Proctortrack

Remote desktop 
session recording

Low Medium Lighting Camera High Medium ExamSoft, ProctorFree, 
ProctorEdu, AI Proctor, 
Proctortrack, and 
RecordTS

Video/record of 
the exam

Low High Lighting Camera High Medium ProctorU, Examity, Exam-
Soft, ProctorFree, Kry-
terion, Proctorio, 
ProctorEdu, AI Proctor, 
Proctortrack, and 
RecordTS

Others Customized 
launch process

High High N/A N/A Low Medium ProctorU, Examity, Kry-
terion, Proctorio, Procto-
rEdu, AI Proctor, 
Proctortrack, RecordTS, 
and Pearson VUE

Live proctoring High Medium Qualification Camera Low High ProctorU, ExamSoft, Kry-
terion, Proctorio, ProctorE-
du, AI Proctor, and 
Proctortrack

N/A: not applicable.
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administered a survey, identified challenges, and suggested 
interventions by reflecting on our experiences. The integra-
tion of the aforementioned components can deliver competent 
learning standards in EE that meet different learning objec-
tives, all while providing educators, students, and other stake-
holders with effective online teaching and learning alternatives 
during difficult situations. In times of crisis, great challenges 
present great opportunities that often lead to great outcomes 
for the “new normal.”
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Proper Definition and Handling of Dirac Delta Functions

D irac delta functions are introduced 
to students of signal processing in 
their sophomore year. Quite under-

standably, Dirac delta functions, which 
should be more aptly called general-
ized functions or distributions, cannot 
be comprehensively given to a young 
audience at the beginning of their engi-
neering education. Instead, a simplified 
and abridged definition is presented, and 
the implications of the definition in sig-
nal processing problems are illustrated 
through numerous examples, following 
the footsteps of Oppenheim et al. [1], [2]. 

Students typically learn the properties 
by developing an affinity through their 
usage. As their mathematical knowledge 
matures, some students tend to notice 
inconsistencies related to the sugar-
coated definitions and start questioning 
the mathematics behind them. Unfortu-
nately, the inquisitive questions of these 
students are rather difficult to answer 
convincingly due to the lack of sources 
on generalized functions at the level of 
undergraduate/graduate engineering 
students. The goal of these notes is to 
scratch the sugarcoating a bit and provide 
the basics of generalized functions, lim-
its, and derivatives as well as their usage 
in signal processing problems. 

As an illustrative example, the Fou-
rier transform of ( ) ,f t 1=  which is 

( ) ( ),F 2rdX X=  is typically “proven” 
with the application of the inverse Fourier 
transform on ( ) ( ).F 2rdX X=  However, 
according to the standard calculus results, 
the Fourier transform of ( ) ,f t 1=  which 
is ,{ } ( )exp j t dt1F X= -

3

3

-
#  ceases to 

exist for any X in the ordinary calculus 
sense. The plot further thickens when the 
Fourier transform of the unit step func-
tion, sign function, and Hilbert transform 
discussions come into play. 

Generalized functions enable these 
calculations, and they are indispensable 
tools of our field, yet their proper under-
standing, true definition, and the whys 
and hows about their usage require an 
update to our classical calculus knowl-
edge. Such an update, however incom-
plete, is the topic of this lecture note. 

Relevance
Paul Dirac is one of the giants among 
the great physicists of the early 20th 
century. It is a compliment to our pro-
fession that he received his first aca-
demic degree in electrical engineering 
(from the University of Bristol). He said, 

I owe a lot to my engineering train-
ing because it [taught] me to tolerate 
approximations. Previously to that I 
thought . . . one should just concen-
trate on exact equations all the time. 
Then I got the idea that, in the actual 
world, all our equations are only 
approximate. We must just tend to 
greater and greater accuracy. In spite 

of the equations being approximate, 
they can be beautiful
The function ( )td  introduced by 

Dirac is now called the Dirac delta 
function; it provides great computa-
tional and conceptual advantages in cal-
culations involving diverging integrals, 
which is the case for some Fourier inte-
grals. In addition, the inclusion of the 
Dirac delta function to the calculus of 
ordinary functions enables the differen-
tiation of discontinuous (generalized) 
functions, paving the way toward a con-
sistent analysis of highly practical engi-
neering problems, such as circuit theory 
problems involving switches, unified 
treatment for mixed random variables 
(random variables that are both discrete 
and continuous), and more.

Despite the abundance of topics uti-
lizing Dirac delta functions in signal 
processing, there are only a few sources 
explaining the true nature of the approx-
imation involved to the signal process-
ing audience [3, Appendix I], [4]. This 
column is prepared to answer some of 
the questions on generalized functions, 
illustrate their properties, and show 
their proper usage in some signal pro-
cessing calculations.

The intended audience of this lecture 
note includes instructors, researchers 
with an inclination toward theory, and 
graduate students getting close to ful-
filling their course requirements, say, 
studying for Ph.D. qualification exams.  
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For beginners to the topic, the author 
suggests following the mainstream 
track and developing an affinity for the 
topic first by following the wisdom of 
Oppenheim et al. [1], [2]. 

The conventional treatment aims to 
develop a working knowledge of Dirac 
delta functions, which is a notewor-
thy goal on its own, and gives a good 
“first-order approximation” to the top-
ic. Science and engineering are built 
upon successively refined approxima-
tions, which Paul Dirac has alluded 
to as a potential source of beauty.Es-
pecially in engineering, approximate 
models/explanations are important, 
beyond their aesthetic value, because 
of the basic need for working tools 
and methods for the solution of practi-
cal problems. 

In a typical undergraduate course, 
the need for a work ing solut ion  
may easily overshadow the need for a 
comprehensive theoretical treatment.  
As an example, the first course in 
physics studies the mechanics of 
inclined planes, stacked boxes with 
high/low friction surfaces, and so 
on. If we consider two stacked wood 
blocks on a flat surface, we may say 
that the weight of top block is bal-
anced with the normal force so that 
the net force on the block is zero. 
This comment can be used to explain 
why two blocks do not coalesce into 
a single piece. 

However, if we think about the 
nature of the normal force, it is typi-
cally explained as a direct consequence 
of Newton’s laws of motion (the law 
of action–reaction), and Newton’s laws 
are brought upon students axiomati-
cally in relation to Newton’s empirical 
observations. Hence, the contents of 
Physics 101 correctly predict that two 
stacked wood blocks will not coalesce 
into a single piece without saying 
much about the mechanism behind 
the process! 

In spite of that, Physics 101 students 
learn to use and appreciate the benefit 
of defining a normal force through a 
series exercises and problems, just like 
a beginner signal processing student 
working his or her way through a set 
of exercise problems on Dirac delta 

functions. Much later, physicists with 
advanced degrees learn that the macro-
scopic normal force is due to the Pauli 
exclusion principle applied to bulk mat-
ter [5]. Needless to say, such a compre-
hensive answer is of no help to Physics 
101 students working on problems with 
inclined planes. 

The situation is almost analogous for 
signal processing students and Dirac delta 
functions. Hence, the author believes that 
exposure to Dirac delta functions beyond 
the conventional Oppenheim et al. level 
can be safely postponed to graduate stud-
ies. Of course, professionals in the field, 
lecturers, and researchers can refer quick 
learners with inquisitive questions to this 
lecture note, disregarding the suggest-
ed timeline.

Prerequisites
The only prerequisites are a working 
knowledge of freshman calculus, basic 
signal processing theory, and a keen eye 
for detail.

Problem statement 
The main focus is on the han-
dling of integrals, limits, and deriva-
tives that do not exist in the standard 
calculus sense. The Fourier trans-
form of u(t) (the unit step function), 

( ) ( ) ( ) ,expF u t j t dtX X= -
3

3

-
#  i s  t h e 

prime illustrative example. This Fourier 
transform integral requires the evaluation 
of ( )cos t dt

0
X

3#  and ( ) ,sin t dt
0

X
3#  

which are known to diverge according 
to standard calculus results. However, 
signal processing textbooks express the 
result as { ( )} / ( )u t j1F rdX X= +  [1, 
Table 4.2]. 

The appearance of (·)d  function 
hints at the divergence of the Fourier 
integral to an experienced eye, but 
this is not the case for all divergent 
integrals. The Fourier transform of 

( )tsgn  (the sign function) requires the 
evaluation of ( ) ,sin t dt

0
X

3#  which is 
a divergent integral. However, text-
books state that { ( )} / .t j2sgnF X=  
The main problem is that the trans-
form pair for both functions is not 
valid in the ordinary calculus sense 
but valid in the generalized sense or in 
the sense of distributions. This article 
studies the definition of generalized 

functions and their use in signal pro-
cessing problems.

Solution 
We first present some basic definitions 
to better explain the upcoming defini-
tions of the Dirac delta and other gener-
alized functions.

Function
Functions, as defined on the set of real 
numbers, map real numbers to real 
numbers. Functions are interpreted 
in a pointwise manner. For example, 

( )t t2z =  maps t0  in ( , )3 3-  to t0
2  in 

[ , ).0 3

Linear functional
A functional is a mapping from the 
space of functions to real numbers. For 
example, the area functional defined as 

{ } ( )t dtArea z z=
3

3

-
#  maps the func-

tion ( )tz  to the numerical value of the 
total area under ( ).tz  A functional that 
satisfies the linearity conditions (homo-
geneity and additivity, [1, Sec. 1.6.6]) is 
called a linear functional. Our focus is 
entirely on linear functionals. Hence, 
the term functional should be interpret-
ed as a linear functional in these notes. 

It is easy to verify that the functional 
{ },Tf $

{ ( )} ( ), ( ) ( ) ( ) ,T t f t t f t t dtf _ G Hz z z=
3

3

-
#

 (1)

sat isfies the conditions of linear-
ity. We use the notations { ( )}T tf z  and 

( ), ( )f t tG Hz  interchangeably to denote 
functionals. { ( )}T tf z  explicitly shows 
that the “input” ( )tz  is mapped to an 
“output,” i.e., a real number. The func-
tion ( )f t  appearing in the subscript of 

{ ( )}T tf z  characterizes the mapping. As 
an example, the area functional, previ-
ously given, can be realized by substitut-
ing ( )f t  with 1 in (1). The second notation 

( ), ( )f t tG Hz  is handy in many calculations 
due to the symmetry between ( )f t  and 

( )tz  in (1).
We refer to the function ( )tz  as 

the test function. Hence, { ( )}T tf z  
is said to operate on test functions. 
Generalized functions or distribu-
tions, shown as ( ),f t  are built upon 
the “observed” action of functionals 
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on the test functions, as described in 
the next section. 

Generalized equality
If functions ( )f t  and ( )tg  induce the 
same functional, that is, { ( )}T tf z  and 

{ ( )}T tg z  yield identical outputs for all 
test functions, then functions ( )f t  and 

( )tg  are said to be equal in the gener-
alized sense. We show the generalized 
equality with the notation of ( ) ( ):f t g t

( )g
=

 
( ) ( ) ( ), ( ) ( ), ( )

 ( ).

f t g t f t t g t t

tfor all

( )g
+G H G Hz z

z

= =
 

 (2)

To make the statements precise, we 
need to specify the function class for 
the test functions and also give a dis-
cussion of Lebesgue integration. We 
refer readers to [6, Ch. 6] for a readable 
account of these topics. As readers can 
intuitively appreciate, the class for the 
test functions should be sufficiently 
“rich” and “refined” so that the general-
ized equality in (2) presents practically 
useful results. For example, if the test 
functions are limited to constant func-
tions, say, ( ) ,t cz =  where c is a real 
number, the generalized equality in (2) 
only implies the equality of the area 
under two functions, which is of rather 
limited value.

In this text, we assume that the test 
function class is infinitely differentia-
ble functions in the form of Gauss-
ian functions:

( )
( )

,expt
t

2
1

2
, 2 2

2

z
rv v

n
= -

-
n v c m  (3)

with arbitrary mean n  and spread .v  
We take this class of test functions as 
sufficiently rich and refined so that the 
generalized equality ( ) ( )f t g t

( )g
=  in (2) 

becomes practically meaningful. [The 
class of infinitely differentiable test func-
tions with rapid decay at infinity is called 
the Schwartz space [6], [7]. The Hermite 
functions, an orthonormal and complete 
set for ,L2  are members of this class. 
Laurent Schwartz received the Fields 
Medal in 1950 for building the math-
ematical foundation (theory of distribu-
tions) to the framework of Dirac.] 

Dirac delta function
We consider a specific functional, called 
the evaluation functional, that maps the 
function ( )tz  to ( ),t0z  i.e., the evaluation 
functional maps ( )tz  to the value of its 
sample at .t t0=  The evaluation functional 
is clearly linear, but it is not possible to ex-
press the evaluation functional in the form 
of (1) with a regular ( )f t  function. In spite 
of that, we substitute ( )f t  with ( )t t0d -  
in (1) and use the following as a formal 
definition of the evaluation functional:

 
( ) ( ) ( )

 ( ).

t t t dt t

tfor all

0 0d z z

z

- =
3

3

-
#

 
(4)

We do not question the existence of the 
( )td  function at this point but treat it as 

a regular function for now. Readers may 
interpret (4) as another notation for the 
evaluation functional from which some 
properties, such as the linearity of the 
functional, can be readily observed. Our 
goal is to derive some properties of ( ),td  
given in Table 1, first and then answer 
existence questions.

Verification of the multiplication 
property
Let’s study the product of ( )f t  and 

( ),t t0d -  which is ( ) ( )f t t t0 0d -  ac-
cording to the multiplication property 

( ) ( ) ( ) ( )f t t t f t t t
( )g

0 0 0d d- = -  in Table 1. 
To prove the generalized inequality, we 
need to show that ( ) ( ), ( )f t t t t0G Hd z- =

( ) ( ), ( )f t t t t0 0G Hd z-  for all test func-
tions. We focus on the term on left-hand 
side, ( ) ( ), ( ) ,f t t t t0G Hd z-  first:

 

( ) ( ), ( ) ( ) ( )

( )

( )

( )

( )

( ) ( ) .

f t t t t f t t t

t dt

t t

t dt

t

f t t

( )

( ) ( ) ( )

( )

a

t f t t

b

0 0

0

0

0 0

G Hd z d

z

d

z

z

z

- = -

= -

=

=

3

3

3

3

z z

-

-

=
t

t

t

#

#
 

 

(5)

In line (a), ( ) ( ) ( )t f t tz z=t  is introduced, 
and ( )tzt  is assumed to be a member of 
the test function class due to its “rich-
ness” and “fineness.” Line (b) is due to 
the definition of evaluation functional.

The r ight side of equal ity ( )f t

( ) ( ) ( )t t f t t t
( )g

0 0 0d d- = -  can be worked 
out as follows:

 

( ) ( ), ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ).

f t t t t

f t t t t dt

f t t t t dt

f t t

0 0

0 0

0 0

0 0

G Hd z

d z

d z

z

-

= -

= -

=

3

3

3

3

-

-

#
#

 

(6)

Combining (5) and (6), we have

( ) ( ), ( ) ( ) ( ),

( ) ,  ( ),

f t t t t f t t t

t tfor all

0 0 0G H G
H
d z d

z z

- = -
 

 
(7)

wh ich  concludes  t he  p roof  of 
( ) ( ) ( ) ( ).f t t t f t t t

( )g
0 0 0d d- = -

An important takeaway message 
from the proof of the first property is 
not the final result but the proof pro-
cedure followed for the generalized 

Table 1. The properties for the Dirac delta function and its derivatives.

Basic

Multiplication ( ) ( ) ( ) ( )f t t t f t t t
( )g

0 0 0d d- = -  

Scaling ( ) ( )at
a

t1( )g

d d=  

Sifting ( ) ( ) ( )f t t t dt f t0 0d - =
3

3

-
#  

Convolution ( ) ( ) ( )t f t f t
( )g

)d =  

Advanced

Multiplication where

and

( ) ( ) ( ) ( ) ( ),

( ) ( ), ( ) ( )

k
nf t t t f t t t

dt
d t t dt

d f t f t

1( )
( )

( ) ( )

( ) ( )

n
g

k

k

n
k n k

n

n
n

n

n
n

0
0

0 0d d

d d

- = - -

= =

=

-` j|

Scaling where are zeros of

. .,

( ( ))
( )

( ), ( ),

( ) , { , , , }i e

t f tf t
f t

t t

f t k K

1

0 1 2

( )

k

g

kk

K

k

k

1

f

d d= -

= =

= l
|

Sifting ( ) ( ) ( ) ( )f t t t dt f t1( ) ( )n n n
0 0d - = -

3

3

-
#  

Convolution ( ) ( ) ( )f t t f t( )
( )

( )n
g

n) d =  
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equality. The equality sign 
( )g
=  appearing 

in ( ) ( )f t g t
( )g
=  denotes the equality of 

the functionals for every member of the 
test function class. It is, indeed, very dif-
ferent from the ordinary equality sign.

A rather silly, but memorable, anal-
ogy given by one of my instructors can 
be repeated as follows: Assume that you 
are in a county fair, and there is a contest 
to identify an unknown animal. Con-
testants are allowed to ask only yes/no 
questions. After several rounds of ques-
tions, you learn that the animal is green, 
lives in a lake, is capable of leaping sig-
nificant distances, and quacks. Given 
this information, can you say that the 
animal is a frog? 

If you have asked a sufficiently large 
number of informative questions (the 
richness and fineness of the question 
class), you can be pretty sure that the ani-
mal is a frog! However, there is always a 
possibility that the animal is of another 
species that is capable of imitating a frog 
quite closely! If you are only interested in 
the actions of this animal, though, there 
is no harm in calling the animal, irre-
spective of its genus, a frog or a general-
ized frog! 

Analogous to the story, a general-
ized function ( )f t  is characterized by 
its response to the probing test func-
tions ( ).tz  Generalized functions are 
declared equal if they give the same 
response to all test functions.

The major mishap in the treatment 
of the impulse function or Dirac delta 
function in all signal processing texts is 
the usage of an ordinary equality sign = 
instead of a generalized equality sign .

( )g
=  

This carries the potential of interpreting 
equations involving ( )td  in a pointwise 
manner, which is prone to inconsisten-
cies and calculation mistakes.

Verification of the scaling property
Let’s verify the scaling proper ty 

( ) ( / ) ( ),at a t1
( )g

; ;d d=  given in Table 1. 
The left side of the equality can be writ-
ten as

 

( ), ( )

( ) ( )

| |
( )

| |
( )

.
a

at t

at t dt

u
a
u du

a
1 0

u at

G Hd z

d z

d z
z

=

= =

3

3

3

3

=
-

-
` j

#

#

 

(8)

Here, ( / )u az  is assumed to be in the test 
function class, as in the proof of the first 
property, and we have treated ( )atd  as a 
regular function and changed the inte-
gration variable from t to u = at without 
any due diligence (more on this later).

The r ight side of the equality 
( ) ( / ) ( )at ta1

( )g
; ;d d=  can be written as

 

( ), ( ) ( ), ( )

( )
.

a
t t

a
t t

a

1 1

0

G Hd z d z

z

=

=
 

(9)

Equations (8) and (9) imply the general-
ized equality of ( ) ( / ) ( ).at a t1

( )g
; ;d d=  

Note that setting a 1=-  in the scaling 
property gives ( ) ( ),t t

( )g
d d= -  which is 

the evenness of function ( )td  in the gen-
eralized sense.

Generalized limit
Up to this point, we have averted the 
existence questions on the ( )td  func-
tion but, rather, focused on its proper-
ties. Now, we present a limit argument 
for the construction of the Dirac delta 
function. The described limit operation 
is called the generalized limit. In stan-
dard textbooks, the Dirac delta function 
is introduced as the pointwise limit of 
ordinary functions, which is not the cor-
rect definition and the root cause of con-
fusion in many discussions.

The generalized limit of ordinary 
functions ( )f tn  is said to be a general-
ized function ( ),f t  if

 ( ) ( ) ( ) ( )lim f t t dt f t t dt
n

n z z=
"3 3

3

3

3

- -
# #  

 (10)

is satisfied for all test functions ( ).tz  
We denote the generalized limit as 

( ) ( ).f t f t
( )

n
g
"

The Dirac delta function can be 
given as the generalized limit of ordi-
nary ( )f tn  functions defined as follows:

 ( )
,

.
,

f t
n

n
t

n
0

2 2
other

n
1 1e e

e=
-)  (11)

From Figure 1, it can be seen that ( )f tn  is 
a pulse of duration /ne  centered around 

.t 0=  The area under ( )f tn  is unity for 
all n. With the running assumption that 
the test functions ( )tz  are sufficiently 

smooth, we can expand the function into 
the Taylor series around :t 0=

 
( ) ( ) ( ) ( )t t t0 0 0

2
h.o.t.

( )2
2

z z z z= + +

+

l
 
(12)

Here, h.o.t. refers to the higher-order 
terms of the Taylor series expansion. 
As ,n " 3  the support of function 

( ),f tn  as shown in Figure 1, approaches 
zero. Hence, the product ( ) ( )t f tnz  can 
be approximated with the first term 
of the Taylor series expansion, which 
is ( ) ( ),f t0 nz  for large enough n. As a 
result, we have the equality of

 ( ) ( ) ( )lim f t t dt 0
n

n z z=
"3 3

3

-
#  (13)

in the usual calculus sense. Given the gen-
eralized limit definition, this concludes 
the proof of ( ) ( )f t t

( )
n

g
" d  as .n " 3

The definition of the Dirac delta 
function as a generalized limit of 
 ordinary functions is important in prac-
tice. Whenever in doubt, it is possible 
to replace ( )td  with the ( )f tn  functions 
in (11), solve the problem of interest, 
and then calculate the ordinary limit 
of the final result as .n " 3  Readers 
are invited to do this calculation to 
have another verification of the scaling 
property in Table 1. Furthermore, the 
generalized limit definition establishes 
a connection with the “physical” inter-
pretation of the Dirac delta function as 
a very-short-duration pulse, but readers 
should always keep in mind that the 
limit operation for getting shorter and 
shorter pulses is not an ordinary point-
wise limit operation, as introduced in 
many undergraduate texts, but a gener-
alized limit operation.

The Dirac delta definition by a gen-
eralized limit argument is not specific to 

( )f tn  given by (11). Readers can examine 
[1, Problem 1.38] for some other ordi-
nary functions for which the generalized 
limit is ( ).td  The basic requirement is 
the construction of a unit area function 
sequence with diminishing support. It 
can be verified that both

 
( ) ( / )

( ) ( )
( )

exp

sin
nt

g t n nt

h t n
t
nt

2
2 and

sinc

n

n

2

r

r

r

= -

= =
 

(14)
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tend to ( )td  as n " 3 in the general-
ized sense.

Figure 2 shows the sketch of 
( ) ( )nth t nsincn =  for different n values. 

The main lobe of the function ( )h tn  gets 
narrower and taller as n increases, yet, 
however large n is, there exist two sid-
elobes, with a peak value of about one-
fifth the maximum value, on both sides 
of the main lobe. Furthermore, by fixing 
t to a nonzero value, say ,t0  and evaluat-
ing ( ),lim h t

n
n 0

"3
 we get

( ) ( ),lim limsinh t
t

nt1
n

n
n

0
0

0
r

r=
" "3 3

which does not exist in the usual sense. 
Hence, ( )h tn  does not approach ( )td  in 
a manner that is as described in many 
undergraduate textbooks but approach-
es in the generalized sense or, equiva-
lently, in the weak limit sense [8].

Generalized derivative of the  
Dirac delta function
The derivative of the Dirac delta function 

/ { ( )}d dt td  is called the doublet function 
[1, Sec. 2.5.3]. It is no surprise that the 
differentiation operation in / { ( )}d dt td  is 
in the generalized sense, that is, accord-
ing to the introduced generalized limit 

definition. To understand this operation, 
let’s examine the response of / { ( )}d dt td  
to a test function:

 

{ ( )} ( ) ( ) ( )

( ) ( ) ( )

( ) .

dt
d t t dt t t

t
dt
d t dt

dt
d t

0( )

t

t

t 0

1

d z d z

d z z

z

=

- =-

=-

3

3

3

3

3

3

- =-

=

- =

#

#  
 

(15)

This calculation is based on the applica-
tion of integration by parts to the leftmost 
side of (15). Since the test function ( )tz  
is a member of scaled and shifted Gauss-
ian functions, the term ( ) ( )t t t

t
d z 3

3

=-

=
 

vanishes. The other term, the inte-
gral term of the integration-by-parts 
 operation, can be expressed using the 
sifting property of the Dirac delta func-
tion. Hence, we get the defining relation 
for the doublet function as

 ( ) ( ) ( ).t t dt 0( ) ( )1 1d z z=-
3

3

-
#  (16)

Here, ( )t( )nd  and ( )t( )nz  refer to the nth 
derivative of the Dirac delta and test 
function ( )tz  in the generalized and 
ordinary sense, respectively.

At this point, readers should be 
rightfully uncomfortable with the 
application of integration by parts with 
an integrand containing a Dirac delta 
function, as in (15). To the comfort of 
these readers (and also the ones still 
uneasy about the change of variables 
from t to u = at in the scaling property 
discussion), we present an alternative 
proof path and suggest replacing ( )td  
with the ordinary function ( )h tn  given 
in (14). The integration-by-parts opera-
tion with the substituted ( )h tn  function 
is now well defined, and the final 
result becomes

 
{ ( )} ( )

( ) ( ) .

dt
d h t t dt

h t
dt
d t dt

n

n

z

z

=

-

3

3

3

3

-

-

#

#
 

(17)

By taking the limit of both sides in 
(17) as n " 3 and using the generalized 
limit definition in (10), we reach the 
conclusion that, since ( ) ( ),h t t

( )
n

g
" d  we 

have / { ( )} ( ).d dt h t t
( ) ( )

n
g 1" d  The formal 

definition of ( )t( )1d  becomes the rela-
tion in (16).
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FIGURE 2. The convergence of hn(t ) = nsinc(nt ) to d(t ). Convergence is not in the pointwise sense! 
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Sifting and other properties for high-
er-order derivatives of the Dirac delta 
function are given in Table 1. These 
results can be called advanced results, 
since they require more than a basic 
understanding of the generalized func-
tions. Many signal processing textbooks 
avoid these properties since even a par-
tial justification of these results requires 
much more than a pictorial or pointwise 
justification of the ( )td  function.

Derivative of the unit step function
By replacing ( )h tn  with an arbitrary 
regular function f(t) in (17), we get

 
{ ( )} ( )

( ) ( ) .

dt
d f t t dt

f t
dt
d t dt

z

z

=

-

3

3

3

3

-

-

#

#
 

(18)

Substituting f(t) in (18) with the unit step 
function u(t) yields

 

{ ( )} ( ) ( )

( )

( )

( ) ( )

( ), ( ) ,

dt
d u t t dt u t

dt
d t dt

dt
d t dt

t t

0
( )a

0

3

G H

z

z

z

z z

d z

=-

=-

= -

=

3

3

3

3

3

- -
# #

#  
  
  
  
 (19)

where ( ) 03z =  is used in l ine 
(a), which is due to the test func-
tion class definition. The leftmost 
and rightmost sides of (19) imply that 
( / ) ( ), ( ) ( ), ( )d dt u t t t tG H G Hz d z=  for all 

test functions. This statement is equiva-
lent to ( / ) ( ) ( ).d dt u t t

( )g
d=

From this discussion, we reach the 
important conclusion that an ordinary 
function, such as u(t), when interpreted 
as a generalized function, has deriva-
tives of all orders. In other words, func-
tion u(t) is not a differentiable function 
due to its discontinuity at ,t 0=  but it is 
differentiable for all orders in the gener-
alized sense. 

Application examples
A number of examples are presented to 
illustrate the application of the Dirac 
delta function. Our goal is to relate the 
applications to the generalized defini-
tions on functions, limits, derivatives, 
and so on.

Example 1
Assume that a sequence [ ]y n  is formed 
by down-sampling [ ]x n  by two: 

[ ] [ ].y n x n2=  It is well known that the 
spectrum of [ ], ( )y n Y e j~  is related to 
the spectrum of [ ], ( ),x n X e j~  according 
to the relation [2, Sec. 3.6.1]

 ( ) .Y e X e X e
2
1j j j

2 2= +~
~ ~

r+^ ^^ `h hhj   

(20)

In this example, we would like to 
illustrate the validity of this expres-
s io n  fo r  [ ] ( ).expx n j n0~=  T h i s 
exercise is quite trivial from the time-
domain-processing viewpoint. Since 

[ ] [ ] ( ), [ ]expy n x n j n y n2 2 0~= =  is a 
complex exponential whose frequency is 
doubled after down-sampling. The fre-
quency-domain representations of [ ]x n  
and [ ]y n  are ( ) ( ),X e 2j

0rd ~ ~= -~  
and ( ) ( ),Y e 2 2j

0rd ~ ~= -~  respec-
tively. This example aims to verify this 
basic result directly from (20).

It should be remembered that the 
expressions for ( )X e j~  and ( )Y e j~  
are periodic with ,2r  as the notation 
implies. Let’s check the validity of (20) 
for ( ) ( )X e 2j

0rd ~ ~= -~ :
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B
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In line (a), we have used the scaling 
property of the Dirac delta function 
from Table 1. In line (b), the expres-
sion is rewritten to cover only a single 
2r  period, following the convention. 
As expected, the final result indeed 
matches the earlier result found from 
time-domain considerations.

Comment
The spectrum after a down-sampling oper-
ation is typically found with a frequency-

domain sketch that indicates the support 
of ( )X e j~  and its translated versions (see 
[2, Fig. 3.18]). Such a sketch is also useful 
to illustrate the aliasing concept. We see 
that when the spectrum involves a Dirac 
delta function, a sketch is not sufficient 
to explain the vanishing 1/2 coefficient in 
(20). We need to bring the scaling property 
of the Dirac delta function into play.

Example 2
Let X be a random variable with the 
probability density function (pdf) ( ).f xX  
The problem of interest is the pdf of the 
random variable .Z X2=

This is a standard probability prob-
lem, and we would like to illustrate the 
utility of the Dirac delta function in this 
calculation:
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(21)

Line (a) is the marginalization opera-
tion. Line (b) includes a factorization 
for the joint density in terms of the 
conditional density. Line (c) introduces 
Z X2=  into the calculation. Line (d) is 
due to the evenness of the Dirac delta 
function, ( ) ( ).x xd d= -  Line (e) uses 
the scaling property of Table 1 (from 
the “Advanced” section of the table). 
It is important to note that the integra-
tion variable in line (d) is x. Hence, for 
the function ( )x z2d -  appearing in the 
integrand, x is the variable, and z is just 
a constant value. Therefore, the scal-
ing property of the Dirac delta function 
should be utilized by treating function 
x z2 -  as a function of the variable x. 
Line (f) is due to the sifting property.

Comment
We observe that the inclusion of the 
Dirac delta in the operational calculus 
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results in significant shortening of 
the algebra. Note that the calculation 
given in (21) exactly mimics a simi-
la r calculation given for the dis-
crete random variables (probability 
mass functions). 

More specifically, line (c) of (21) 
can be interpreted as follows: Let’s 
assume that z 100=  and consider the 
integral ( ) ( ) .f x z x dxX

2d -
3

3

-
#  Since 

the function ( )z x2d -  is equal to 
zero when ,z x2!  this integral corre-
sponds to checking all ( , )x 3 3! -  
to find the ones satisfying the condi-
tion x z 1002 = =  and “summing up” 
f(x) values corresponding to these 
x values. 

The main difficulty for instructors 
is not this interpretation but explain-
ing the factor / ,z1 2  which is the 
Jacobian term arising during the func-
tional mapping of random variables. 
The Jacobian term does not arise in 
discrete random variables, and the 
“summing up” interpretation becomes 
exactly correct; that is, for the prob-
ability mass functions, the sum of the 
probability values for x that satisfy the 
condition z x2=  gives the probability 
of z. With the inclusion of the Dirac 
delta function in the calculus, the 

/ z1 2  term in line (f) of (21) effort-
lessly comes out with the application 
of the scaling property.

Example 3
Let X and Y be two random variables 
with the joint pdf ( , )f x y,X Y . The prob-
lem is the derivation of the pdf for the 
random variable Z X Y2= + :
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(22)

Line (a) is the “summing up” operation 
of ( , )f x y,X Y  values for which the condi-
tion z x y2= +  is satisfied. In line (b), 
the order of integration is exchanged, 
that is, the inner integration is with 

respect to x after the exchange. Line 
(c) is due to the evenness of ( ).xd  Line 
(d) is due to the sifting property. Line 
(e) is the factorization of joint density 
in terms of the conditional density of X 
given Y.

Comment
By changing the integration order in 
line (c), the variable for the function 

( )z x y2d - -  becomes x. After the 
order change, the variables z and y are 
treated as constants, and we have the 
result in line (d). If the inner integral in 
line (c) were with respect to the variable 
y, that is, if we do not change the order 
of integration, we need to use result 
given in Example 2 to evaluate the inte-
gral involving ( ).z x y2d - -

Example 4
Show that the Fourier transform of 

( )f t 1=  is ( ) ( ),F 2rdX X=  where 
( ) { ( )} ( ) ( )expF f t f t j t dtFX X= = -

3

3

-
#  

is the Fourier transformation operation. 
Freshman calculus results state that 

( ) ( )expf t j t dtX-
3

3

-
#  does not con-

verge for any X for ( ) .f t 1=  Hence, 
the well-known Fourier transform 
pair of ( )1 2) rd X  should be inter-
preted in the generalized sense. To 
show { } ( ),1 2F

( )g
rd X=  we need to 

examine the response of the function 
( ) { }F 1FX =  to a test function ( ):U X
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(23)

Line (a) is due to the linear functional 
definition. Line (b) results from the 
definition of the Fourier transform. 
Line (c) changes the integration order. 
Line (d) is due to the inverse Fourier 
transform relation for ordinary, abso-
lutely integrable functions [1]. [With 
the assumed test function class (Gauss-

ian functions), the Fourier integral, that 
is, { ( )} ( ),F tz U X=  is guaranteed 
to converge in the ordinary calculus 
sense.] Line (e) is due to the fact that 

( ) ( ) ,t dt0
t
zU = #  that is, the area of the 

time-domain function, is the value of its 
Fourier representation at .0X =  Lines 
(f) and (g) are different ways of writing 
line (e). Considering the leftmost and 
rightmost sides of (23) and remember-
ing the generalized equality definition 
in (2), we can conclude the proof of 

{ } ( ).1 2F
( )g
rd X=

Comment
In a first course, this relation is given 
by finding the inverse Fourier trans-
form of ( ),2rd X  i.e., { ( )},2F 1 rd X-  
without mentioning the existence of 
the Fourier integral for ( ) .f t 1=  The 
Fourier integral for ( )f t 1=  diverges 
in the usual sense but exists only in 
the generalized sense or in the sense 
of distributions.

Example 5
Show that the Fourier transform of 

( ) ( )f t tsgn=  is ( ) / .F j2
( )g

X X=

The Fourier transform of ( )tsgn ,

( ) ,t
t
t

1
1

0
0

sgn
2
1

=
-
'

can be written as the integral

 { ( )} ( ) ,sint
j

t dt2sgnF
0

X=
3#  (24)

which does not converge in the ordinary 
calculus sense. Hence, as suspected, 

{ ( )}tsgnF  is equal to /j2 X in the dis-
tribution sense. It is interesting to note 
that there is no Dirac delta function 
in the expression { ( )} / ,t j2sgnF

( )g
X=  

immediately giving away that the equal-
ity is in the generalized sense.

Let’s define a regular function 
( )gT X  as ( ) ( )sing t dtT

T

0
X X= =#

( ) / .cos T1 X X-^ h  We would like to 
take the limit of ( )gT X  as T " 3 with 
the goal of evaluating the transform in 
(24). To do that, we need to examine 
the response of ( )gT X  to a test func-
tion ( ),U X  that is, ( ), ( ) ,gTG HX U X  and 
then evaluate the limit of the response 
as .T " 3

For a fixed T, ( ), ( )gTG HX U X  can be 
expressed as
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(25)

As ,T " 3  the equal ity in (25) 
approaches

 ( ), ( )

, ( ) ( ),
( )

.

lim

lim cos

g

T1
T

T

T

G H

G H G H

X U X

X
U X X

X
U X
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-

"

"

3

3 
(26)

From (26), it is clear that we need to 
s h ow  ( ), ( ) /( )lim cos T 0

T
G HX U X X =

"3
 

to conclude the proof. Since the test 
function class is the class of Gauss-
ian functions, the function ( ) /U X X is 
absolutely integrable in ( , )3 3!X -  
in the Cauchy principle value sense. 
(The Cauchy principle value integral 
is required due to the singularity of 

( ) /U X X at 0X =  [4, p. 359]). 
We know from Dirichlet conditions 

that the Fourier transform of an abso-
lutely integrable function exists in the 
regular sense [1, p. 290]. An impor-
tant but less-known fact by the signal 
processing audience is the Riemann–
Lebesgue lemma, stating that, if x(t) is 
absolutely summable, then ( )X 0"X  
as " 3X  [3, p. 278]. 

Armed with this knowledge,  
( ), ( ( ) / )cos TG HX U X X  can be interpret-

ed as the real part of the { ( ) / }F U X X  
with the t ransform-domain var i-
able T. Then, due to the absolute 
integrability of ( ) /U X X and the Rie-
mann–Lebesgue lemma, we have 

( ), ( ( ) / ) .lim cos T 0
T
G HX U X X =

"3
By multiplying both sides of (26) 

by /j2  and replacing ( )gT X  with 
( ) ,sin t dt

T

0
X#  we reach
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t dt
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 (27)

stat ing that { ( )} /t j2sgnF
( )g

X=  via 
the generalized limit definition given 
in (10).

Comment
A first course in signal processing needs 
to sugarcoat some definitions and even 
some calculations due to pedagogi-
cal reasons. Among these, the Fourier 
transformations of the sign function and 
unit step function stand out. The sign 
function, ( ),tsgn  is clearly not abso-
lutely or square summable; hence, its 
Fourier transform cannot be given in 
the usual sense. 

In spite of that, to show this result, 
some instructors calculate the Fourier 
transform of a regular, absolutely sum-
mable function ( ) ;t esgn t; ;a-  evaluate 
the limit of the result as ;0"a  and 
then present the limit as the Fourier 
transform of ( ).tsgn  The end result 
of this calculation matches the cor-
rect result, but the intermediate steps, 
especially the one involving the move-
ment of the limit operation inside of 
the Fourier transform integral in the 
final step, are highly questionable. It 
should be clear at this point that any 
treatment of integrals diverging in the 
ordinary calculus sense requires some 
extraordinary effort. The definition 
of generalized functions is an effort 
along this line.

As expected, the Fourier transform 
of u(t) is also only valid in the gen-
eralized sense. By expressing u(t) as 

( ) ( ( ) ) /u t t 1 2sgn= +  and applying the 
linearity of the Fourier transform, we 
can show { ( )} / ( ).u t j1F

( )g
rdX X= +

Example 6
Find the inverse unilateral Laplace 
transform of ( ) / ( ).X s s s 32= +

This problem is typically solved by 
partial fraction expansion, that is,

 ( ) ,X s
s

s s
s3

3
3

92
=
+
= - +

+
 (28)

followed by inverse Laplace transfor-
mation via transform-pair recognition. 
The final answer of this example is 

( ) ( ) ( ) ( ) ( ).expx t t t t u t3 9 3( )1d d= - + -  
Our goal is to derive the same result 
via some alternative paths to illus-
trate the usage of generalized dif-
ferentiation.

Let’s first express X(s) as ( )X s =
( ),s X sp

2  where ( )X sp = / ( ).s1 3+  The  

inverse Laplace transform of ( )X sp   
is ( ) ( ) ( ).expx t t u t3p = -  Hence, the  
inverse Laplace transform ( )X s =

( )s X sp
2  becomes ( ) ( / ) ( ).x t d dt x tp

2 2=  
We can verify this result by remember-
ing that the unilateral Laplace trans-
form of ( / ) ( )d dt x t  is ( ) ( ).sX s x 0- -  
Note that ( )x tp  and its derivatives are 
all zero at t 0= -  due to the existence 
of the u(t) term in ( ).x tp  Let’s evaluate 
the first two derivatives of ( )x tp  and 
compare the result with the answer by 
partial fraction expansion:
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(29)

Line (a) of both equations is due 
to the product rule for differentia-
tion and the generalized equality of 
( / ) ( ) ( ).d dt u t t

( )g
d=  Line (b) is due to 

the multiplication property of the Dirac 
delta function from Table 1. Note that 
the equalities given in (29) are not ordi-
nary equalities but valid only in the gen-
eralized sense. The absence of the ( )g

=   
symbol can be a source of inconsisten-
cies and confusion, yet we go back to 
the conventional notation and symbols 
in this last example.As a final exercise, 
let’s redo the calculation by evaluating 
the second derivative of ( ) ( ) ( )x t f t g tp =  
with ( ) ( )expf t t3= -  and ( ) ( )g t u t=  

(continued on page 203)
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Alternative Data Paths for the Cascaded  
Integrator–Comb Decimator

A lternative data paths for the cascaded 
integrator–comb (CIC) decimator 
are presented that can be derived 

upon applying one or two modifications. 
In the first modification, the integrator–
comb pair that surrounds the downsam-
pling register is replaced by a simpler 
Integrate-and-Dump (ID) block that per-
forms the same decimation task. The re-
sulting data path is referred to as CIC-ID. 
In the second modification, the remain-
ing comb filters are replaced by a time-
multiplexed comb, and the resulting data 
path is referred to as CIC-ID-TMUX. 
Compared with a classic N-stage CIC, 
CIC-ID saves one arithmetic unit and one 
register, whereas CIC-ID-TMUX uses 
the same number of registers but trades 
( )N 1-  arithmetic units for a simpler 
two-to-one multiplexer. Both CIC-ID and 
CIC-ID-TMUX perform slightly fewer 
arithmetic operations per output sample 
because of the absence of the comb fil-
ter absorbed by the ID block. Pruning 
formulas for both architectures are pre-
sented along with implementation details.

Introduction
Because of its regularity and simple re-
configuration capability, the CIC deci-
mator is employed in many sampling 
rate-conversion processes, e.g., in multis-
tandard receivers or radio-frequency-to-
baseband sigma–delta analog-to-digital 

converters. The CIC decimator is de-
rived after applying multirate identities 
to a recursive finite-impulse response 
filter with transfer function

 ( ) ,H z
z
z

1
1 R N

1=
-
-

-

-

c m  (1)

moving the comb part ( )z1 R N- -  to the 
low-rate section [1]. In (1), R is the inte-
ger downsampling factor, and N is the 
number of CIC pairs.

On the axis of angular frequencies 
normalized to the sampling rate, ,~  the 
magnitude response ( )H e j~  obtained 
from (1) upon replacing z e j= ~  is

 ( )
[ / ]

[ / ]
,

sin
sin

H e
R

2
2j

N

~

~
=~ c m  (2)

which has useful nulls on multiples of 
/ ,R2~ r=  allowing it to be employed 

in the first stage of a multistage decima-
tion chain. This is so because, in that 
stage, whose downsampling factor is R, 
the decimation filter must have a narrow 
passband from 0~ =  to / ,RP~ r=  and 
it must have stopbands centered on mul-
tiples of / ,R2~ r=  each with a band-
width of / ,RP2r  where P is the product 
of the downsampling factors of the sub-
sequent stages (filters of the other stages 
attenuate at the frequency regions not 
covered by these stopbands).

Because of the shape of ( )H e j~ , 
there is a droop on the passband, but 
this can be corrected by other filters 
in the decimation chain or with spe-
cially designed passband-droop com-

pensators, such as the ones described 
in [2]. On the other hand, the worst-
case attenuation of ( )H e j~  occurs at 

/ / ,R RP2~ r r= -  i.e., at the left edge 
of the first stopband. There are meth-
ods to improve that worst-case attenua-
tion, such as those discussed in [3]–[6], 
that modify H(z) and result in useful 
CIC-based filters. Yet a practical and 
prevalent way consists in increasing 
N accordingly, which preserves the 
simplicity of the CIC system. Figure 
1(a) shows an example of ( )H e j~  for 
R 16=  and ,P 4=  where we observe 
that ( )H e j~  improves its worst-case 
attenuation by about 34 dB, from −17 
dB to −51 dB, upon changing N from 1 
to 3, whereas the passband droop wors-
ens by only about 0.5 dB ( )( H e j~ is 
scaled by /R1 N  to normalize 0 dB at 

) .0~ =

The CIC decimator is used in many 
scenarios because of its compact archi-
tecture, which also has the capability 
for easy reconfiguration of the downs-
ampling factor R. Figure 1(b) shows the 
register transfer level (RTL) data path 
of the CIC decimator (assuming two’s 
complement arithmetic), including input 
and output interface registers. The data 
path consists of N integrators working 
at the high-rate section, where registers 
remain enabled every clock cycle, and N 
comb filters working at the low-rate sec-
tion, where registers are enabled every 
Rth clock cycle. In that figure, B is the 
input wordlength and ( )logK RN

2=  
Digital Object Identifier 10.1109/MSP.2021.3052752 
Date of current version: 28 April 2021
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is the internal word length growth nec-
essary to prevent overflow in the integra-
tors, as detailed in [1]. Since the value 
K may be undesirably large, some least 
significant bits can be truncated at the in-
put of every integrator and comb, which 
reduces the hardware utilization at the 
expense of introducing error at the filter 
output. The controlled way to do this trun-
cation, suggested by Hogenauer in [1], is 
called pruning. Locations for pruning 
are illustrated in Figure 1(b) with small 
squares, where Bk  denotes the number of 
pruned bits at the kth position.

If some latency is permitted, through-
put can be improved by inserting pipeline 
registers. In this case, we have to multiply 
H(z) by a delay term ,z D-  where D is the 
sum of the number of pipeline registers 
placed at the high-rate section, plus R 
times the number of pipeline registers op-
erating at the lower rate. As an example, 
Figure 1(c) shows a fully pipelined CIC 
data path. We can see that pipelining for 
integrators comes for free, and one extra 
register is needed per comb stage.

The interest in this article is not 
modifying H(z) to improve the magni-
tude response as in the aforementioned 
methods of [3]–[6]. Instead, we are fo-
cused on modifying the RTL data path 
of the CIC decimator such that it can 
be implemented with fewer hardware 
resources, preserving a compact form 
without needing to increase the process-
ing rate at the high-rate section.

The suggested data paths
The suggested data paths are derived 
from two basic observations. The first 
observation is that the classic ID unit, 
shown on the left side of Figure 2(a), 
operates in the same way as the single 
integrator–comb pair shown on the 
right side of Figure 2(a) (see, for ex-
ample, [7]). It performs the accumula-
tive summation of a stream of samples 
and releases the final result after R clock 
cycles while clearing the accumulation 
register, thus starting a new accumula-
tion without affecting the input stream. 
The clear is synchronous; thus, the dis-
ciplined synchronous design methodol-
ogy is not affected because that clear 
does not involve any combinational 
loop. Therefore, we can replace the in-

nermost integrator–comb pair of the 
CIC architecture by a simpler ID unit, 
eliminating the need for the comb.

The second observation applies for 
the remaining ( )N 1-  cascaded comb 
units. Since input and output registers of 
the cascaded interconnection of comb 
filters are enabled every Rth clock cy-
cle, there is enough time to multiplex 
a single comb unit if R is sufficiently 
larger than ( )N 1- , so we can use a 
single time-multiplexed comb instead of 
several combs. We do not use that ap-
proach for the integrators because they 

are already operating at the high-rate 
section, and the time-multiplexing ap-
proach would reduce hardware utiliza-
tion at the cost of further increasing the 
rate of operation.

The time-multiplexed comb unit 
shown on the left side of Figure 2(b), de-
rived after applying the method of [8], 
has the same impulse response as the 
cascaded comb units shown on the right 
side of Figure 2(b) if the multiplexer is 
switched accordingly and the registers 
inside the loops are enabled ( )N 1-  
times per each enable of the input and 
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output registers. In other words, the sig-
nal enable 2 (“en2”) is asserted every R 
clock cycles, whereas the signal “en1” is 
asserted ( )N 1-  times per each asser-
tion of “en2” so that the comb unit per-
forms its ( )N 1-  cascaded operations. 
The signal “en-mux”’ remains asserted 
until reaching the first pulse of “en1” to 
hold the proper routing from the input, 
and then it is deasserted to route the 
feedback path.

Figure 2(c) illustrates an example of 
this timing for a case with ( )N 1 3- =   
and .R 8=  The control signals “en1” 
and “en2” are generated at the clock 
edge = 0 and become effective for their 
corresponding registers at the clock 
edge = 1. At that edge, the input regis-
ter samples new data, and its currently 
stored data, already processed by the 
subtractor, are sampled by the subtrac-
tor’s register. At the next two pulses of 
“en1,” the multiplexer routes the feed-
back path, and the final result of the 
comb is sampled by the subtractor’s reg-

ister at the clock edge = 5. After that, 
the multiplexer routes the data stored 
in the input register, and the subtractor 
processes them. At the clock edge = 9, 
the final result stored in the subtractor’s 
register is released to the output regis-
ter, the input register samples new data, 
and the subtractor’s register samples the 
value already processed by the subtrac-
tor, starting the process again. No mat-
ter how we distribute the pulses of “en1” 
between the pulses of “en2,” the shortest 
interval between pulses of “en1” lasts m 
clock cycles, where m is the integer part 
of / ( ) .R N 1-  Therefore, to have the 
time-multiplexed comb unit still operat-
ing at a lower rate than that of the in-
tegrators, we must have ( )R m N 1$ -  
with at least .m 2=

The time-multiplexed comb filter has 
three pipeline registers (one at its input, 
one at its output, and one at the subtrac-
tor’s output). Hence, it introduces an extra 
delay of R clock cycles in comparison with 
the cascaded interconnection of comb fil-

ters, which has two pipeline registers (one 
at its input and one at its output).

The proposed RTL data paths are ob-
tained by applying either the first one or 
both of the two preceding observations. 
The system that results from applying 
the first observation alone, shown in Fig-
ure 3(a) without pipelining, is referred to 
as CIC-ID. The system that results from 
applying both observations, shown in 
Figure 3(b) with pipelined integrators, is 
referred to as CIC-ID-TMUX. Notice that 
the storage of the ID block must remain in 
the feedback path. Again, places for prun-
ing are illustrated with small squares, and 
Bk  denotes the number of pruned bits at 
the kth position. In both systems, the first 
( )N 1-  integrators remain as in the clas-
sic architecture, and the innermost inte-
grator–comb pair now becomes the ID 
block. The other combs, now ( )N 1-  in-
stead of N, are left unrolled in the CIC-ID 
system, and they are rolled up as a single 
time-multiplexed unit in CIC-ID-TMUX.

Pruning in the suggested  
data paths
Equations to compute Bk  for the CIC-
ID and CIC-ID-TMUX architectures 
are presented next. These formulas, 
developed in “Obtaining Equations for 
Pruning,” follow the same criterion em-
ployed by Hogenauer in [1], namely, that 
the variance of the error due to prun-
ing inside the data path must remain 
bounded by the variance due to output 
pruning. In these formulas, Fk

2  denotes 
the “variance error gain” of the kth error 
source, computed as the sum of squared 
impulse response coefficients of the 
filter seen by that source in front of it 
(for sources at the high-rate section, the 
downsampler must be placed at the out-
put of that filter via multirate identities). 
Note that Fk  denotes the square root of 
Fk

2 . These formulas are also given in 
terms of ,B N2  the number of bits pruned 
at the output of the system, which is 
known beforehand.

In the CIC-ID architecture, we can 
compute Bk  as

log logB B Fk N N k2 2
1

2 2 1
1

2= + --6 @ (3)

for , , , .k N1 2 2 1f= -  In the CIC-ID-
TMUX architecture, , , ,B B BN1 2 f  can 
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be computed with (3), but for the time-
multiplexed comb unit, we have BN 1 =+  

.B BN N2 2 1f= =+ -  Hence, we only 
need to compute BN 1+  additionally.  
We use

,log logB B FN N N
N

c1 2 2
1

2 2 1
1

2= + -+ -
-6 @   

 (4)

where Fc  is the square root of ,Fc
2  which 

in turn is defined as the collective vari-
ance error gain of the comb section, 
given by

 .F Fc k
k N

N
2 2

1

2 1

=
= +

-

/  (5)

Table 1 intuitively contrasts the 
numbers of pruned bits Bk  in the pro-
posed data paths and in the classic CIC 
data path for three values of R consid-
ering a 16-bit input and 16-bit output, 
with N 5=  cascaded stages. They are 
grouped as pruning for integrators (PI), 
pruning for combs (PC), and pruning 
for output (PO). We observe that Bk  
remains practically the same for the in-
tegrators in all of the architectures. In 
the CIC-ID architecture, the number of 
pruned bits for the first comb block is 
the number of pruned bits for the sec-
ond comb block of the CIC. This occurs 
because the first comb unit of the CIC is 
no longer needed, as it is absorbed by the 
ID unit. In CIC-ID-TMUX, the number 
of pruned bits of the time-multiplexed 
comb is the number of pruned bits of the 
comb block placed at the middle of the 
cascade in the CIC. This occurs because 
the pruning of the time-multiplexed 
comb is the same in the whole cascade 
of combs, and its contribution to the out-
put error is equally divided among all of 
the comb stages.

Advantages and limitations
The main advantage of the proposed data 
paths is the reduction of utilized hard-
ware. Table 2 summarizes the hardware 
utilization and computational complexity 
for the classic CIC, CIC-ID, and CIC-ID-
TMUX data paths. Compared with the 
classic CIC, CIC-ID-TMUX preserves 
the same number of registers but trades 
( )N 1-  subtractors for a simpler two-to-
one multiplexer, whereas CIC-ID saves 
one subtractor and one register. Both 

architectures perform a slightly lower 
amount of arithmetic operations per out-
put sample because of the absence of the 
comb absorbed by the ID unit.

Table 3 presents the estimated chip 
area utilization of these data paths, 
given by (6)–(8) shown at the bottom of 
this page.

In (6)–(8), Wk  is the bus width at the 
kth pruning position, and , ,Amux faA  and 

ffA  are the respective VLSI-Technology 
Silicon Compiler area costs for a sin-
gle-bit 2:1 multiplexer, full adder, and 
flip-flop, which, for a 1-μm CMOS pro-
cess, are . ,A 0 0012 mmmux

2=  fa =A  
. ,0 0086 mm2  and ff .A 0 0037 mm2=  

according to Meyer-Baese [9]. We have 
considered N 5=  stages and a large 
value , ,R 1 024=  as in the CIC system 
included in the decimator HSP43220 by 
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Intersil [10]. Additionally, we included 
an example with N 5=  stages and 

,R 8=  which is the smallest possible 
value of R for which the time-multi-
plexed comb still operates at a lower rate 
than the integrators. For both examples, 
we consider a 16-bit input and 16-bit 
output. In the CIC-ID-TMUX system, 
there must be an additional control for 
the time-multiplexed comb, but it only 
needs a little extra logic added to the 
overall decimation control and does not 

involve important complexity in a deci-
mation chain where the data path con-
sumes most of the hardware utilization. 
Thus, complexity of control logic is not 
included. We observe savings between 7 
and 10% for the CIC-ID system in com-
parison to CIC, and savings between 20 
and 30% for CIC-ID-TMUX in compar-
ison to CIC.

We have also mapped the CIC, CIC-
ID, and CIC-ID-TMUX architectures 
to the field-programmable gate array 

(FPGA) Intel chip EP4CE115F29C7, 
popular among the academic com-
munity (available in the kit DE2-115), 
using the aforementioned values for 
R, N, and input/output wordlengths. 
In all cases, pipelined integrators were 
employed (except for the ID block). 
We used Quartus Prime 18.0 Lite as 
a synthesis tool, and for static timing 
analysis we employed the Quartus 
Prime Timing Analyzer under the 85 
C model (the worst-case scenario). For 
power consumption estimation, we 
simulated a test signal passing through 
these systems and used the Quartus 
Prime Power Analyzer to perform that 
estimation with the switching activity 
data generated from the simulations. 
The test signal, a chirp with linearly 
increasing frequency from 0 to the Ny-
quist limit, was provided to the systems 
for 199 μs. Simulations were done with 
ModelSim Intel FPGA Starter Edition 
10.5 b, and the systems were clocked at 
50 MHz, a clock frequency supported 
by all of them.

Consider that the error at the kth noise source due to prun-
ing has a uniform probability distribution with a width of 
E 2k

Bk=  Thus, the variance of the error is /E 12k k
2 2v = =

/ .2 12B2 k  The total variance contributed by the kth error 
source is ,F,T k k k

2 2 2v v=  i.e.,

 ,F2,T k
B

k
2

12
1 2 2kv = ^ h  (S1)   

where Fk
2  is the variance error gain for the kth error 

source. The total variance, ,T
2v  is

 ., , , ,T T k
k

N

T k
k

N

T k
k N

N

T N
2 2

1

2
2

1

2

1

2 1

2
2

integrators’sources combs’sources
output source

v v v v v= = + +
= = = +

-

| | |  (S2)

Letting the total variances of every error source from 
k 1=  to k N2 1= -  contribute at most ( )N1 2 1-/  of the 
variance at the output source, we have

 , , , .k N1 2 2 1for, ,T k N T N
2

2 1
1

2
2 f#v v = --  (S3)

Using (S1) in (S3) with the consideration that the output 
source error sees a unitary gain in front of it, i.e., N2 ,F 1=2  
we obtain

 , , ,F k N2 2 1 2 2 1forB
k N

B
12
1 2 2

2 1
1

12
1 2k N2 f# = --^ ^h h  (S4)

We can easily derive (3) from (S4).

For the time-multiplexed comb unit, we have BN 1 =+

.B BN N2 2 1g= =+ -  Hence, we can compute Bk  for 
, , ,k N1 2 f=  using (3), and we only need to compute 

BN 1+  additionally. For the ( )N 1-  error sources at the comb 
section, grouped in (S2) as “combs’ sources,” we define

 .,c T k
k N

N
2 2

1

2 1

v v=
= +

-

|  (S5)

Applying the constraint (S3) to the collective variance of 
the comb section, we can write

 .,c N
N

T N
2

2 1
1

2
2#v v-

-  (S6)

Using (S1) in (S6) and considering B BN N1 2 g= = =+ +  
,B N2 1-  we can write

 ,F2c
B

c
2

12
1 2 2N 1v = +^ h  (S7)

where Fc
2  is given in (5). Using (S7) in (S6) and also using 

(S1) in (S6) with the consideration that ,F 1N2
2 =  we have

 .F2 2B
c N

N B
12
1 2

2 1
1

12
1 2N N1 2# -

-+ 2^ ^h h  (S8)

We can easily derive (4) from (S8).

Obtaining Equations for Pruning

Table 1. A comparison of the number of pruned bits for N = 5, a 16-bit input, and a 16-bit 
output. 

 CIC CIC-ID CIC-ID-TMUX
R =  8 PI: {0, 3, 5, 7, 8} 

PC: {9, 10, 11, 12, 12}
PO: {15}

PI: {0, 3, 5, 7, 8}
PC: {10, 11, 12, 12}
PO: {15}

PI: {0, 3, 5, 7, 8}
PC: {11}
PO: {15}

R =  128 PI: {2, 9, 15, 21, 26} 
PC: {29, 30, 31, 32, 32}
PO: {35}

PI: {2, 9, 15, 21, 26}
PC: {30, 31, 32, 32}
PO: {35}

PI: {2, 9, 15, 21, 26}
PC: {31}
PO: {35}

R =  1,024 PI: {3, 13, 23, 31, 40} 
PC: {44, 45, 46, 47, 47}
PO: {50}

PI: {4, 13, 23, 31, 40} 
PC: {45, 46, 47, 47}
PO: {50}

PI: {4, 13, 23, 31, 40} 
PC: {46}
PO: {50}

PI: pruning for integrators; PC: pruning for combs; PO: pruning for output.   
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Table 4 summarizes the hardware 
cost in logic elements (LEs),  estimation 
of maximum frequency of operation, 
estimation of power consumption, and 
latency in the system’s response. We 
observe a reduction in the number of 
LEs in the proposed architectures. In 
particular, the CIC-ID-TMUX sys-
tem consumes some bits of embedded 
random-access memory (RAM) be-
cause the chain of registers of its time-
multiplexed comb is mapped to this 
resource. As a consequence, fewer LEs 
are required in comparison to the other 
systems. Besides, we observe a greater 
latency for that system because of the 
inherent pipelining of its comb section, 
and higher power consumption because 
of the higher switching rate of the time-
multiplexed operation. The CIC-ID 
system also has a reduced number of 
LEs and does not use RAM resources. 
However, it cannot take full advantage 
of pipelined integrators because the 
ID block must remain nonpipelined. 
Therefore, its maximum frequency of 
operation is slightly lower, and its power 
consumption may grow if the data path 
bus becomes too large (which makes the 
ID block too wide).

In general, the proposed approach 
has the following limitations:

 ■ The storage of the ID block should 
remain in the recursive path to pre-
serve the equivalence illustrated in 
Figure 2(a). This can make that 
block slower in comparison with a 
pipelined integrator. If that periodi-
cally cleared accumulation is imple-
mented in pipelined form, the data 
path would correspond to a decima-
tor whose filter’s transfer function is 

[( )z1 - /( ) ( )]H z z1R 1 #= -- - N 1-

[( ) / ( )],z z1 1( )R 1 1- -- - -  which slight-
ly decreases the worst-case attenua-
tion value.

 ■ The CIC-ID-TMUX data path is not 
efficient if ( )R N2 1< -  holds 
because, in that case, the processing 
rate of the time-multiplexed comb 
unit would need to increase and 
become equal to or higher than the 
processing rate of the high-rate sec-
tion. In general, the combinational 
delay of the time-multiplexed comb 
unit must be lower than the shortest 

interval between the pulses of “en1,” 
a constraint that can be met more 
easily as R grows; i.e., as m grows in 
the relation ( ) .R m N 1$ -  The 
switching activity of this block 
might also make it more power con-
suming in comparison with the cas-
caded combs.

 ■ The time-multiplexed comb filter 
introduces an extra latency of R 
clock cycles for the system’s 
response in comparison with the 
cascaded interconnection of non-
pipelined comb filters. The CIC-ID-

TMUX data path is not efficient if 
latency is not tolerated.

 ■ Implementation of the CIC-ID-
TMUX data path on FPGAs may 
not see a clear benefit. The reason is 
that, in FPGAs, a basic building 
block includes both combinational 
logic and registers. Hence, the 
implementation of a single register 
needs approximately the same num-
ber of basic building blocks than the 
implementation of an arithmetic 
unit plus a register. In this sense, 
there is no advantage in the fact that 

Table 2. A comparison of computational complexity and hardware utilization of classic and 
proposed data paths for the CIC decimator. 

Number of Arithmetic Op-
erations per Output Sample 

Number Of  
Arithmetic Units

Number of 
Registers

Two-to-One  
Multiplexer

Classic CIC N R N# + N2 2 3+N 0
CIC-ID N R N 1# + -  N2 1- 2 2+N 0
CIC-ID-TMUX N R N 1# + - N 1+ 2 3+N 1

Table 3. A comparison of the estimated chip area using silicon compiler data for a 1-μm CMOS 
process. 

 CIC CIC-ID CIC-ID-TMUX
No Pruning

R =  8 4.05 mm2 3.67 mm2 3.02 mm2

R =  1,024 8.49 mm2 7.67 mm2 6.29 mm2

Pruning
R =  8 3.07 mm2 2.8 mm2 2.39 mm2

R =  1,024 4.14 mm2 3.85 mm2 3.44 mm2

Table 4. Comparison of synthesis results on the EP4CE115F29C7 FPGA chip.

 CIC CIC-ID CIC-ID-TMUX
No Pruning

R =  8 LEs: 395
MFO: 98.33 MHz
PwC: 147.03 mW
L: 0.350 μs

LEs: 364
MFO: 97.88 MHz
PwC: 149.3 mW
L: 0.350 μs

LEs: 275 +  62 memory bits
MFO: 112.74 MHz
PwC: 154.59 mW
L: 0.490 μs

R =  1,024 LEs: 828
MFO: 87.7 MHz
PwC: 146.89 mW
L: 40.99 μs

LEs: 762 
MFO: 76.3 MHz
PwC: 157.32 mW
L: 40.99 μs

LEs: 591 +  132 memory bits 
MFO: 83.51 MHz
PwC: 158.93 mW
L: 61.450 μs

Pruning
R =  8 LEs: 298 

MFO: 98.47 MHz
PwC: 153.72 mW
L: 0.350 μs

LEs: 276 
MFO: 98.33 MHz
PwC: 143.76 mW
L: 0.350 μs

LEs: 223 +  40 memory bits 
MFO: 112.71 MHz
PwC: 153.30 mW
L: 0.490 μs

R =  1,024 LEs: 398 
MFO: 90.88 MHz
PwC: 153.52 mW
L: 40.99 μs

LEs: 378 
MFO: 83.89 MHz
PwC: 141.58 mW
L: 40.99 μs

LEs: 341 +  40 memory bits 
MFO: 74.45 MHz 
PwC: 154.71 mW
L: 61.450 μs

LE: logic element; MFO: maximum frequency of operation; PwC: power consumption: L: latency.    
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the CIC-ID-TMUX architecture 
uses fewer arithmetic units than the 
classic architecture because the 
number of registers is the same in 
both data paths.

Closing comments
We have observed that in the classic 
CIC decimator the comb units do not 
need to run concurrently. On the one 
hand, the innermost integrator–comb 
pair is the same as an ID unit; thus, we 
can eliminate the comb in that pair and 
replace its function by a much simpler 
synchronous clear, leading to the CIC-
ID architecture. The other combs are 
necessary, but since they operate at the 
low-rate section, time multiplexing does 
not come at the cost of having to in-
crease the maximum rate of operation. 
Hence, we can replace them by a sim-
pler time-multiplexed comb unit, lead-
ing to the CIC-ID-TMUX architecture. 
The proposed data paths for the CIC 
decimator can achieve, in comparison 
with the traditional CIC data path, lower 
hardware utilization without compro-
mising computational complexity. This 
makes them useful options over the 
classic CIC architecture.
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 CONFERENCE HIGHLIGHTS
Athina Petropulu

IEEE Signal Processing Society PROGRESS
Support for underrepresented talent in the field of signal processing 

Promoting Diversity in Signal Pro-
cessing (PROGRESS) is a new ini-
tiative of the IEEE Signal Processing 

Society (SPS), aiming to motivate and 
support women and underrepresented 
minorities to pursue academic careers 
in signal processing; see ieeeprogress
.org. The PROGRESS logo, as seen in 
Figure 1, was created by Marija Iloska, 
a Ph.D. student, and Prof. Petar Djuric, 
of Stony Brook University, New York, 
United States. PROGRESS includes 
workshops at ICASSP and ICIP con-
ferences as well as follow-up surveys 
and mentoring teleconferences. This 
article describes the first PROGRESS 
workshop and reports on the results of 
a survey that was taken by the work-
shop participants.

Women and underrepresented 
minorities account for only 11% of the 
SPS’s membership. At PROGRESS, 
we believe that diversity and inclu-
sion are pillars of innovation. The key 
to increasing diversity and inclusion in 
signal processing is a more diverse fac-
ulty. Such faculty offer role models and 
are well positioned to draw women and 
underrepresented minorities to the field 
and inspire them for excellence.

The first PROGRESS workshop was 
held virtually on 26–27 October 2020,
during ICIP 2020. It was attended by 
202 students from 34 different  countries: 

the United States (57), India (42), China 
(40), Canada (7), the United Arab Emir-
ates (UAE, 6), Bangladesh (5), Spain (3), 
Sri Lanka (3), Switzerland (2), Tunisia 
(2), Malaysia (2), the United Kingdom 
(2), Egypt (2), Ireland (2), Brazil (2), 
Austria (2), and one each from Colom-
bia, Ecuador, Algeria, Australia, Italy, 
Lebanon, Indonesia, Ghana, Greece, 
Pakistan, Peru, Poland, Portugal, Qatar, 
Saudi Arabia, and Turkey.

The workshop started with a greet-
ing from SPS President Dr. Ahmed 
Tewfik. Day 1 included an inspirational 
talk by Prof. Mary (Missy) Cummings, 
faculty of electrical and computer 
engineering (ECE) at Duke University, 
who is a leading researcher in human–

robot interaction and one of the U.S. 
Navy’s first female fighter pilots. It 
also included two panels of high-pro-
file academics from around the world 
discussing the faculty-hiring process 
in their countries. The first panel was 
scheduled at a time convenient for 
the Eastern Hemisphere. It was mod-
erated by IEEE SPS Vice President, 
Membership Prof. K.V.S. Hari of the 
Indian Institute of Science Bangalore, 
India, and it featured Dr. Lina Karam, 
dean of the School of Engineering at 
Lebanese American University, Beirut, 
Lebanon; Dr. Hussain Al-Ahmad, dean 
of Engineering at the University of 
Dubai, UAE; Dr. Zhi-Quan Tom Luo, 
academic vice president of the Chinese 
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University of Hong Kong, Shenzhen, 
China; and Dr. Markus Rupp, univer-
sity  professor, Technische Universität 
Wien (TU Wien), Vienna, Austria. 

The second panel was scheduled at 
a time convenient for the Western Hemi-
sphere. It was moderated by Prof. Ana Isa-
bel Pérez-Neira of Universitat Politècnica 
de Catalunya, Barcelona, Spain, a member 
of the SPS Board of 
Governors. It featured 
Prof. Stella Batalama, 
dean of the College 
of Engineering and 
Computer Science, 
Florida Atlantic Uni-
versity, Boca Raton, 
Florida, United States; 
Prof. Christian Jutten, 
University Grenoble-
Alpes,  Grenoble, 
France; Prof. Kon-
stantina Nikita, National Technical Uni-
versity of Athens, Greece; Prof. Nikolaos 
Sidiropoulos, chair of ECE at the Univer-
sity of Virginia, Charlottesville, Virgina, 
United States; Prof. Roy Yates, chair of 
the Faculty Search Committee of Rut-
gers University,  Piscataway, New Jersey, 
United States; and Prof.  Anderson Rocha, 
director of the Institute of Computing, 
University of Campinas, Brazil. 

Day 1 also included two panels of 
academics sharing their faculty expe-
riences. The first panel, targeting the 
Eastern Hemisphere, featured Prof. 
Deepa Kundur, chair of the Department 
of ECE, University of Toronto, Canada; 
Prof. Anubha Gupta, Indraprastha Insti-
tute of Information Technology, Delhi, 
India; Prof. Qian He, University of Elec-
tronic Science and Technology, Chengdu, 
China; Prof. Islem Rekik, Istanbul 
Technical University, Turkey; and Prof. 
Odette Scharenborg, Delft University 
of Technology, The Netherlands. 

The second panel, targeting the West-
ern Hemisphere, featured Prof. Carol Y. 
Espy-Wilson of the University of Mary-
land, College Park, United States; Prof. 
Piya Pal of the University of California 
San Diego; Prof. Roxana Saint-Nom of 
Universidad Argentina de la Empresa, 
Buenos Aires, Argentina; Prof. Xiang-
nan Zhong of Florida Atlantic Univer-
sity, United States; and Prof. Donald 

S. Williamson of Indiana University, 
Bloomington, United States.

There were also two question and 
answer (Q&A) sessions, moderated by 
Prof. Petar Djuric, chair of the Depart-
ment of ECE at Stony Brook University, 
New York, United States; Prof. Pascale 
Fung of the Hong Kong University of 
Science and Technology, Hong Kong; 

Prof. Monica Bu-
gallo, director of the 
Women in Science 
and Engineering Pro-
gram at Stony Brook 
University, New York, 
United States; Prof.  
Stella Batalama, dean 
of the College of En-
gineering and Com-
puter Science, Florida 
Atlantic University, 
United States; Prof. 

Rabab K. Ward of the University of 
British Columbia, Vancouver, Canada, 
who is director of IEEE Division 1X 
and past president of the SPS; Prof. 
Raquel Assis of Florida Atlantic Uni-
versity, United States; Prof. Behnaz 
Ghoraani of  Florida Atlantic University, 
United States; Prof. Xiangnan Zhong of 
Florida Atlantic University; and Prof. 
Sareh Taebi of Florida Atlantic Univer-
sity, United States.

Day 2 included professional training 
on concepts and tools to support career 
success, including networking and gen-
eral information from the negotiation 
literature, delivered by C.K. Gunsalus 
& Associates. There were also two 
panels on how one can obtain fund-
ing. The participants of the first panel 
included Prof. Raed Shubair of New 
York University Abu Dhabi, UAE; SPS 
Regional Director Prof. Woon-Seng 
Gan of Nanyang Technological Uni-
versity, Singapore; Prof. Christian Jut-
ten of the University Grenoble-Alpes, 
France; Prof. Deepa Kundur, chair of 
the Department of ECE at the Uni-
versity of Toronto, Canada; and Prof. 
Zhi-Quan Tom Luo, academic vice 
president of the Chinese University 
of Hong Kong, Shenzhen, China. The 
second panel included Prof. Zhi Tian 
of George Mason University, Fairfax, 
Virginia, United States, who is also a 

member of the SPS Board of Gover-
nors; Prof. Konstantina Nikita, Nation-
al Technical University of Athens, 
Greece; Prof. Ana Isabel Pérez-Neira 
of Universitat Politècnica de Catalun-
ya, Spain; and Prof. Markus Rupp, TU 
Wien, Austria.

Talks on advanced educational tools 
were given by Laura Acion, associ-
ate researcher scientist , Instituto 
de Cálculo, Universidad de Buenos 
Aires–National Research Council of 
Argentina, Argentina; Prof. Waheed 
Bajwa of Rutgers University, Pisca-
taway, New Jersey, United States; 
and Prof. Raj Rao Nadakuditi of the 
University of Michigan, Ann Arbor, 
United States.

A survey was distributed to the stu-
dents three weeks after the workshop 
and concluded on 15 December 2020. 
The survey asked the participants to rate 
their interest in the various sessions of 
the workshop. It also asked the partici-
pants to rate from 1 to 10 their interest in 
a postdoctoral or faculty position before 
attending PROGRESS and after attend-
ing PROGRESS. Twenty-five students 
responded to the survey. The results sug-
gested that, before PROGRESS, 10 of 
the 25 students expressed interest 8 or 
higher, while after PROGRESS, 18 stu-
dents indicated interest 8 or higher. This 
shift of interest in favor of pursuing an 
academic position was very encourag-
ing. Also supportive were the comments 
of the participants, some of which are 
given here.

 ■ “I found learning from global and 
international leaders in academia 
very helpful.”

 ■ “The workshop made me aware of 
various opportunities in foreign 
countries and the benefits of choos-
ing the field of signal processing.”

 ■ “It gave me a better understanding 
of academia. I could see how faculty 
members and researchers with aca-
demic positions around the world 
contribute to the broader spectrum 
of learning (and teaching) and how 
efforts are being made for inclusivi-
ty and diversity. I think it gave me a 
sense of optimism and confidence 
to pursue an academic position in 
the future.”

PROGRESS is a new 
initiative of the IEEE Signal 
Processing Society, 
aiming to motivate 
and support women 
and underrepresented 
minorities to pursue 
academic careers in  
signal processing.
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 ■ “I am doing my Ph.D. in a relatively 
new university. The PROGRESS 
workshop helped me to get a better 
exposure of how things operate in 
other universities and their culture. It 
really got me motivated when pro-
fessors of high reputation spent their 
time to interact and share their 
knowledge with early researchers 
like me.”

 ■ “In the panel with faculty who 
shared their experiences, it became 
clear that everybody struggles at 
some time in their academic career. 
This made me more confident that 
an academic position is actually 
within my possibilities.”

 ■ “The PROGRESS motivated me a 
lot, especially because we had a lot 
of wonderful examples of how a 

career could be merged and coexist 
perfectly with the private life of any-
body and it should be up to us to 
decide where is the boundary.”

 ■ “Hearing how women have actu-
ally been able to combine a career 
in academia and still have a fami-
ly is very helpful. In my country, 
there are almost no women in my 
field of research in permanent 
academic positions, so there are 
not really any role models, and it 
was very interesting to hear from 
women around the globe about 
their experiences.”
Via the survvey, the students also 

suggested topics for future PROGRESS 
workshops, including a session on prep-
aration of a CV, cover letters, statements, 
grant writing, a list of opportunities 

(postdoctoral, faculty, and scholarships), 
a list of platforms where one could find 
tools to sharpen signal processing skills, 
a mentorship program, and a forum for 
Q&A beyond the workshop.

The next PROGRESS workshop will 
be virtual and is scheduled for 4–5 June 
2021—right before ICASSP 2021. More 
information can be found at ieeeprogress 
.org.

Author
Athina Petropulu (athinap@soe.rutgers 
.edu) is a Distinguished Professor of 
electrical and computer engineering at 
Rutgers, the State University of New 
Jersey, president-elect of the IEEE Sig-
nal Processing Society, and director 
of PROGRESS.

 SP

via the Leibniz generalized product rule, 
( / ){ ( ) ( )} ( )

k
nd dt f t g t f t( )n n

k
n n k

0R= =
-` j

( ):g t( )k

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) (

( )) ( ) ( ) ( )

( ) ( ) ( )

[ ( ) ( )]

( ) ( ) ( )

( ) .

exp exp

exp

exp

exp

x t f t g t f t g t

f t g t

t u t

t t t t

t u t t

t t

t u t t

t

2

9 3 2 3

3 3

9 3 6

3

9 3 3

( ) ( ) ( ) ( )

( )

( )

( )

( )

( )

p

a

2 2 1 1

2

1

1

1

d d

d

d d

d

d

= +

+

= - + -

- + -

= - -

+ +

= - -

+

 

(30)

In line (a), the basic and advanced versions 
of the product rule in Table 1 are applied. 
The advanced product rule states that 

( ) ( ) ( ) ( ) ( ) ( ),f t t f t f t0 0( ) ( ) ( )1 1 1d d d= -  and  
substituting ( ) ( )expf t t3= -  into this 
relation gives the term in the square 
brackets of line (a). We see that the 
final result given by either (29) or (30) 
matches the one by the partial fraction 
expansion, provided that we handle the 
differentiation of ( )x tp  in the general-
ized sense, obeying the rules of Dirac 
delta function manipulation.

What we have learned
We have studied generalized functions, 
limits, and derivatives as well as their ap-
plications in some signal processing prob-
lems. These notes aim to show that many 
familiar equalities are valid only in the gen-
eralized sense. Hence, the equality signs 
should be replaced with 

( )g
=  in many calcu-

lations involving Dirac delta functions, unit 
step functions, and so on. Interested read-
ers can examine classical signal processing 
textbooks of Papoulis [3] and Bracewell [4] 
for a brief treatment of generalized func-
tions. For more information, readers are 
invited to examine [7], [9], and [10].
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2021

MAY
International Conference on Information 
Processing in Sensor Networks (IPSN)
18–21 May, Nashville, Tennessee, United States.
General Chair: Ákos Lédeczi
URL: https://ipsn.acm.org/2021/

JUNE
IEEE Data Science and Learning  
Workshop (DSLW)
5–6 June, Toronto, Ontario, Canada.
General Chairs: Stark Draper and Z. Jane Wang
URL: https://conferences.ece.ubc.ca/dslw2021/#/

IEEE International Conference on  
Acoustics, Speech, and Signal  
Processing (ICASSP)
6–11 June, Toronto, Ontario, Canada. 
General Chairs: Dimitri Androutsos, Kostas 
Plataniotis, and Xiao-Ping (Steven) Zhang
URL: https://2021.ieeeicassp.org/

Virtual: International Conference on Quality  
of Multimedia Experience (QoMEX)
14–17 June
General Chairs: Tiago H. Falk and Amy Reibman
URL: https://qomex2021.itec.aau.at/

Content-Based Multimedia  
Indexing (CBMI)
28–30 June, Lille, France. 
Conference Chair: Chaabane Djeraba  
URL: https://cbmi2021.univ-lille.fr

Picture Coding Symposium (PCS)
29 June–2 July, Bristol, U.K.
General Chair: David Bull 
URL: https://pcs2021.org

JULY
IEEE International Conference on  
Multimedia and Expo (ICME)
5–9 July, Shenzhen, China. 
General Chairs: Moncef Gabbouj,  
Houqiang Li, Guo-Jun Qi, and Yonghong Tian
URL: https://2021.ieeeicme.org/

IEEE Statistical Signal Processing  
Workshop (SSP)
11–14 July, Rio de Janeiro, Brazil. 
General Chair: Rodrigo C. de Lamare
URL: http://ssp2020.cetuc.puc-rio.br

AUGUST
IEEE International Conference on 
Autonomous Systems (ICAS)
11–13 August, Montréal, Québec, Canada.
General Cochairs: Amir Asif  
and Arash Mohammadi 
URL: https://2021.ieee-icas.org 

SEPTEMBER
Sensor Signal Processing  
for Defence (SSPD)
14–15 September, Edinburgh,  
United Kingdom.
General Chairs: Mike Davies,  
Stephen McLaughlin, Jordi Barr,  
and Gary Heald
URL: https://sspd.eng.ed.ac.uk/ 

IEEE International Conference  
on Image Processing (ICIP)
19–22 September, Anchorage, Alaska,  
United States. 
General Chair: Saif alZahir
URL: https://2021.ieeeicip.org 

IEEE International Workshop on Signal 
Processing Advances in Wireless 
Communications (SPAWC)
27–30 September, Lucca, Italy. 
General Chair: Luca Sanguinetti
URL: https://www.spawc2021.com
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IEEE Machine Learning for Signal Processing Workshop 
2021, 25 – 28 October, Gold Coast, Australia

The 31st MLSP workshop in the series of workshops organized by the IEEE Signal Processing Society 
MLSP Technical Committee will take place in Gold Coast, Australia. If conditions allow, we plan to have 
a conference running in a hybrid format with a virtual program for attendees that can't attend the 
conference and in person attendance for attendees that can attend. The conference will present the 
most recent and exciting advances in machine learning for signal processing through keynote talks, 
tutorials, special and regular single-track sessions as well as matchmaking events. The presented papers 
will be published in and indexed by IEEE Xplore.

All submitted papers are reviewed by experts and only a proportion is accepted maintaining a high 
quality scientific meeting. The scope of the workshop includes basic theory, methods and algorithms, 
and applications in the following areas:

Theoretical and application Topics:  
• Learning theory and algorithms
• Information-theoretic learning
• Deep learning techniques
• Distributed/Federated learning
• Dictionary learning
• Graphical and kernel methods
• Learning from multimodal data
• Independent component analysis
• Matrix factorizations/completion
• Reinforcement learning
• Transfer learning

• Source separation
• Reinforcement learning
• Subspace and manifold learning
• Sequential learning
• Self-supervised and semi-supervised 

learning
• Tensor-based signal processing
• Sparsity-aware processing
• Pattern recognition and classification
• Music and audio processing
• Applications of machine learning

Submission of papers: Prospective authors are invited to submit 6 pages full-length papers, including 
figures and references. Papers are submitted electronically at 2021.ieeemlsp.org

Special session proposals: Special session proposals are submitted through the 2021.ieeemlsp.org. 
They must include a topical title, rational, session outline, contact information and the list of invited 
papers. Special session authors are referred to the workshop website for additional information 
regarding submissions.

Important Dates:

• Deadline for special session proposals submission                                           April 30th, 2021
• Special sessions selected                                                                                       May 07th, 2021
• Deadline for 6-page paper submissions                                                              May 31st, 2021
• Notification of paper acceptance                                                                         July 31st, 2021
• Camera ready upload                                                                                             August 31st, 2021
• Start of conference                                                                                                 October 25th, 2021

Venue: The Gold Coast is a coastal city located in the South East of Queensland, Australia. The city is 94 
km (58 mi) south of the state capital Brisbane. With more than 300 days of sunshine each year allowing 
you to explore more than 70 km of unspoiled coastline and beaches as well as 100,000 hectares of world 
heritage rainforest; Gold Coast is today a leading touristic destination.  It enjoys 30 different beaches 
each with their own personality, from world-famous surf breaks and cosy coastal settings in the south to 
family fun swimming spots and surf-life saving action in the north. At your fingertips is every on-water 
activity imaginable!  With its sunny subtropical climate, surfing beaches, canal and waterway systems, its 
high-rise dominated skyline, theme parks, nightlife and rainforest hinterland, Gold Coast will turn your 
stay into lifetime memories.

General Chairs
• Abd-Krim Seghouane

University of Melbourne
• Mohammed Bennamoun

University of Western Australia
• Jonathan Manton

University of Melbourne

Program Chairs
• Dong Xu

University of Sydney
• Liang Zheng 

Australian National University
• Wen Li

University of Electronic Science and 
Technology Chine

Plenary Chairs
• Ba-ngu Vo

Curtin University
• Tongliang Liu

University of Sydney

Tutorials Chairs
• Hamid Laga

Murdoch University
• Qian Yu

Beihang University

Special sessions Chair
• Lu Sheng

Beihang University

Finance Chair
• Luping Zhou

University of Sydney

Student Prize Chair
• Chunhua Shen

University of Adelaide

Data Competition Chairs
• Ercan Kuruoglu

Consiglio Nazionale delle Ricerche
• Danilo Comminiello

Sapienza University of Rome

Publicity Chair
• Navid Shokouhi

Global Kinetics

Publication Chairs
• Guo Lu

Beijing Institute of Tectnology
• Jing Zhang

Beihang University

Advisory Committee
• Zheng-Hua Tan

Aalborg University 
• Murat Akcakaya

University of Pittsburgh
• Bhaskar Rao

University of California San Diego
• Raviv Raich

Oregon State University

Digital Object Identifier 10.1109/MSP.2021.3070727



@
20

21
 Th

e M
at

hW
or

ks
, I

nc
.

With MATLAB® you can use clustering, 
regression, classification, and deep  
learning to build predictive models 
and put them into production. 

mathworks.com/machinelearning

  MACHINE
LEARNING

MATLAB SPEAKS 
 


	cover1_38msp03
	cover2_38msp03
	001_38msp03
	002_38msp03
	003_38msp03
	004_38msp03
	005_38msp03
	006_38msp03
	007_38msp03
	008_38msp03
	009_38msp03
	010_38msp03
	011_38msp03
	012_38msp03
	013_38msp03_r1
	014_38msp03
	015_38msp03
	016_38msp03
	017_38msp03
	018_38msp03
	019_38msp03
	020_38msp03
	021_38msp03
	022_38msp03
	023_38msp03
	024_38msp03
	025_38msp03
	026_38msp03
	027_38msp03
	028_38msp03
	029_38msp03
	030_38msp03
	031_38msp03
	032_38msp03
	033_38msp03
	034_38msp03
	035_38msp03
	036_38msp03
	037_38msp03
	038_38msp03
	039_38msp03
	040_38msp03
	041_38msp03
	042_38msp03
	043_38msp03
	044_38msp03
	045_38msp03
	046_38msp03
	047_38msp03
	048_38msp03
	049_38msp03
	050_38msp03
	051_38msp03
	052_38msp03
	053_38msp03
	054_38msp03
	055_38msp03
	056_38msp03
	057_38msp03
	058_38msp03
	059_38msp03
	060_38msp03
	061_38msp03
	062_38msp03
	063_38msp03
	064_38msp03
	065_38msp03
	066_38msp03
	067_38msp03
	068_38msp03
	069_38msp03
	070_38msp03
	071_38msp03
	072_38msp03
	073_38msp03
	074_38msp03
	075_38msp03
	076_38msp03
	077_38msp03
	078_38msp03
	079_38msp03
	080_38msp03
	081_38msp03
	082_38msp03
	083_38msp03
	084_38msp03
	085_38msp03
	086_38msp03
	087_38msp03
	088_38msp03
	089_38msp03
	090_38msp03
	091_38msp03
	092_38msp03
	093_38msp03
	094_38msp03
	095_38msp03
	096_38msp03
	097_38msp03
	098_38msp03
	099_38msp03
	100_38msp03
	101_38msp03
	102_38msp03
	103_38msp03
	104_38msp03
	105_38msp03
	106_38msp03
	107_38msp03
	108_38msp03
	109_38msp03
	110_38msp03
	111_38msp03
	112_38msp03
	113_38msp03
	114_38msp03
	115_38msp03
	116_38msp03
	117_38msp03
	118_38msp03
	119_38msp03
	120_38msp03
	121_38msp03
	122_38msp03
	123_38msp03
	124_38msp03
	125_38msp03
	126_38msp03
	127_38msp03
	128_38msp03
	129_38msp03
	130_38msp03
	131_38msp03
	132_38msp03
	133_38msp03
	134_38msp03
	135_38msp03
	136_38msp03
	137_38msp03
	138_38msp03
	139_38msp03
	140_38msp03
	141_38msp03
	142_38msp03
	143_38msp03
	144_38msp03
	145_38msp03
	146_38msp03
	147_38msp03
	148_38msp03
	149_38msp03
	150_38msp03
	151_38msp03
	152_38msp03
	153_38msp03
	154_38msp03
	155_38msp03
	156_38msp03
	157_38msp03
	158_38msp03
	159_38msp03
	160_38msp03
	161_38msp03
	162_38msp03
	163_38msp03
	164_38msp03
	165_38msp03
	166_38msp03
	167_38msp03
	168_38msp03
	169_38msp03
	170_38msp03
	171_38msp03
	172_38msp03
	173_38msp03
	174_38msp03
	175_38msp03
	176_38msp03
	177_38msp03
	178_38msp03
	179_38msp03
	180_38msp03
	181_38msp03
	182_38msp03
	183_38msp03
	184_38msp03
	185_38msp03
	186_38msp03
	187_38msp03
	188_38msp03
	189_38msp03
	190_38msp03
	191_38msp03
	192_38msp03
	193_38msp03
	194_38msp03
	195_38msp03
	196_38msp03
	197_38msp03
	198_38msp03
	199_38msp03
	200_38msp03
	201_38msp03
	202_38msp03
	203_38msp03
	204_38msp03
	cover3_38msp03
	cover4_38msp03

